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We establish some general dynamical properties of quantum many-body systems that are subject to a high-
frequency periodic driving. We prove that such systems have a quasiconserved extensive quantity H∗, which plays
the role of an effective static Hamiltonian. The dynamics of the system (e.g., evolution of any local observable)
is well approximated by the evolution with the Hamiltonian H∗ up to time τ∗, which is exponentially large in
the driving frequency. We further show that the energy absorption rate is exponentially small in the driving
frequency. In cases where H∗ is ergodic, the driven system prethermalizes to a thermal state described by H∗ at
intermediate times t � τ∗, eventually heating up to an infinite-temperature state after times t ∼ τ∗. Our results
indicate that rapidly driven many-body systems generically exhibit prethermalization and very slow heating. We
briefly discuss implications for experiments which realize topological states by periodic driving.
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I. INTRODUCTION

Recent advances in laser cooling techniques have resulted
in experimental realizations of well-isolated, highly tunable
quantum many-body systems of cold atoms [1]. A rich
experimental toolbox of available quantum optics, combined
with the systems’ slow intrinsic time scales, allow for a
preparation of nonequilibrium many-body states and also a
precise characterization of their quantum evolution. This has
made the study of different dynamical regimes in many-body
systems one of the forefront directions in modern condensed-
matter physics (for a review, see Ref. [2]).

Conventional wisdom suggests that in a majority of many-
body systems, the Hamiltonian time evolution starting from
a nonequilibrium state should lead to thermalization at suffi-
ciently long times: that is, physical observables reach thermal
values, given by the microcanonical ensemble. Thermalization
in such ergodic systems is understood in terms of the properties
of individual eigenstates themselves—observables measured
in these eigenstates are already thermal, as encapsulated by the
eigenstate thermalization hypothesis (ETH) [3–5]. However,
while ETH implies eventual thermalization, it does not make
predictions regarding the intermediate-time dynamics of the
system. Therefore, much work has been dedicated to studying
how thermal equilibrium emerges in different many-body
systems.

In particular, there is a class of systems which exhibit the
phenomenon of prethermalization [6–9]. Such systems have a
set of approximate conservation laws, in addition to energy;
therefore, at intermediate time scales they equilibrate to a state
given by the generalized Gibbs ensemble, which is restricted
by those conservation laws. Full thermal equilibrium is reached
at much longer time scales, set by the relaxation times of
the approximate integrals of motion. Prethermalization has
been experimentally observed in a nearly integrable one-
dimensional Bose gas [10].

In this paper, we establish some general properties of
dynamics of periodically driven many-body systems (Floquet
systems). Periodic driving in quantum systems has recently

attracted much theoretical and experimental attention, be-
cause, among many applications, it provides a tool for inducing
effective magnetic fields, and for modifying topological
properties of Bloch bands [11–14]. Indeed, since periodic
driving is naturally realized in cold atomic systems by applying
electromagnetic fields, topologically nontrivial Bloch bands
(Floquet topological insulators) in noninteracting systems
have been observed experimentally [15–17]. However, since
periodic driving breaks energy conservation, driven ergodic
(many-body) systems are expected to heat up, eventually
evolving into a featureless, infinite-temperature state [18–21].
Thus, many-body effects are expected to generally make such
Floquet systems unstable. Below, we derive general bounds
for energy absorption rates in periodically driven many-body
systems, which can be applied, for instance, to understand the
lifetimes of Floquet topological insulators.

As the main result of the paper, we show that rapidly driven
many-body systems with local interactions generally have a
local, quasiconserved extensive quantity, H∗, which plays the
role of an effective Hamiltonian. At times t � τ∗, the time
evolution of any local observable is well approximated by the
Hamiltonian evolution with the time-independent Hamiltonian
H∗. Thus, assuming that the Hamiltonian H∗ is ergodic, the
system exhibits prethermalization to a thermal state described
by the Hamiltonian H∗, with an effective temperature set by the
initial “energy” 〈ψ0|H∗|ψ0〉. The quasiconservation of H∗ is
destroyed at time scale t ∼ τ∗, when energy absorption occurs
and an infinite-temperature state is formed. We show that the
heating time scale τ∗ is exponentially large in the driving
frequency ω:

τ∗ ∼ ec ω
h , (1)

where c is a numerical constant of order 1, and h has the
meaning of a maximum energy per particle or spin, precisely
defined below. Thus, rapidly driven many-body systems
generically have a very long prethermalization regime, and
absorb energy exponentially slowly in the driving frequency.
We emphasize that these results are nonperturbative; they
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generalize and complement our previous work, Ref. [22],
where bounds on linear-response heating rates were proven.
As an implication of our result, we show that the measurement
of a local operator time evolved with the effective Hamiltonian
is close to the measurement of the same operator but exactly
time evolved, up to exponentially long times.

The structure of the rest of the paper is as follows. In
Sec. II, we define the setup and present the central idea
of the transformation used to obtain our results. Then, in
Sec. III, we work out in detail, using the method presented, the
optimal order n∗ of the transformation to obtain the effective
Hamiltonian H∗ and also the heating time scale τ∗ for which
this effective Hamiltonian is valid. Next, in Sec. IV, we present
the implications of our result for the observation of a local
operator. Lastly, we end with a discussion in Sec. V.

II. SETUP AND OUTLINE OF METHOD

We consider a quantum many-body system subject to a
drive with a period T = 2π/ω, described by a time-dependent
Hamiltonian:

H (t) = H0 + V (t), V (t + T ) = V (t), (2)

where H0 is time independent, and, without loss of generality,
the time average of the driving term V (t) is chosen to be zero,∫ T

0 V (t) dt = 0. We focus on the case of a lattice system with
locally bounded Hilbert space. In other words, the Hilbert
space of site i is finite dimensional, as is the case for fermions,
spins, as well as hard-core bosons. We also restrict to one-
dimensional systems, but this is not crucial to the method;
see also Ref. [23]. Both H0 and V (t) are assumed to be local
many-body operators, that is, they can be written as a sum of
local terms:

H0 =
∑

i

Hi, V (t) =
∑

i

Vi(t), (3)

where i runs over all lattice sites, i = 1,...,N . The locality of
the interactions means that each term Hi,Vi acts nontrivially
on at most R adjacent sites i,i + 1, . . . ,i + R − 1 (e.g., for
the nearest-neighbor Heisenberg model, R = 2); we refer to
R as the range of the operator. Each term Hi,Vi is bounded by
a constant interaction strength h:

||Hi || � h, |||Vi(t)|| � h. (4)

We will focus on the case when the driving frequency is large
(or equivalently, the driving period is small) compared to these
local energy scales, that is, hT � 1.

Now, the unitary dynamics of the system is described
by the time evolution operator U (t), which obeys the
equation

i∂tU (t) = H (t)U (t), U (0) = I, (5)

where I is the identity operator.
Floquet theory (for a review, see Ref. [24]) predicts that the

solution of Eq. (5) can be written in the following form:

U (t) = P (t)e−iHF t , (6)

where P (t + T ) = P (t) is a time-periodic unitary such that
P (0) = I , and HF is a time-independent Floquet Hamiltonian.

In particular, the evolution operator over one period is given
by

U (T ) = T exp

(
−i

∫ T

0
H (t) dt

)
= e−iHF T . (7)

Thus, the evolution of the system at stroboscopic times tn =
nT , n ∈ Z is governed by the time-independent Hamiltonian
HF . Note that the choice of HF is not unique: given a
particular HF and projectors Pi = |i〉〈i| onto its eigenstates
with eigenvalues Ei , the Hamiltonian H ′

F = HF + ∑
i miωPi

is also a valid Floquet Hamiltonian for any mi ∈ Z.
Typically, there is no closed-form solution of Eq. (6), and

one relies on iterative schemes such as the Magnus expansion
to obtain HF for high-frequency drives (for a recent review,
see Refs. [24–26]). In this approach, HF is expanded in terms
of powers of T (equivalently, of inverse frequency 1/ω),
HF = ∑

n H
(n)
F , where H

(n)
F = O(T n). The formal solution

of Eqs. (5) and (6) then gives H
(n)
F expressed in terms of

nested commutators of H (t) at different times. However, the
Magnus expansion is only known to converge for bounded
Hamiltonians, such that ||H (t)||T � rc, with rc ∼ 1,∀t [25].
Since many-body systems have extensive energies and do not
satisfy this condition, the Magnus expansion is expected not
to converge in this case. Indeed, the existence of a quasilocal
Floquet Hamiltonian HF would imply that the system does not
heat up to an infinite-temperature state at long times, contrary
to the general arguments based on the ETH [18].

Therefore, we propose an alternative approach. The central
idea is as follows: we unitarily transform the Hamiltonian,
systematically removing time-dependent terms at increasing
order in T . Truncating the procedure at some optimal order n∗
(defined below), we obtain a quasiconserved time-independent
Hamiltonian operator H∗.

More concretely, we transform the system’s wave function
|ψ(t)〉 by a time-periodic unitary Q(t + T ) = Q(t), such that
Q(0) = I :

|ϕ(t)〉 = Q(t)|ψ(t)〉. (8)

Importantly, the wave function |ϕ(t)〉 coincides with the
original wave function |ψ(t)〉 at stroboscopic times tn. Its
evolution is described by the Schrödinger equation

i∂t |ϕ(t)〉 = H ′(t)|ϕ(t)〉, (9)

with a modified Hamiltonian:

H ′(t) = Q†H (t)Q − iQ†∂tQ. (10)

Thus, the transformation Q(t) defines a new periodic Hamil-
tonian H ′(t), which gives the same stroboscopic evolution as
the original Hamiltonian H (t).

For our purposes, it is convenient to write the operator
Q as an exponential of a periodic operator �(t) = �(t + T ),
which is anti-Hermitian, �† = −�, and to represent � as an
nmax-degree polynomial in the driving period T :

Q(t) = e�, � =
nmax∑
q=1

�q, �q = O(T q). (11)

Here, the order of the polynomial nmax should be treated as a
parameter to be optimized in a manner described below. Using
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Duhamel’s formula, for Q = e�, Eq. (10) can be rewritten as
follows:

H ′(t) = e−ad�[H0 + V (t)] − i
1 − e−ad�

ad�

∂t�, (12)

where ad�A = [�,A], which gives an expansion of H ′(t)
naturally in powers of T .

We will show below that the operators �q can be chosen
to get rid of the time dependence of H ′(t) of order T q for
q � nmax − 1, leaving behind a time-dependent piece of order
T nmax . Furthermore, we will show that for a given T and H (t),
there exists an optimal nmax = n∗, for which this driving term’s
norm (suitably defined) becomes minimal. For a many-body
system with local interactions, we find that the optimal n∗ ∼ ω,
and for this n∗, the driving term’s norm is exponentially
reduced by a factor of e−c ω

h . The time-independent part H∗
of the corresponding Hamiltonian H ′(t) then represents a
quasiconserved energy, valid for an exponentially long time
τ∗ ∼ ec ω

h .

III. METHOD, OPTIMAL ORDER,
AND HEATING TIME SCALE

We now utilize the transformation outlined in the previous
section to transform the original Hamiltonian. We derive the
optimal order n∗ at which the remaining driving term becomes
minimal, which gives us both the effective Hamiltonian H∗
and the heating time scale τ∗.

A. Simple example: Single rotating frame transformation

To get some familiarity regarding the use of our approach
before going into full generality, it is instructive to first consider
the simple example of a transformation Q for nmax = 1, i.e., a
single rotating frame transformation, so that � = �1 = O(T ),
and �1 is chosen such that the driving term of order T 0 is
eliminated in Eq. (12).

Since the zeroth-order contribution in Eq. (12) is given by
H0 + V (t) − i∂t�1, we define �1 by

�1(t) = −i

∫ t

0
V (t ′) dt ′. (13)

With this choice of �1,H
′ of Eq. (12) can be expanded in

“powers of T ”:

H ′(t) =
∞∑

q=0

H (q)(t), (14)

where H (q)(t) is the term of order T q :

H (q)(t) = (−ad�1 )q

q!
H0 + q(−ad�1 )q

(q + 1)!
V (t). (15)

To the first order in T , the rotated Hamiltonian H ′ is given by

H ′(t) = H0 + H̄ (1) + V (1)(t) + O(T 2),

where H̄ (q) = 1
T

∫ T

0 H (q)(t)dt is the time-independent part
of H (q)(t), and V (q)(t) = H (q)(t) − H̄ (q) is the new driving
term (with zero time average) at this order. A straightforward

calculation shows that H̄ (1) = T
2

∫ T

0 dt1
∫ t1

0 dt2[H (t1),H (t2)]
coincides with the second order of the Magnus expansion.

We see that H is the order T 0 piece of H ′(t) and is time in-
dependent, while the remaining piece δH ′(t) ≡ ∑

q�1 H (q)(t)
that appears at orders T 1 and higher is still time dependent, and
represents the new driving term. Thus the rotated Hamiltonian
can be written as

H ′(t) = H0 + δH ′(t), δH ′(t) = O(T 1). (16)

Contrasted to the original Hamiltonian H + V (t), it appears
that the new driving term’s norm has been reduced by a factor
of T .

However, there is an important distinction to be made
between H ′(t) and the original Hamiltonian H + V (t). In a
many-body system, the rotated Hamiltonian H ′ in Eq. (14) is
now quasilocal instead of being strictly local. This is because
H (q)(t) involves q nested commutators of �1 and H,V (t),
and the norm of each term decreases exponentially with q

for sufficiently rapid driving. To establish this, we note that
each term H (q)(t) is extensive and can be written as H (q)(t) =∑

i H
(q)
i (t). We denote the maximum local (l) norm of

H
(q)
i (t) as ||H (q)(t)||l ≡ supi ||H (q)

i (t)||, and use the following
fact: for any two extensive operators A = ∑

i Ai,B = ∑
i Bi

of range RA,RB , respectively, such that ||A||l � a,||B||l �
b,C = adAB has a range of at most RC = RA + RB − 1, and
C = ∑

i Ci , with norm

||C||l � 2(RA + RB − 1)ab. (17)

This is because each operator Ai can commute nontrivially
with at most RA + RB − 1 operators Bj . Repeatedly applying
this estimate to the operators adq

�1
H,adq

�1
V (t) that enter

Eq. (15), and using the fact that �1 has range R, and
||�1|| � hT [which follows from Eq. (13)], we obtain

||H (k)(q)||l � 2h(2hRT )q, (18)

and the range of H (q)(t) equals q(R − 1) + R. Thus, this
establishes the quasilocality of the Hamiltonian H ′(t).

Further, by using an appropriately weighted local norm
(see Appendix A.3 and also Ref. [23]), the size of δH ′(t) is
O(T ). Therefore, we see that the transformation �1 reduces
the amplitude of the time-dependent term by a factor of order
T , while at the same time making the Hamiltonian quasilocal,
and renormalizing its time-independent part.

B. General case

Next, we proceed to the general case of nmax > 1. Then,
� = ∑nmax

p=1 �q , where as mentioned, �q = O(T q) is chosen
such that the only time-dependent terms in the Hamiltonian
H ′ are of order T nmax . This condition gives us a set of
recursive relations for �q (t): we use them to “absorb” the time-
dependent pieces of order T q in H ′ for 1 � q � nmax − 1. To
derive these relations, we first note that the term of the order
T q in H ′(t) has the following form:

H (q)(t) = G(q)(t) − i∂t�q+1(t), (19)
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where G(q)(t) is expressed in terms of �1(t), . . . ,�q(t):

Gq(t) =
q∑

k=1

(−1)k

k!

∑
1 � i1,...,ik � q

i1 + ... + ik = q

ad�i1
. . . ad�ik

H (t)

+ i

q∑
m=1

q+1−m∑
k=1

(−1)k+1

(k + 1)!

×
∑

1 � i1,...,ik � q + 1 − m

i1 + ... + ik = q + 1 − m

ad�i1
...ad�ik

∂t�m(t). (20)

(For q � nmax, we set �q>nmax ≡ 0.) We can separate G(q)(t)
into a time-independent part, H̄ (q), and a time-dependent part
V (q)(t) with zero average over one period:

H̄ (q) = 1

T

∫ T

0
G(q)(t) dt, V (q)(t) = G(q)(t) − H̄ (q). (21)

We eliminate the time-dependent term of the order T q in H ′(t)
[see Eq. (19)] by choosing �q+1(t) as follows:

�q+1(t) = −i

∫ t

0
V (q)(t ′) dt ′ (22)

for q � nmax − 1. In particular, for q = 0,�1(t) is given by
Eq. (13).

Relations (20)–(22) define the transformation � which
makes the time-dependent terms in the Hamiltonian H ′ of
the order T nmax :

H ′(t) = H0 +
nmax−1∑
q=1

H̄ (q) + δH ′(t), δH ′(t) = O(T nmax ).

(23)

In a manner similar to the simple example of nmax = 1 con-
sidered before, the full Hamiltonian H ′(t) and time-dependent
term δH ′(t) can be shown to be quasilocal (see Appendix A.3).

Now, let us now estimate the norm of δH ′(t). We argue
that there is an optimal nmax which we call n∗, for which the
procedure we have outlined before approximatively minimizes
the local norm of δH ′(t). This has physical consequences for
both the heating time scale and the observation of a local
observable, for example. Thus, nmax should be chosen as n∗.

To this end, we prove a number of inequalities for the norms
of various operators, ||G(q)||l ,||�q ||l ,||H̄ (q)||l and ||V (q)||l
(refer to the Appendix and to Ref. [23] for generalizations).
In the following, there will appear constants C,c, etc., which
depend on the microscopic details of the system such as h

and R, but importantly not on the driving period T . It is
to be understood that these constants can be different for
different objects in question that are being bounded. Now,
for q � nmax − 1, we have

||G(q)||l � (C0R)qq!h(hT )q, (24)

with C0 a combinatorial constant of order 1. The other
operators have then derived bounds since ||H̄ (q)||l � ||G(q)||l
and ||V (q)||l � 2||G(q)||l . For �q , we have

||�q+1||l � 2(C0R)qq!(hT )q+1. (25)

The q! factor in the above bounds arises because of the many-
body nature of the system: G(q) involves q nested commutators
of H0,V (t). Equation (24) shows that there are two competing
effects which control the behavior of ||G(q)||l : suppression of
||G(q)||l by a factor of T q , and its growth due to q!. Eventually,
the factorial dominates and therefore for q > 1

C0RhT
the local

norm of G(q) stops decreasing with q.
The optimal nmax that we have to choose for is roughly the

same as the one to choose to minimize the norm of �nmax or
G(nmax) (see the Appendix). From the right-hand side of Eq. (24)
or Eq. (25), we obtain

n∗ = e−r

C0eRhT
, (26)

with r = r(R) (independent of T ) defined in Appendix A.3.
This gives us the following bound on �q :

||�q ||l � Ce−rq , (27)

for q � n∗, which in turn gives us an estimate on the remainder:

||δH ′(t)||l � Ce−cn∗ . (28)

As already indicated, the truly useful version of this bound
also expresses that local terms in δH (t) with large range are
additionally damped, and this is indeed captured by the use of
a stronger norm in the Appendix.

Furthermore, at this optimal order, the time-independent
part of the transformed Hamiltonian is a physical, local many-
body Hamiltonian,

H∗ ≡ H0 +
nmax−1∑
q=1

H̄ (q), (29)

and differs from the original Hamiltonian H by a sum of small
local terms, more precisely

1

N
||H∗ − H0|| �

n∗−1∑
q=1

||H̄ (q)||l � Ch. (30)

Equation (28) together with Eq. (30) imply that the energy
absorption rate (per volume) is exponentially small, giving us
a characteristic heating time scale that scales like

τ∗ ∼ ec ω
h . (31)

The operator H∗ is therefore a quasiconserved extensive quan-
tity, playing the role of an effective static Hamiltonian, and it
can be used to accurately describe stroboscopic dynamics up
to times τ∗.

IV. IMPLICATIONS: EVOLUTION
OF A LOCAL OBSERVABLE

Next, we spell out the consequences of the existence of
this effective Hamiltonian H∗ for the time evolution of a local
observable O, with ||O|| = 1. Let us consider the difference
between O evolved in time using the exact time evolution
operator and the time evolution generated by the effective
Hamiltonian H∗. The difference

Q(t)U †(t)OU (t)Q†(t) − eitH∗Oe−itH∗ (32)
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can be recast, using the frame transformation and Duhamel’s
formula, as

i

∫ t

0
ds W ∗(s,t)[δH ′(s),eisH∗Oe−isH∗ ]W (s,t), (33)

where W (s,t) = W−1(s)W (t) is the evolution from time s to t

generated by the time-dependent Hamiltonian H ′(t). The norm
of the difference can be bounded using the unitarity of W (s,t)
as ∫ t

0
ds||[δH ′(s),eisH∗Oe−isH∗ ]||, (34)

which can be controlled by the Lieb-Robinson bound; see
Refs. [27,28]. Indeed, let us first pretend that the range of local
terms in δH ′(s) is maximally Rn∗, then the Lieb-Robinson
bound yields

||[δH ′(s),eisH∗Oe−isH∗ ]|| � C||δH ′(s)||l(sv∗ + Rn∗) (35)

where v∗ is the Lieb-Robinson velocity of H∗, which can be
chosen to be ∼ Ch. Here C is a numerical constant of order 1.

The bound (35) expresses that only those terms in δH ′(s)
that have support within distance sv∗ of the support of O

contribute to the commutator; see Ref. [23] for a more detailed
derivation of such bounds. Since in our case the support of
local terms in δH ′(s) can grow arbitrarily large (because it is
quasilocal), we, however, need to use the exponential decay
in support of the norm of each local term in δH ′(t) to derive
Eq. (35), in which case C depends on the decay constant. We
omit this straightforward calculation and refer to Ref. [23].

Using ||δH ′(s)||l � Ce−cn∗ , we conclude that the differ-
ence Eq. (32) grows as ∼ t2e−cn∗ with t and hence it remains
small up to an exponentially long time t ∼ ec ω

h . Thus, a
measurement of O(t) that is time evolved by the effective
Hamiltonian H∗ will be close to the measurement of O(t) that
is time evolved by the exact Hamiltonian H + V (t), for an
exponentially long time.

V. DISCUSSION AND CONCLUSION

In this paper, we considered many-body systems subject
to a high-frequency periodic driving. We have shown that
there is a broad time window, t � τ∗, in which stroboscopic
dynamics of such systems is controlled by an effective time-
independent Hamiltonian H∗. We have used a series of “gauge”
time-periodic unitary transformations to effectively reduce the
strength of the driving term and to establish the existence of
H∗. The advantage of our approach compared to the standard
Magnus expansion [24–26] is that it allows us to control the
magnitude of the driving terms after the transformations.

We note that recently Canovi et al. [29] and Bukov et al.
[30] discussed prethermalization in weakly interacting driven
systems. Our results complement these works: we have shown
that (rapidly) driven interacting systems generically exhibit
a broad prethermalization regime, which can be observed in
a quench experiment as follows. Let us initially prepare the
system in some nonequilibrium state |ψ〉, and subject it to a
rapid periodic drive. At times t � τ∗ the system will reach
a steady state, in which physical observables have thermal
values, 〈ψ(t)|O|ψ(t)〉 = Tr(Oρ), where the density matrix
ρ ∝ e−H∗/Teff , with Teff being the effective temperature set by

the energy density of the initial state. Thus, at times t � τ∗
the system appears as if it is not heating up. The system will
absorb energy and relax to a featureless, infinite-temperature
state beyond times t ∼ τ∗. We expect this phenomenon to
be observable in a driven system of cold atoms and spins
(assuming relaxation of spins due to phonons is slow).

Finally, we briefly discuss the implications of our results
for the current efforts to realize topologically nontrivial
strongly correlated states (e.g., fractional Chern insulators)
in periodically driven systems. Experimentally, one tries to
design a drive for which the ground state of an effective
time-independent Hamiltonian (usually calculated within low-
order Magnus expansion) is topologically nontrivial. A central
challenge is to prepare the system in a ground state of the
effective Hamiltonian. Since we have shown that the dynamics
of the system is controlled by H∗ up to exponentially long
times, one can envision that the “Floquet fractional Chern
insulators” can be prepared as follows. Let us assume that the
system can be initially prepared in a (topologically trivial)
ground state of the Hamiltonian H . Then, the driving is
switched on adiabatically to the value which corresponds to
the desired effective Hamiltonian H∗. However, the switching
should also be done quickly compared to τ∗ to avoid energy
absorption. Since H and H∗ describe different phases, the
system will necessarily go through a quantum critical point
(QCP), and excitations will be created via a Kibble-Zurek
mechanism. The number of excitations can be minimized by
designing a nonlinear passage through the QCP [31]. We leave
a detailed exploration of these ideas for future work [32].

Note added. Recently, a related result, Ref. [33], appeared,
building on Ref. [34] (local driving). Reference [33] proves
a similar bound for the absorption rate in driven systems
using a different approach (namely, studying evolution over
one driving period).
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APPENDIX: TECHNICAL ESTIMATES AND PROOFS

Here, we provide a proof of the bounds on the terms of the
renormalized Hamiltonian H ′ and the bound on the remainder
δH (t).

1. Setup

Let us first recall the norm that we are using. We write
operators B = B(t), periodic in time, as a sum of local terms

B(t) =
∑

i

Bi(t)

where i runs over the sites of the (finite but large) volume and
Bi is an operator that acts nontrivially on the sites i,i + 1, . . . ,j

where j − i < RB , with RB independent of i and called the
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“range of B.” The local norm ||B||l is then defined as

||B||l = sup
i

sup
t

||Bi(t)||.

In what follows, we mostly drop the dependence on t from the
notation. Let us now list the important bounds on local norms
that we claim: The operators V (q),G(q),H̄ (q),�q+1 have range
R(q + 1) and their local norms are bounded as

||G(q)||l � q!h(C0RhT )q, (A1)

||H̄ (q)||l � ||G(q)||l , ||V (q)||l � 2||G(q)||l , (A2)

||�q+1||l � T ||V (q)||l � 2(C0R)qq!(hT )q+1. (A3)

We write G0 ≡ H , so that Eq. (A1) is consistent with the fact
that the range of the original operator H is R and its local norm
is h. The bounds in Eq. (A2) follow immediately because time
averaging of the local term does not increase its norm (here
we use that the norm was defined as the supremum over time).
The bound (A3) follows from Eq. (A1) for a given q because
the integral over one period yields an additional factor T , i.e.,
using || ∫ T

0 dtBi(t)|| � T supt ||Bi(t)||. Hence we have now in
particular established the above bounds for q = 0 and we have
shown that the bound (A1) implies the others, for a given q.
Therefore, to complete an inductive proof, it suffices to prove
Eq. (A1) for q while assuming the other bounds for all q ′ < q.
To achieve this, we use Eq. (20):

G(q)(t) =
q∑

k=1

(−1)k

k!

∑
1 � i1,...,ik � q

i1 + ... + ik = q

ad�i1
. . . ad�ik

G(0)

+ i

q∑
m=1

q+1−m∑
k=1

(−1)k+1

(k + 1)!

×
∑

1 � i1,...,ik � q + 1 − m

i1 + . . . + ik = q + 1 − m

ad�i1
. . . ad�ik

V (m−1). (A4)

The right-hand side of Eq. (A4) is a sum of local operators,
all of which have support not greater than R(q + 1) adjacent
sites. We estimate the norm of each of these local operators
by using repeatedly ||[Ai,Bj ]|| � 2||Ai ||||Bj || (if Ai,Bj have
overlapping support) and the above bounds for q ′ < q. Then
we sum the bounds on all terms that have site 1 as the leftmost
site of their support, to get a bound for ||G(q)||l . The result is,
separately for the first [Eq. (A5)] and second [Eq. (A6)] term
of Eq. (A4),

K(q)
q+1∑
n=2

4n(C0R)1−n

(n − 1)!

(R,q)∑
{Ij }

χ

( |I1|
R

= 1

) n∏
j=1

( |Ij |
R

− 1

)
!,

(A5)

K(q)
q+1∑
n=2

4n(C0R)1−n

n!

(R,q)∑
{Ij }

n∏
j=1

( |Ij |
R

− 1

)
! (A6)

where χ (A) = 1 if statement A holds true, and zero otherwise,
and we abbreviated

K(q) = h(C0RhT )q .

The sum
∑(R,q)

{Ij } is over all sequences Ij ,j = 1, . . . ,n of
discrete intervals (sets of adjacent sites) Ij ⊂ N such that we
have the following conditions.

(1) All interval lengths |Ij | are multiples of R: |Ij | ∈ RN.
(2) For j > 1,Ij ∩ (∪j−1

i=1 Ii) is nonempty.
(3)

∑
j |Ij | = R(q + 1).

(4) min(∪n
i=1Ii) = 1.

Intersection condition 2 stems from the structure of nested
commutators. Condition 4 says that we consider terms the
support of which starts at site 1.

To conclude the proof of the bounds (A1), we have to
show that, for some (q-independent) choice of the constant
C0, the sum of Eqs. (A5) and (A6) is bounded by K(q)q!. It is
sufficient to prove a bound on Eq. (A6), as Eq. (A5) reduces
to that case upon increasing C0 → C1C0, with C1 such that
C1−n

1
(n−1)! � 1/n!. For the same reason, we can replace C1−n

0 by

C−n
0 . Hence, we show Lemma 1.

Lemma 1. For some C0 independent of q,R,

1

q!

q+1∑
n=2

(C0R)−n

n!

(R,q)∑
{Ij }

∏
j

( |Ij |
R

− 1

)
! � 1. (A7)

2. Proof of Lemma 1

For simplicity, we set R = 1. The case R > 1 follows
analogously. We set mj := |Ij | and we let L be such that
∪n

i=1Ii = [1,L]. Note that 1 � L � q because there are at least
two overlapping intervals and the sum of their lengths is q + 1.
We write m = (mj )nj=1 ∈ [1,L]n for the sequence of lengths.
First, we dominate the sum on the left-hand side of Eq. (A7)
as

q+1∑
n=2

q∑
L=1

nC−n
0

n!q!
Ln−1

∑
m:

∑
j mj =q+1

∏
j

(mj − 1)! (A8)

where the factor Ln−1 accounts for the choice of position of
the intervals in the stretch [1,L]. There are n intervals but at
least one of them has to be placed such that its leftmost point
is at 1, therefore we have nLn−1 instead of Ln.

We use the upper bound in Stirling’s formula

c(N/e)N+1/2 � N ! � C(N/e)N+1/2

to get

(mj − 1)! � C(mj/e)mj −1/2. (A9)

Here and below we use c,C for numerical constants that do
not depend on q; their value can change from line to line. To
deal with the product over such factors we define Z(L,n) =∑n

nL=0 Z(L,n,nL) with

Z(L,n,nL) :=
∑

m:
∑

mj =q+1

χ (nL(m) = nL)
∏
j

(mj/L)mj −1/2

where 0 � nL(m) � n is the number of “large” naturals in the
sequence m:

nL(m) := |{j ∈ {1, . . . ,n} | mj � αL}|,
for some fixed α with 1/2 < α < 1.
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Plugging Eq. (A9) into Eq. (A8) and using the above notation,
we get

(A8) �
q+1∑
n=2

q∑
L=1

CnC−n
0

n!q!
Ln−1 Lq+1−n/2

eq
Z(L,n) (A10)

�
q+1∑
n=2

q∑
L=1

(C/C0)n

n!

Ln/2

√
q

(L/q)q
n∑

nL=0

Z(L,n,nL),

(A11)

where we have also used the lower bound in Stirling’s formula.
For Z(L,n,nL), we find the bound

Z(L,n,nL) � Cnn!

nS !nL!
χ (q � αnLL + nS − 1) (1/L)nS/2,

nS ≡ n − nL. (A12)

In words, short intervals yield small factors 1/L, but nL
constrains q,L.

Proof of Eq. (A12). Note that
∑

j mj = q + 1 implies q �
αnLL + nS − 1. There are n!

nS !nL! ways to choose nL large
naturals from n. This yields the bound

Z(L,n,nL) � n!

nS !nL!
χ (q � αnLL + nS − 1)

×
(

L∑
x=1

(x/L)x−1/2

)nL(�αL�∑
x=1

(x/L)x−1/2

)nS

.

The sums over the dummy variable x are estimated as
�αL�∑
x=1

(x/L)x−1/2 � CL−1/2,

L∑
x=1

(x/L)x−1/2 � C

where the constant C in the first inequality of course depends
on α and diverges when α → 1. �

Plugging Eq. (A12) into Eq. (A11) and using
√

q �
√

L,
we get

(A8) �
q+1∑
n=2

⎛
⎜⎝ 1∑

nL=0

(C/C0)n

nS !nL!

q∑
L=1

(L/q)q

+
n∑

nL=2

(C/C0)n

nS !nL!

� q+1
αnL

�∑
L=1

L(nL−1)/2(L/q)q

⎞
⎟⎠. (A13)

The first sum over L is trivially bounded by C. For the second
sum over L, we use

∑M
L=1 Lp � Mp+1 to get the upper bound

q−q

(
q + 1

αnL

)q+(nL−1)/2+1

� C(q + 1)(nL+1)/2(αnL)−(q+1) � C

provided α > 1/2 and 1 < nL < q + 1. It follows that
Eq. (A13) can be made smaller than 1 by choosing C0 large
enough.

3. Bound on remainder δH ′(t)

We start immediately from the expression (10) that we
repeat here:

H ′(t) = Q†H (t)Q − iQ†∂tQ. (A14)

We will plug in Q = e� with � = ∑nmax
p=1 �p and estimate

the local terms. Since there will be terms of any range, it is
beneficial to introduce here a weighted norm. If A = ∑

I AI

with AI supported on a finite interval I ⊂ Z, then we put, for
some κ > 0,

||A||κ := sup
i

∑
I�i

||AI ||eκ|I |

where the sup ranges over sites i. Let us estimate the first term
of Eq. (A15) in this norm (the second is done in a similar way,
as we comment below). By expanding the exponential, we have

Q†H (t)Q =
∑

k

1

k!

∑
i1,...,ik

ad�ik
. . . ad�i1

[H (t)] (A15)

with all ip � nmax. An obvious upper bound is

||Q†H (t)Q||κ �
∑

k

Ck

k!

∑
i1,...,ik

ReκRW ||�ik ||l

. . . ||�i1 ||l||H (t)||l (A16)

where R = R(1 + ∑
p ip) bounds the range of the local terms

and the combinatorial factor

W=W (i1, . . . ,ik)=2kRk + 1i1(i1 + i2) . . . (i1 + i2 + · · · + ik)

bounds the number of ways the local terms in the �p

can attach to the operator. Furthermore, we use now the
bound ||�ik ||l � Ce−r|ik | (true if nmax � n∗) and we set
M ≡ i1 + i2 + · · · + ik . Then we use the simple bound

W (i1, . . . ,ik) � 2kRk+1Mk

and the number of ways to choose i1, . . . ,ik subject to given
M is bounded by 2M . This leads to

||Q†H (t)Q||κ �
∑

k

CkRk+1

k!

∑
M�k

ReκRMk2Me−rMh.

(A17)
Performing first the sum over k with M fixed gives

||Q†H (t)Q||κ � R
∑
M

ReκReM (CR)Me−rMh. (A18)

This is obviously convergent if we choose

r > 1 + log(CR) + Rκ, (A19)

and the bound can be made arbitrarily close to h (the bound
on the zero-order term) by increasing r . To estimate Q†∂tQ,
we start from the identity

Q†∂tQ =
∫ 1

0
dses�(t)(∂t�)e−s�(t)

and then we follow the same route as above to bound the
integrand for any 0 � s � 1. Up to prefactors, the result is the
same. Finally, to get to δH ′(t), we simply have to omit from
Eq. (A15) all terms with

i1 + i2 + · · · + ik � nmax.

To find a good estimate on what remains, we choose r a
bit larger so that r − r0 is larger than the left-hand side of
Eq. (A19). Then we can extract a factor e−r0ij so that we get

||δH ′(t)||κ � Ce−r0nmax .

014112-7



ABANIN, DE ROECK, HO, AND HUVENEERS PHYSICAL REVIEW B 95, 014112 (2017)

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[2] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Rev. Mod. Phys. 83, 863 (2011).

[3] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[4] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[5] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,

854 (2008).
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