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Origin of the second peak in the mechanical loss function of amorphous silica
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The thermal noise in amorphous oxides is the limiting factor for gravitational wave detectors and other high-
precision optical devices. Through the fluctuation-dissipation theorem, the thermal noise is directly connected
to the internal friction (Q−1). Computational calculations of Q−1 that use a two-level system (TLS) model have
previously been performed for several coating materials, facilitating the search for coatings with lower thermal
noise. However, they are based on a historical approximation made within the TLS model that treats the TLS
distribution as uncorrelated, which has limited the predictive power of the model. In this paper, we demonstrate
that this approximation limits the physical description of amorphous oxides using the TLS model and a fully
correlated distribution must be used to calculate high-temperature behavior. Not only does using a correlated
distribution improve the theoretical standing of the TLS model, calculations of Q−1 using a fully correlated
distribution reproduce and uncover the physical mechanisms of a second peak observed in measurements of
ion-beam sputtered amorphous silica. We also explore the details of the thermal activation of TLSs and analyze
the atomic transitions that contribute to Q−1 in amorphous silica.
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I. INTRODUCTION

The laser interferometer gravitational-wave observatory
(LIGO) recently announced the first detection of gravitational
waves, which could usher in a new age of gravitational-wave
astronomy [1]. The discovery was made using measurements
of the path length of light with accuracy to 10−18 m,
demonstrating incredible control over the noise sources present
in the detector. In the range of ∼30–500 Hz, the limiting noise
source for Advanced LIGO is thermal noise in the reflective
coatings on the masses at each end of the interferometer [2].
These reflective coatings, consisting of alternating layers of
amorphous silica and titania-doped tantala layers, allow the
interferometer to detect small changes in the path length
due to gravitational waves [3,4]. The thermal noise in the
coatings is directly related to the internal friction (Q−1)
through the fluctuation-dissipation theorem, providing a clear
way to measure the performance of coatings in experiment
and simulation [5]. Lowering the internal friction in the
coatings is necessary to increase the sensitivity of future
gravitational-wave detectors, but there is no clear theoretical
path to guide material design for this goal.

The internal friction of amorphous oxides is understood
using a two-level system (TLS) model, which was developed
to explain anomalous measurements of heat capacity, thermal
conductivity, and internal friction at temperatures below 1 K
[6–8]. The internal friction in amorphous oxides is modeled
by an ensemble of TLSs in which each TLS contributes
to the internal friction of the material by coupling to a
mechanical field, which causes excitations in the TLS and
subsequent relaxation [9]. By finding the TLS distribution,
the coupling to a mechanical field, and the relaxation time,
one can reproduce the low-temperature behavior seen in
experiments. Although the model was developed to explore
tunneling, which is only valid at low temperatures, it can
be expanded to explain higher-temperature phenomena by
including thermal hopping between the two-level systems
[9,10]. TLS properties of amorphous oxides continue to be
a source of interest, and recent experimental measurements

suggest that controlling the deposition process can have a
profound effect on Q−1 by lowering the density of TLSs
in the system [11–13]. These experimental findings suggest
that properties of amorphous materials are very sensitive
to the constraints of the system. A connection between the
constraints, deposition process, and Q−1 is an important path
toward the functional design of amorphous materials with
lower mechanical loss. The complexity of these systems make
computational studies of amorphous materials a powerful tool
toward a deeper understanding of the mechanical loss and
thermal noise.

Because of the abundance of information on silica [14–21]
and its presence in the LIGO mirror coatings, it is a good
prototype material to explore the predictive power of a
computational application of the two-level system model.
Recently, a computational scheme has been developed within
classical molecular dynamics (MD) to calculate Q−1 of
amorphous oxides [22]. The computational scheme explores
the potential energy landscape and calculates properties of
atomic transitions to generate a distribution of TLSs and other
input parameters for the TLS model presented by Gilroy and
Phillips [10]. This method has been applied to silica and
tantala, and shows the low-temperature peak characteristic
of Q−1 measurements in amorphous oxides [22,23]. Both
silica and tantala calculations match the low-temperature peak
within 10 K and the magnitude of the peak within an order
of magnitude. While simulated data of bulk silica [14] show
a much slower decay after the peak than experimental mea-
surements, it matches the low-temperature peak in ion-beam
sputtered (IBS) thin-film measurements [21] very closely.

However, most treatments of the thermally activated TLS
model contain an unphysical assumption in the treatment
of the TLS distribution that has prevented improvement in
computational applications. The loss caused by a TLS depends
on the reaction barrier (V ) and the asymmetry between minima
(�). Then, calculations of Q−1 require a TLS distribution that
depends on these parameters. Throughout the history of the
TLS model, the dependence on V and � is assumed to be
uncorrelated [6,9,10,24–27]. Even though many authors have
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debated about the form of the TLS distribution [28–32], the
vast majority treat the distributions over V and � separately.
As we show in this paper, this assumption is contradictory to
the definition of a TLS and does not match the distribution
obtained in computational simulations. In order to recover
the characteristic low-temperature peak using a separated
distribution, previous authors introduced an ad hoc cutoff in
the distribution, in which TLSs with � above a fitted cutoff
(�cut) are eliminated from the distribution [22,23]. The cutoff
is a fitting parameter, chosen solely to force agreement with
the experimentally measured low-temperature behavior. This
cutoff has no theoretical justification and eliminates a majority
of the two-level systems discovered in the material, preventing
improvement of the model and a detailed physical analysis
of the TLSs that lead to mechanical loss. While introducing
�cut does improve the location of the low-temperature peak,
the computational model fails to reproduce high-temperature
behavior in either bulk or IBS silica. The inability of previous
calculations to agree with experimental measurements beyond
the low-temperature peak prevents the method from being
used as a predictive tool for advanced LIGO, which will
run at temperatures extending beyond the position of the
low-temperature peak.

In this paper, we show that using the fully correlated
distribution recovers the low-temperature behavior seen in
bulk and thin-film experiments without introducing the ad hoc
cutoff. This conclusively demonstrates that the distribution is
intrinsically correlated and must be treated as such to match the
character of Q−1 in amorphous oxides. Not only does using the
fully correlated distribution improve the theoretical standing
of the TLS model, it also provides a calculated Q−1 that agrees
with IBS silica up to ∼150 K. Using the fully correlated
distribution allows a direct connection between details in the
calculated Q−1 and individual TLSs, which we explore in this
paper. This development demonstrates the applicability of the
model near room temperature and opens avenues for future
developments that better describe the coupling of individual
TLSs to fluctuations in amorphous oxides.

The paper is organized as follows. Section II introduces
the TLS model, previous approximations made, and how this
method improves upon them. In Sec. II A, we introduce the
TLS model. Section II B describes the different distributions
that can be used in the TLS model and Sec. II C details the MD
methods and generation of parameters for the TLS model. In
Sec. III, we present the results, showing improvement in the
description of the internal friction in silica using a correlated
distribution. In Sec. III A, we show Q−1 calculated with the
TLS model. In Sec. III B, we discuss the physics of the different
distributions. In Sec. III C, we analyze which two-level systems
are thermally activated at specific temperatures. In Sec. III D,
we describe the atomic transitions that lead to features in Q−1.

II. METHODS

A. TLS model

Glasses contain many degrees of freedom in their local
structure, which leads to a complicated potential energy
landscape. It is believed that the underconstrained nature
of amorphous materials forms two-level systems (TLSs)
throughout the material [11]. Transitions between TLSs are the

FIG. 1. An illustration of a two-level system (TLS), where � is
the asymmetry, V is the average barrier height, E0 is the ground-state
energy of the state in each well, and d is the configurational distance
between the wells.

primary source of mechanical loss, thermal conductivity, and
heat capacity in amorphous oxides at low temperature [10,11].
TLSs can be described by two parameters: the asymmetry (�)
and the barrier height (V ), shown schematically in Fig. 1.
Because of a coupling (γ ) of each two-level system to a
mechanical field, acoustic waves induce transitions which
lead to mechanical loss. As a material has many TLSs, the
contribution from each must be summed, which gives the
following expression for the internal friction [9,10]:

Q−1 = γ 2

3εkbT

∫∫
ωτ

1 + ω2τ 2

�2

E2
sech2

(
E

2kbT

)

× g(τ,E)dτdE, (1)

where ε is the the appropriate elastic modulus, ω is the angular
frequency of the acoustic wave, τ is the relaxation time of the
TLS, E is the energy splitting between the two states of the
TLS, and g(τ,E) is the number density of TLSs. As this paper
focuses on the internal friction caused by longitudinal waves,
the Young’s modulus and the longitudinal coupling constant
were calculated and used for ε and γ in this expression.

The energy splitting for TLSs is given by

E2 =
√

�2 + �2
0, (2)

where �0 is the tunneling splitting. The tunneling splitting is
given by

�0 = 2〈φ1|H |φ2〉, (3)

where φ1 is the state in the first well, φ2 is the state in the
second well, and H is the Hamiltonian of the system. Because
the effective particle in the TLS is not well understood, it is not
clear how to evaluate �0 directly. Previous work estimates that
the tunneling splitting is of the order of 10−4 eV [8,9]. For this
reason, this work uses a constant �0 = 10−4 eV, and replaces
g(τ,E) with g(τ,�). Several different values of �0 were tested,
and the calculated Q−1 does not change significantly as long
as �0 is within one order of magnitude of 10−4 eV.
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The relaxation time of thermal hopping in the two-level
system can be found using an Arrhenius rate law,

τ−1 = τ−1
0 cosh

(
�

2kbT

)
e
− V

kbT . (4)

The attempt frequency τ−1
0 is calculated from the vibrational

modes of the system with the equation

τ−1
0 =

∏3N
i=1 v0

i∏3N−1
i=1 vs

i

e
S
kb , (5)

where v0 are the vibrational frequencies at the minimum, vs

are the vibrational frequencies at the saddle point, and S is
the contribution to the free energy from the entropy of the
transition states [33]. Although S

kb
= ln(2) would be expected

for a TLS model, previous studies of TLSs in silica use
S
kb

= ln(4), as it better fits experimental data [14,22]. The
exponential dependence of the relaxation time on V and �

means that variations in V and � will change the relaxation
time by larger amounts than τ0. As the calculation of τ0 requires
expensive calculations of the Hessian matrix, and the effect of
V and � is more substantial, we compute the average τ0 for the
system. Because the relaxation time is a function of only the
asymmetry and barrier height of the TLSs, g(τ,�) is replaced
by N (V,�):

Q−1 = γ 2

3εkbT

∫∫
ωτ

1 + ω2τ 2

�2

E2

× sech2

(
E

2kbT

)
N (V,�)dV d�. (6)

B. Distribution of two-level systems

Simulated Q−1 depends very heavily on the details of the
TLS distribution. In the derivations above, the distribution is
fully correlated,

Ncorr(V,�) = N (V,�). (7)

However, all previous works [10,22–24,26,27] separate the
two-dimensional (2D) distribution over the barrier height and
asymmetry into the product of 1D distributions:

Nsep(V,�) = g(V )f (�). (8)

Not only does this ease analytic calculations of Q−1, it
also decreases the amount of discovered TLSs needed to
converge the total distribution. This is related to the “curse
of dimensionality”: data points separated into N bins in
uncorrelated histograms for V and � are separated into N2

bins for the correlated histogram. This means that converging
Ncorr(V,�) requires much more computational time. The
accuracy of this approximation relies on the absence of
correlation between the barrier height and asymmetry. This
cannot be true, as at the very least they must be related by

� < 2V. (9)

A TLS system is not defined for � � 2V because this
corresponds to a system with no barrier (Fig. 1). Then, any
accurate TLS distribution should show no states for � � 2V .

The comparison of the two treatments of the TLS distribu-
tion is shown in Fig. 2. In Fig. 2(a), Ncorr(V,�) shows a sharp

FIG. 2. Logarithmic heat maps of the TLS distribution calculated
in amorphous silica using the (a) fully correlated 2D distribution
Ncorr(V,�) and (b) separable 1D distributions Nsep(V,�).

division between regions with states and a dark blue region
with no states. The line that separates these regions is � = 2V ,
shifted down slightly due to the smearing effect of constructing
a distribution using a kernel density estimate (described in
more detail in the next section). This line is the constraint in
Eq. (9), demonstrating that Ncorr(V,�) only has states with
a barrier between the minima (Fig. 1). However, Nsep(V,�)
[Fig. 2(b)] does not show this sharp line and contains many
states below it. Separating the dependence on V and � leads
to a distribution that has states in a region where a TLS is not
properly defined. Beyond the violation of the definition of a
TLS, Nsep(V,�) describes a very different distribution than
Ncorr(V,�). Nsep(V,�) has a distribution that is very wide at
low barrier height and narrows as it moves to higher barrier
height, while Ncorr(V,�) is very narrow at low barrier height
and widens as it moves to higher barrier height. The only region
where they agree is at low barrier height and asymmetry, where
both distributions show the highest density.

To improve comparison with experiment, the work that
calculates Q−1 with a separated distribution also introduces a
0.1 eV asymmetry cutoff [22,23] to better match experiment.
This distribution is defined as

Ncut(V,�) = g(V )f (�)�(�cut − �), (10)

where � is the Heaviside step function and, in this case,
�cut = 0.1 eV. The choice is motivated by a study finding
defects that emerge at higher temperature which are not seen
in experiment [25,34], and by the sech2 term, which should
prevent TLSs above the cutoff to contribute significantly. Like
Nsep, this offers easier analytic computability and a more rapid
convergence of the distribution.

C. MD simulation details

All parameters [�, V , N (V,�), τ0, γ , and ε] for the internal
friction are obtained through classical molecular dynamics
(MD) simulations. Then, the loss is calculated according to
Eq. (6). The MD simulations are performed using the DLPOLY

package [35], with the ridge method and other extensions
developed within our group as described in more detail in
a previous publication [22]. The simulation is composed of
720 atoms, i.e., 240 Si atoms and 480 O atoms with periodic
boundary conditions, so that the simulation should resemble
bulk silica. The force fields are based on the Beest, Kramer,
and van Santen (BKS) potential [36,37].
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Atomic configurations are obtained by annealing a crys-
talline cristobalite sample to 8000 K, which provides an
amorphous sample. The annealing is done in an NPT ensemble,
starting at 300 K and increasing in intervals of 200 K. Each
interval is performed for 6 ps, except for the peak temperature
which is run for 20 ps. After quenching the temperature back
to 300 K, the configuration is equilibrated for 30 ps in an NPT
ensemble, and then 30 ps in an NVT ensemble.

The TLS search consists of two steps: the bisection method
and the ridge method. A trajectory is obtained using an MD
simulation of the amorphous oxide, run in an NVT ensemble
using a Nosé thermostat. From that trajectory, the bisection
method obtains two adjacent time steps that relax to separate
minima. These minima configurations are used as input for the
ridge method, which searches for a saddle point between the
minima. If the ridge method finds a single saddle point between
the minima found during the bisection method, the minima are
connected and a TLS is found. Each TLS is described by the
asymmetry (�) and the average barrier height (V ):

� = E2 − E1, (11)

V = 1
2 [(Es − E1) + (Es − E2)], (12)

where Es is the energy at the saddle point, E1 is the energy
at the first minimum, and E2 is the energy at the second
minimum. The distribution functions N (V,�), g(V ), and f (�)
(described in Sec. II B) are calculated by constructing a kernel
density estimation from the discovered TLSs. This generates
a smooth, continuous distribution function by placing a
Gaussian function at every data point corresponding to a
discovered TLS. A subset of these atomic configurations is
later used to calculate the average coupling constant γ and
average attempt frequency τ−1

0 .
To better sample the potential landscape, 15 configurations

are generated using the annealing process described above.
The pair-distribution function of all configurations shows good
agreement with experiment, demonstrating that configurations
recover the short-range order of experimentally generated bulk
silica. After annealing, barrier searches are conducted for each
configuration. These different configurations are generated
using an NPT ensemble, but all have lattice parameters very
close to 21 Å.

Some annealed configurations yield barrier searches that
are trapped in a part of the potential landscape that does not
show the same physics as experiment, in which the peak in Q−1

(Tpeak) occurs at higher temperature. These configurations were
not found in previous searches [22,23], as fewer configurations
were necessary to converge the separated distributions used
in those works. It may be possible that these anomalous
configurations are also present but suppressed in experimental
materials and that our method of generating configurations
shows preference for them. As computational limitations
prevent simulations that match the time scales of experimental
annealing, there is no clear way to limit computational
modeling to the region of the potential energy landscape (PEL)
sampled by experiment [38]. Therefore, there is no way to
ensure that the generated configuration matches experimental
samples except by comparing the physical properties of the
resulting configurations. Including all configurations in the

calculation yields Tpeak and peak Q−1 close to experiment,
but the loss function lacks the broad low-temperature peak
which is characteristic of the loss in amorphous materials or
the second peak seen in IBS silica.

In order to qualitatively explore the second peak, the major-
ity subset of configurations that reproduce a low-temperature
peak (Tpeak < 50 K) is used to construct the distribution
of TLSs. This selection process is an attempt to bring the
results of MD simulation closer to experimental conditions,
similar to that used to study crystals where simulations begin
from structures that match experimental measurements (lattice
parameters, bond lengths, etc.), but may introduce a bias into
our results. If the selection process is masking the inability
of the melt-quench method to reach the region of the PEL
truly responsible for the second peak, then descriptions of the
second peak in this manuscript will not be true.

This methodology allows calculations of Q−1 to combine
diverse regions of the potential landscape in the same way
that an experiment will measure the loss over the varying
configurations that make up the bulk material.

III. RESULTS

A. Internal friction

Figure 3 contains plots of the calculations of Q−1 using the
correlated distribution [Ncorr(V,�)], the separated distribution
[Nsep(V,�)], and the cutoff distribution [Ncut(V,�)] compared
to experimental measurements of Q−1 in bulk amorphous
silica [14] and ion-beam sputtered (IBS) silica [21]. The
calculations and IBS measurements were done at 1118 Hz,
and the bulk measurement at 11 400 Hz. Calculations of
Q−1 with the fully correlated distribution (red curve) show
a broad low-temperature peak with a sharp spike at 12 K
and several shoulders. This compares very well with the IBS
data (black solid curve), which has a peak at 18 K and a
peak magnitude that differs by only 50% of peak, Q−1

IBS. After
60 K, Q−1

corr plateaus until a second peak at 114 K. This also
compares well to Q−1

IBS, which has additional peaks at ∼150
and ∼250 K. Although Q−1

corr does not show a third peak, the

FIG. 3. Calculated mechanical loss as a function of temperature
using a correlated TLS distribution (Q−1

corr), separated TLS distri-
bution with cutoff (Q−1

cut ), and separated TLS distribution without
cutoff (Q−1

sep). These are compared to experimental measurements of

mechanical loss of IBS silica (Q−1
IBS) [21] and bulk silica (Q−1

bulk) [14].
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value at room temperature differs by less than 5% of Q−1
IBS.

The peak magnitude of Q−1
corr is closer to that of Q−1

bulk (black
dashed curve) but does not match the temperature dependence,
in which Tpeak is ∼30 K and there is a rapid, monotonic decay
beyond 50 K.

The calculated Q−1 using the two different approximations
(discussed in Sec. II B) can be evaluated and compared to the
full level of theory captured by Ncorr(V,�). It is clear from
Q−1

sep (blue dashed curve) that a separable distribution does
not correctly describe the physics in amorphous silica. The
curve peaks at 86 K and is two to four factors larger than Q−1

corr
above 40 K. These calculations do not even reproduce the
characteristic shape of Q−1(T ), which is a low-temperature
peak followed by a rapid decay.

Calculated Q−1 using Ncut(V,�) (purple dashed curve)
compares much better, with a peak at 28 K followed by a
rapid dropoff until ∼60 K and then a slower decrease until
300 K. However, it is missing the sharp peak at 12 K and the
second peak at 120 K. It also underestimates the magnitude of
Q−1 throughout the temperature range plotted in Fig. 3. While
Q−1

cut does have a similar shape as Q−1
corr, it does not capture the

finer features obtained using the Ncorr(V,�).

B. Distribution analysis

From Figs. 2 and 3, it is evident that using a separable
distribution is not theoretically justified and gives poor results
for Q−1 in silica. It is curious that introducing a cutoff improves
calculations of Q−1 and compares well to experimentally mea-
sured values. To understand the effect of introducing a cutoff
in the separable distribution, the three TLS distributions need
to be examined in detail. In Fig. 4, Ncorr(V,�), Nsep(V,�), and
Ncut(V,�) are plotted for the region below the 0.1 eV cutoff in
� in Ncut(V,�). Because of the presence of the sech2 term in
Eq. (6), this is the area of the TLS distribution that contributes
most significantly to Q−1. All three figures show the highest
density at low barrier height and asymmetry. However, the

FIG. 4. Logarithmic heat maps of (a) Ncorr(V,�), (b) Nsep(V,�),
and (c) Ncut(V,�) plotted for � < 0.1 eV.

details of each distribution beyond this similarity do not agree
across the three methods.

Both Nsep(V,�) and Ncut(V,�) lack the condition shown
in Eq. (9). This condition is seen most clearly in Fig. 2(a)
as the diagonal line which divides the distribution between
a region with finite density and the blue region with zero
density. This diagonal line is present, though barely visible, in
Fig. 4(a), but is not present in Figs. 4(b) and 4(c). Because this
condition introduces a correlation, it is necessary to examine
the consequences of separating a correlated distribution. In a
separated distribution, a TLS discovered at particular (V,�)
is replicated at every other (V ′,�) in the 2D distribution. In
the TLS distribution, this means that a discovered TLS that
follows the physical condition that � < 2V will be replicated
in regions that violate this condition. We refer to TLSs that are
introduced in this way as “replica TLSs.”

The differences between Ncorr(V,�) and Nsep(V,�) can
primarily be explained by using this concept of replica TLSs.
At large barrier height, the constraint in Eq. (9) corresponds
to a wide area of � which has high probability. For instance,
Ncorr(V,�) [Fig. 4(a)] has high density for V = 0.10 eV across
the entire 0.1 eV � range plotted, some of which are in the red
band of high density along the diagonal line. TLSs with large
� will be replicated with small barrier height, leading to the
red horizontal band at V = 0 in Figs. 4(b) and 4(c). At large
barrier height, the density of TLSs in Ncorr(V,�) is highest at
large �, but because Nsep(V,�) neglects the correlation, it is
incorrectly peaked at low � for all V .

This directly leads to the errors present in Q−1
sep. At low V ,

which corresponds to the TLSs activated at low temperature,
replica TLSs shift the density to higher � compared to
Ncorr(V,�). Because of the sech2 term, TLSs with larger �

cannot be thermally excited and do not contribute to Q−1.
This causes Q−1

sep to underestimate Q−1
corr at low temperature.

At high V , which corresponds to the TLSs activated at
high temperature, replica TLSs shift the density to lower
� compared to Ncorr(V,�). This causes more TLSs to be
thermally activated and contribute to Q−1, causing the large
values of Q−1

sep above 50 K.
Introducing a cutoff mitigates the errors created by sep-

arating the TLS distribution because it eliminates the most
problematic replica TLSs. By eliminating TLSs with large
�, the 1D distribution f (�) does not significantly suppress
the TLS distribution at low � and low V , which improves
low-temperature Q−1. It corrects for high-temperature Q−1

because it forces the density to be lower at higher V by
removing the majority of TLSs with large V . The effect of
removing all of these TLSs is demonstrated by the dark blue
horizontal bands in Fig. 4(c), where g(V ) is zero because the
TLSs discovered at that barrier height are above the cutoff
in �.

The process of fitting the cutoff (�cut) is effectively fitting
a window of agreement with Ncorr(V,�) in the thermally
activated region. Regions in the middle of the window are
not affected by the violation of Eq. (9), which is the primary
error that results from separating the distribution. The efficacy
at the top of the window is limited because TLSs at and above
�cut will become thermally excited and will contribute to Q−1.
The window is limited at the bottom because there will still be
a point at which replica TLSs will shift the density to higher
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�. For the choice of �cut = 0.1 eV, replica TLSs will violate
the constraint � < 2V for V less than 0.05 eV. As we will
show in Sec. III C, this corresponds to the sharp 12 K peak in
Q−1

corr. Fitting �cut can shift the window where Q−1
corr and Q−1

sep
agree on broad features, but it is impossible to prevent replica
TLSs from introducing errors outside the window.

At this point, it is not possible to see the reason that the
Q−1

cut does not have a peak at 130 K. However, it is already
evident that the violation of the physical definition of a TLS
and the lack of correlation present in Ncut(V,�) prevent it from
going beyond matching the shape of Q−1. Matching details at
and above 300 K, where the sech2 will no longer effectively
eliminate TLSs above 0.1 eV, requires the use of Ncorr(V,�).

C. TLS activation

Identifying the activated two-level systems at a given
temperature is an important link between features in the Q−1

plots and the atomic transitions that cause them. Moreover,
this identification can clarify the finer differences between the
Ncorr(V,�) and Ncut(V,�). To visualize the activated TLSs,
we plot the function

q−1(V,�; T ) =
(

ωτ

1 + ω2τ 2

)[
1

kbT

�2

E2
sech2

(
E

2kbT

)]

×N (V,�), (13)

which is just the integrand in Eq. (6). This function combines
the TLS distribution with the details of the excitation. The first
factor captures the resonance between the ensemble of TLSs
with acoustic wave with frequency ω. The second factor is the
average polarizability of an ensemble of TLSs with asymmetry
� and contains the information about the interaction between
the TLS and the stress field. The product of these two terms
and the TLS distribution describes which TLSs contribute
to the mechanical loss at a particular temperature. The plots
of q−1(V,�; T ) for Ncorr(V,�) and Ncut(V,�) are shown in
Fig. 5.

As the temperature increases, a larger area of TLSs is
activated thermally. This is because the relaxation time for
TLSs contains exponential dependence on both V and �

divided by the temperature, shown by Eq. (4). When the
temperature increases, the relaxation time varies more slowly
with V and �. This leads to the activation of a larger area
of the TLS distribution. Despite the small area of activation
at low temperature, the very high density of TLSs with small
barrier height and asymmetry results in a large peaked value
of mechanical loss at low temperature. Using the insets in
Figs. 5(a) and 5(b), one can see that the area activated for
Ncorr(V,�) is slightly larger than for Ncut(V,�). This is
because the density is higher for Ncorr(V,�) for small V , which
causes the larger value of Q−1 at 12 K and leads to a sharp spike
that sits atop the broad low-temperature peak between 0 and
∼60 K. The density of TLSs with small V is underestimated
by the separable distribution in this region because of the effect
of “replica TLSs” (discussed in Sec. III B), causing Q−1

cut (T )
to peak at higher temperature.

The second peak (Fig. 3) in the mechanical loss found
in calculations using Ncorr(V,�) occurs at ∼120 K. At this
temperature, barriers between 0.15 and 0.25 eV are the

FIG. 5. (a) Plots of q−1(V,�; T ), defined in Eq. (13), for
different temperatures for the separable 1D distribution. (b)Plots of
q−1(V,�; T ), defined in Eq. (13), for different temperatures for the
2D distribution. The insets for 12 K plots show a smaller range, in
order to show the contributing TLSs.

primary contributors. However, the separable distribution does
not capture the increased density at lower asymmetry here.
Because it shifts the density to higher asymmetry, the separable
distribution prevents TLSs in this range from being thermally
activated and contributing to the mechanical loss. Because
the increased density of TLSs in the 0.15 to 0.25 eV range
only happens for small asymmetry, which is a clear sign of
correlation, a separated distribution is not able to reproduce
the feature and will miss features such as the second peak in
Q−1. At 200 K, there is still a slight underestimation of TLSs
at low asymmetry by the separable distribution, which causes
a small disagreement between the two models. The plot for the
2D distribution at 200 K has irregularities, not seen in plots
at any other temperature. These gaps show regions where no
TLSs have been discovered. To accurately capture Q−1 above
200 K, a better sampling of large V is needed. The gaps in
q−1(V,�; T ) are a useful sign to show the temperature region
in which we can make detailed conclusions. This suggests that
capturing higher-temperature behavior requires significantly
more TLSs and the lack of convergence may be the reason that
Q−1 calculated with the Ncorr(V,�) does not reproduce the
third peak seen in IBS measurements.

Although Ncorr(V,�) at and above 200 K shows a lack
of convergence, the Ncut(V,�) still looks smooth. These
plots also show that barriers close to the 0.1 eV asymmetry
cutoff are beginning to contribute to the internal friction,
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which shows the risk of using Ncut(V,�). This highlights
the complication of fitting a cutoff. The choice of �cut that
gives good agreement with the low-temperature peak does
not describe room-temperature behavior well because loss at
higher temperature involves TLSs excited beyond the cutoff.
In order to accurately calculate Q−1 at and exceeding room
temperature, Ncorr(V,�) must be used. The only other option
is to increase the cutoff, which will decrease the accuracy of
low-temperature behavior. However, not matter what window
is chosen, the separated distribution will always miss highly
correlated features such as the second peak.

The function q−1(V,�; T ) not only allows comparison
between the different distributions used to calculate the internal
friction, it connects features in the Q−1 plots and the atomic
transitions that create the loss. Using this function, one can
link the features that describe Q−1

corr to the regions of the TLS
distribution. We have identified three features that describe the
loss function: the sharp peak at 12 K is composed of TLSs
with barrier height smaller than 0.04 eV, the broad peak that
decays until ∼60 K is composed of TLSs with barrier height
below 0.1 eV, and the second peak is composed of TLSs with
barrier height between 0.15 and 0.25 eV.

D. TLS transitions

By collecting structural statistics for the TLS transitions
within the activated ranges identified using q−1(V,�; T ),
characteristic transitions can be defined for each feature in the
Q−1 curve. If the sharp spike at 12 K is treated as a separate
feature to investigate, there are three regions of interest:

(i) Sharp peak at 12 K: TLSs with barrier heights below
0.04 eV.

(ii) Broad peak that ends at ∼60 K: TLSs with barrier
heights between 0.04 and 0.10 eV.

(iii) Second peak at 114 K: TLSs with barrier heights
between 0.15 and 0.25 eV.

Histograms of the most significant descriptors of the
transitions that contribute to these three features are shown
in Fig. 6. These descriptors are chosen because they show the
best separation between distributions of the features defined
above. They are as follows:

(a) Atoms involved in transition: the sum of atoms that have
an atomic displacement above 0.1 Å.

(b) Bond changes: the number of oxygen atoms that changes
its nearest silicon neighbor.

(c) Oxygen rotations: the number of oxygen atoms that
rotate more than five degrees around the closest silicon atom.

(d) Largest oxygen rotation: the largest angle that an oxygen
rotates around the closest silicon atom.

As shown in Fig. 6, the histograms for each of these TLS
ranges have distinct distributions for transition descriptors.
As the temperature increases, the number of atoms involved,
number of oxygen rotations, and the maximum rotation angle
all increase. Other descriptors, such as the average total motion
and the volume of involved atoms, also show this behavior.
While this follows physical intuition, there are some outliers.
Some TLSs with barrier height less than 0.1 eV still involve
100 atoms. However, the general trend is that the more
atoms are involved in the transition, the larger the energy it
takes to cause the transition. Because of the variation in the

FIG. 6. Histograms show (a) the number of atoms involved in
transitions, (b) the number of oxygen atoms that change which Si atom
they are bonded to, (c) the number of oxygen atoms that rotate more
than five degrees around the cation they are bonded to, and (d) the
largest oxygen rotation angle in a TLS transition. The 0.00–0.04 eV
distributions correspond to the 12 K peak, 0.04–0.10 eV to the broad
low-temperature peak, and 0.15–0.25 eV to the peak at 120 K. These
regions are identified by Fig. 5.

descriptors, caused by the amorphous nature of the material,
the characteristic transitions can only be described statistically.
So, the discussion of transitions that lead to each of the features
in Q−1 will be described in terms of average values and the
spread of those descriptors.

The characteristic transition for TLSs with V less than
0.04 eV consists of ∼25 atoms, involves less than three atomic
rotations or coordination changes, and has a maximum rotation
angle of ∼12 degrees (Fig. 6). The number of rotations is
peaked at zero and the number of bond changes is peaked
at one. This implies that the 12 K peak is predominantly
composed of oxygen atoms rotating and changing the nearest
silicon neighbor.

For TLSs with V between 0.04 and 0.1 eV, the characteristic
transition involves roughly 50 atoms and has five or fewer
oxygen atoms change coordination. The broad peak transitions
contain between two and six oxygen atom rotations for this
transition and the maximum rotation angle is peaked around
15 degrees. These transitions are still fairly local, but involve
the rotations of several polyhedra.

TLSs with V between 0.15 and 0.25 eV have a much wider
spread in all of the descriptors. The distribution of transitions
involves between 50 and 100 atoms and can have up to ten
oxygen atoms change coordination. Transitions that lead to
this peak involve around six oxygen rotations, with a maximum
rotation between 15 and 30 degrees. This is a single transition
composed of the coordinated motion of many polyhedra.

These transitions can be compared to previous pro-
posed loss mechanisms based on experimental studies. Two
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mechanisms have been proposed for the low-temperature peak:
oxygen hopping between minima in elongated Si-O-Si bonds
[39] and torsional rotations of oxygen along Si-O-Si bonds
[40]. The transitions with V less than 0.04 eV, described
predominantly by a coordination change, match the description
of single oxygen hopping along bonds, although the calculated
barrier height (∼0.025 eV) is lower than the 0.05 eV predicted
in Lunin’s [39] work. The transitions between 0.04 and
0.10 eV seem to be rotations of polyhedra, which could be
related to the mechanism suggested by Bartenev [40] but
at a larger scale. Our calculations, which show that both
of these transitions occur at low temperature, suggest that
the low-temperature peak is a result of both Lunin-like and
Bartenev-like transitions. Beyond the IBS silica results shown
here, other studies have found peaks in the mechanical loss at
higher temperature in amorphous silica [27,39,40]. Lunin and
Bartenev found excitation peaks well above room temperature
and both attribute them to β relaxation, which does not match
the predicted energies or the structural description of the
second peak seen here. However, the small excitation peaks
seen by Travasso occur between 200 and 300 K, and could be
caused by a similar mechanism as the second peak in these
calculations.

Atomic structures corresponding to characteristic transi-
tions for the broad low-temperature peak and the 120 K
peak are shown in Fig. 7. The characteristic transition for
the broad, low-temperature peak shows a coordination change
in the polyhedron in the middle, and rotations by surrounding
polyhedra. The 120 K transition involves twice the atoms and
is composed of several polyhedra rotations.

Here, we return to the choice to treat the low-temperature
peak as a separate feature. The atoms involved and the largest
oxygen rotation show distinct peaks separate from the peaks
for the range 0.04 to 0.10 eV. The broad peak should be
composed both of TLSs below 0.04 eV as well, but it is
not possible to disentangle the different transitions below
0.04 eV. The descriptors show well-defined distributions for
both the sharp peak and the broad peak, suggesting that they
are, in fact, two separate transitions. Then, it may be that the
low-temperature peak observed in Q−1

IBS (Fig. 3) is due to two
distinct transitions that are activated at the same temperature.
Then, the mechanisms proposed by Bartenev and Lunin may
both be occurring in the low-temperature peak.

At this point, it is possible to speculate about the differences
between calculated Q−1 and measurements of both IBS
and bulk silica. Bulk measurements of Q−1 of silica are
characterized by a low-temperature peak that rapidly drops by
about an order of magnitude. However, the IBS film and the
calculations shown here do not share that behavior. As shown
by the plots of Q−1(V,�; T ) in Fig. 5, TLSs with V larger
than 0.1 eV lead to features above 50 K. Therefore, to agree
with bulk measurements, there needs to be a high density of
TLSs with V less than 0.1 eV, but a very small density above.

Further insight can be gained by viewing the results of this
model in light of other recent work on amorphous oxides.
Recent experimental measurements [11] find that deposition
techniques can have a powerful role in changing the density of
TLSs. By allowing atomic rearrangement during deposition,
the authors believe that they reach a higher level of constraint,
which quenches the TLS density. A recent computational

FIG. 7. (a) Atomic structures of the minima of a TLS that is characteristic of the broad low-temperature peak, with 48 atoms involved in the
transition. (b) Atomic structures of each minima of a TLS that is characteristic of the peak at 120 K, with 79 atoms involved in the transition.
Figures labeled “Both Minima” show the second minimum configuration overlaid on the first so that the transition is clearer.
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study of densified sodium silicate, another amorphous oxide,
shows that intermediate densities had a “reversibility window,”
where the constraints on the system dropped dramatically
[41]. These results demonstrate an extreme sensitivity on the
environment and constraints in the amorphous oxide. While
the MD simulations used to calculate Q−1 here are constructed
to represent bulk silica, they overestimate the density by 20%.
This density difference could be enough to change the potential
energy landscape, creating TLSs in the 0.1 to 0.3 eV range
responsible for the excess loss compared to bulk experiments.
A similar effect may be happening in IBS thin-film silica,
where the deposition techniques lead to different constraints
on the system, which causes the emergence of TLSs in the
same range.

The choice to treat the attempt frequency (τ−1
0 ) as an

average prevents these calculations from capturing a com-
plicated relationship between Q−1 and the frequency of the
acoustic wave (ω). Within this approximation, increasing ω

only affects Q−1 by broadening the low-temperature peak,
increasing the peak magnitude, and shifting the peak to higher
temperature. This effect matches the frequency dependence
seen in bulk measurements, which suggests that Q−1

bulk is
created by a single transition with a consistent relaxation time
across the ensemble of TLSs. However, the IBS measurements
show more complicated behavior, which suggests that peaks
do not consist of transitions with a single relaxation time.
The two distinct transitions that create the low-temperature
peak in Q−1

corr reinforce that view. To capture the complicated
dependence on ω, the model shown here must be expanded
to calculate the relaxation time of each transition, which
requires development of the computational methods used to
generate input parameters for Q−1. However, the advances in
predictability shown in this paper demonstrate that the TLS
model is sensitive enough to reproduce the fine details seen in
experiment. We are currently exploring these ideas using the
model presented in this paper, but they are beyond the scope
of this work.

IV. CONCLUSION

In this paper, we demonstrate that calculating mechanical
loss using a fully correlated TLS distribution yields quali-
tatively different features than a separated distribution, and
reproduces the nonmonoticity observed in ion-beam sputtered
silica. All previous works use a separated distribution, which
does not reproduce experimental results of either bulk or
thin-film amorphous silica. While experimental measurements
around 1000 Hz show a peak between 18 and 40 K depending
on the sample preparation, the separated distribution shows a
peak at 86 K and overestimate the internal friction Q−1 over
40 K by a factor of four to five. We show that the disagreement
at low temperature arises because using a separable distribution
for the number density of TLSs shifts the density to higher
asymmetry, which prevents activation at low temperature.
At higher temperature, which correlates to higher barrier

height, the separated distribution has highest density at low
asymmetry. However, this is the exact opposite of what the
correlated distribution shows, which is that as the barrier height
increases, a larger range of asymmetry is possible. Because of
this, the separable distribution activates more TLSs at higher
temperature than are truly there.

Previous authors have introduced a cutoff in the separated
distribution to artificially create a low-temperature peak, but
our work shows that by using the fully correlated number den-
sity, this ad hoc choice is not necessary. We also show that the
correlated distribution leads to a superior description of high-
temperature behavior compared to a separated distribution
with cutoff, where calculations using a correlated distribution
find a second peak at 120 K. This nonmonotonic behavior is
not observed in calculations using a separated distribution with
cutoff and matches experimental measurements on ion-beam
sputtered thin-film silica. These results suggest that to capture
the complex behavior in Q−1 beyond the low-temperature
peak, the fully correlated distribution must be used. This leads
to agreement with IBS thin films up to at least ∼150 K and
may extend to room temperature with improved statistics.

By plotting Q−1(V,�; T ) [Eq. (13)], features in the internal
friction can be connected to specific regions of the TLS
distribution. Using this connection, characteristic transitions
can be identified for each feature of Q−1. Histograms of
transition descriptors show that the mechanical loss calculated
here contains three different features:

(1) A sharp peak at 12 K, created by transitions with ∼25
atoms which usually include a coordination change.

(2) A broad low-temperature peak centered at ∼30 K,
created by transitions of ∼50 atoms involving one to five
oxygen rotations and coordination changes.

(3) A peak at 114 K, created by transitions of ∼75 atoms
with 5+ coordination changes and oxygen rotations.

The results shown here suggest that the TLS model
can capture excitations beyond the low-temperature peak,
matching some of the complicated behavior seen in ion-beam
sputtered silica. Calculating higher-temperature excitations
relies on using the correct TLS distribution, which includes
the correlation of V and �. Future studies into the dependence
of Q−1 on density could explain the difference between IBS
and bulk measurements, and could suggest avenues to lowering
internal friction in amorphous oxides. The complicated rela-
tionship between Q−1 and frequency seen in thin-film silica
shows the need to expand computational studies to calculate
the attempt frequency for each TLS. However, the substantial
agreement with experimentally measured mechanical loss
shows that computational calculations can be a powerful tool
in understanding the internal friction in amorphous oxides.
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