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First-principles study of the dynamic Jahn-Teller distortion of the neutral vacancy in diamond

Joseph C. A. Prentice,1 Bartomeu Monserrat,1,2 and R. J. Needs1

1TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
2Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA

(Received 7 October 2016; published 20 January 2017)

First-principles density functional theory methods are used to investigate the structure, energetics, and
vibrational motions of the neutral vacancy defect in diamond. The measured optical absorption spectrum
demonstrates that the tetrahedral Td point group symmetry of pristine diamond is maintained when a vacancy
defect is present. This is shown to arise from the presence of a dynamic Jahn-Teller distortion that is stabilized
by large vibrational anharmonicity. Our calculations further demonstrate that the dynamic Jahn-Teller-distorted
structure of Td symmetry is lower in energy than the static Jahn-Teller distorted tetragonal D2d vacancy defect, in
agreement with experimental observations. The tetrahedral vacancy structure becomes more stable with respect to
the tetragonal structure by increasing temperature. The large anharmonicity arises mainly from quartic vibrations,
and is associated with a saddle point of the Born-Oppenheimer surface and a minimum in the free energy. This
study demonstrates that the behavior of Jahn-Teller distortions of point defects can be calculated accurately
using anharmonic vibrational methods. Our work will open the way for first-principles treatments of dynamic
Jahn-Teller systems in condensed matter.
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I. INTRODUCTION

Point defects in crystals introduce electron energy levels
within the electronic band gap, trap charge carriers, and
emit and absorb light, and phonon scattering from them
limits thermal and electrical conductivities [1,2]. Such effects
influence many of the most desirable properties of diamond,
including its optical properties and high thermal conductivity,
and point defects in diamond have been the subject of much
previous theoretical work [3,4]. Some defects such as the
Si-V [5,6] and N-V− centers [7] have been identified as
potential “qubits” in quantum computers [2,8–13]. Both these
defects include a lattice vacancy, which is an important defect
in its own right. The neutral vacancy in diamond is particularly
significant because it is known to be stable over a wide
range of doping levels [14] and plays a central role in defect
diffusion [15]. It is also important for its optical absorption and
luminescence properties—it is associated with a series of lines
in the absorption spectrum of diamond, including the strong
and sharp GR1 line at 1.673 eV [16]—and its applications in
quantum information [17] and precision sensing [18].

Carbon and silicon are isoelectronic, and their pristine
lattices have tetrahedral Td point group symmetry, as depicted
in Fig. 1(a). Watkins modeled the neutral vacancy in silicon
using a linear combination of atomic orbitals including only
the four atoms surrounding the vacancy [19], showing that two
electrons should occupy a triply degenerate state. The energy
of these electrons can be lowered by splitting this degenerate
energy state via a static Jahn-Teller distortion [19,20] of tetrag-
onal D2d symmetry [14,21,22]. Theoretically, the presence of
a Jahn-Teller distortion is revealed by the emergence in the
undistorted structure of harmonic vibrational soft modes, i.e.,
modes with imaginary frequencies; this approach successfully
predicts the D2d distortion experimentally observed in the
silicon vacancy. When applied to diamond, this approach also
predicts a D2d distortion, but in this case the experimental
observations show that the neutral diamond vacancy has
Td symmetry instead [23,24]. [Vacancy structures with both

symmetries are shown in Figs. 1(b) and 1(c).] The experimental
observations can be rationalized by the appearance of a
dynamic Jahn-Teller distortion [22,23,25,26], due to strong
anharmonic vibrational motion. The dynamic Jahn-Teller
effect is observed in a variety of systems, including doped
manganites [27,28], fullerides [29,30], octahedral complexes
of d9 ions [31], and the excited states of the N-V− center in
diamond [32].

In a dynamic Jahn-Teller system, there are two or more
minima in the Born-Oppenheimer (BO) energy surface, which
are separated by energy barriers. In the vacancy in diamond,
there are three minima, corresponding to tetragonal distortions
in each Cartesian direction. If the energy barriers between
the minima are low enough, the wave function of the system
is shared between the minima instead of localizing in a
single minimum, resulting in a dynamic Jahn-Teller effect.
This means that the vibrational wave function possesses the
symmetry of the undistorted structure [26]. Structures at saddle
points or maxima of the BO surface can be stabilized by
anharmonic vibrations, even at zero temperature, through zero-
point motion. Previous estimates, from experimental data,
of the energy barriers between minima and an Einstein-like
frequency for the tetragonal defect modes of the vacancy in
diamond show that the vibrational energy quantum is larger
than or comparable to the barrier energy, implying a dynamic
Jahn-Teller effect close to 0 K [33].

The dynamic Jahn-Teller effect in the neutral vacancy
in diamond is well established experimentally, but from a
first-principles standpoint the view is less clear. The commonly
used harmonic approximation for lattice dynamics cannot
account for the presence of a dynamic Jahn-Teller distortion,
as this is an intrinsically anharmonic effect. First-principles
calculations of the anharmonic vibrational wave function of
the ground state of the neutral vacancy in diamond have not
been reported previously, meaning that a proper description
of the dynamic Jahn-Teller effect in this system is lacking.
In this study, we determine for the first time an anharmonic
wave function which accurately describes the dynamic Jahn-
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FIG. 1. Structure of the pristine diamond lattice and possible
distortions of the vacancy. (a) shows a site in the pristine lattice and its
four nearest neighbors. (b) shows the nearest neighbors of the vacancy
with a distortion of Td symmetry, and (c) shows the vacancy structure
with D2d symmetry. The lengths indicate the distances between atoms
in the relaxed structures. The four atoms in (c) form two pairs.

Teller distortion, providing a theoretical description of the
experimentally observed Td symmetry of the neutral vacancy
in diamond.

We have used first-principles DFT methods [34] to calculate
the electronic and vibrational properties of the neutral vacancy.
The electronic ground state is expected to be well described
within DFT, although some of its electronic excited states
are not because they have many-body (multideterminant)
character. Our study is confined to the electronic ground
state. The vibrational calculations were carried out using
a recently proposed vibrational self-consistent field (VSCF)
method [35], which neglects nonadiabatic effects but includes
anharmonicity.

We find that formation of the dynamic Jahn-Teller Td

vacancy structure leads to a small reduction in the vibrational
energy compared with the static Jahn-Teller D2d structure
when anharmonic effects are included. Our results show that
anharmonic nuclear motion leads to a dynamic Jahn-Teller
distortion of the vacancy in diamond very close to zero
temperature, and we find that this remains true at least up
to 400 K.

The rest of this work is organized as follows: In Sec. II
we outline the computational methods employed and give
technical details of the calculations. In Sec. III we present
the main results of our study, detailing the effects of including
harmonic and anharmonic contributions to the total energy,
and to the vibrational density of states in each symmetry state.
In Sec. IV we give a brief summary of our results and some
concluding remarks.

II. CALCULATIONAL METHODS

A. Electronic calculations

DFT calculations were performed with version 7.0.3 of
the CASTEP code [36] and the corresponding “on-the-fly”
ultrasoft carbon pseudopotential [37]. We have used the local
density approximation (LDA) as parametrized by Perdew and
Zunger [38], which has been widely used in previous calcula-
tions involving diamond and similar materials [14,21,39–41].
LDA-DFT calculations provide a lattice constant for dia-
mond [34] of 3.529 Å, compared to the experimental value
of 3.567 Å [42]. In our calculations, the LDA-DFT lattice
constant is generally used, although some calculations were
also carried out using the experimental lattice constant to
investigate the effect on the dynamic stability of the tetrahedral

symmetry state. Increasing the lattice constant was found to
increase the stability.

To ensure the existence of a locally stable tetragonal
state (i.e., one that does not relax back to the tetrahedral
symmetry when geometry-optimized), a 256-atom (255 when
the vacancy is present) supercell is used throughout this work.
In previous DFT work on the neutral vacancy in silicon, it was
observed that supercells of at least 256 atoms were required
to obtain a stable tetragonal distortion [14,21], constructed as
a 2×2×2 supercell of a 32-atom bcc unit cell. Calculations
with supercells with less than 256 atoms show that the same
is true for diamond. The 256-atom supercells also allow us to
effectively isolate the periodic defects from one another so that
accurate structures for the tetrahedral and tetragonal vacancies
can be obtained.

The geometry was optimized such that the root mean square
of the forces on all of the atoms was below 0.001 eV/Å. A
simple 2-atom unit cell was relaxed to obtain the relaxed
LDA-DFT lattice constant, and a 256-atom supercell was
constructed from this. A vacancy was then created and the
internal coordinates relaxed. The tetrahedral state was found by
imposing the pristine lattice symmetry before relaxing, and the
tetragonal state was found by imposing a tetragonal distortion
on the four nearest neighbors of the vacancy, before relaxing
with no symmetry constraints. In both vacancy structures, the
nearest neighbors relaxed away from the vacancy (by 0.11 Å in
the tetrahedral case) in order to increase their sp2-like bonding,
as observed in previous work [22].

A plane-wave cutoff energy of 650 eV was used for relaxing
the structures and for the harmonic vibrational calculations,
with a 5×5×5 Monkhorst-Pack k-point grid [43], as the energy
differences between the structures were very well converged
for these parameters. A larger value of the cutoff energy was
used for some calculations, corresponding to even stricter
convergence criteria. The SCF cycle threshold for the energy
was taken to be 10−10 eV per atom to ensure a very accurate
charge density, and thus accurate forces.

B. Vibrational calculations

A finite-displacement method was used to obtain the matrix
of force constants, which was Fourier transformed to obtain
the dynamical matrix [44]. This was diagonalized to obtain the
harmonic vibrational frequencies and eigenvectors. Atomic
displacements of 0.00529 Å were used. The anharmonic
vibrational calculations were conducted using the VSCF
method described in Ref. [35] and used successfully several
times since [45–47].

In this method, the BO energy surface is described in a
basis of harmonic normal coordinates of amplitude u. In these
coordinates, the harmonic potential is separable, and each
degree of freedom contributes 1

2ω2u2, where ω is a harmonic
frequency. Starting from the harmonic approximation, we
improve the representation of the BO surface by using a
principal-axes approximation [48], which takes the form of
a sum over many-body terms, truncated at second order:

E(u) = E(0) +
∑

i

V1(ui) + 1

2

∑
i ′ �=i

V2(ui,ui ′ ). (1)

014108-2



FIRST-PRINCIPLES STUDY OF THE DYNAMIC JAHN- . . . PHYSICAL REVIEW B 95, 014108 (2017)

In this expression, u is a vector containing the normal-mode
amplitudes ui , Cartesian indices are collective labels for the
quantum numbers (q,ν) where q is a phonon wave vector
and ν a phonon branch, and E(u) is the value of the BO
energy surface when the atomic nuclei are in configuration
u. Anharmonicity is already included in the V1 terms, as
they are not constrained to the harmonic form. The V2 terms
provide additional anharmonic corrections arising from the
2-dimensional subspaces of the BO energy surface that they
span. The terms V1 and V2 in this expansion are found by
mapping the BO energy surface as a function of the amplitude
u of each normal mode, using a series of DFT calculations
and then fitting cubic splines to the results. In this work,
19 different amplitudes per mode are used in mapping the
BO surface. Mapping the BO surface is by far the most
computationally expensive part of the entire calculation; for
example, mapping the V1 terms scales as the number of modes
multiplied by the number of mapping points n multiplied by
the cost of a DFT calculation, which scales asymptotically
as nN4 for a simulation cell with N atoms. The resulting
anharmonic nuclear Schrödinger equation is solved using the
VSCF method to give the anharmonic vibrational energy
and free energy. The anharmonic vibrational wave function
|�(u)〉 is written as a Hartree product of the normal modes,∏

i |φi(ui)〉. The states |φi(ui)〉 are represented in terms of
basis functions which are the eigenstates of one-dimensional
harmonic oscillators. A total of 40 basis functions were used
for each degree of freedom.

In most of this work only the V1 terms are included in
the expansion of E(u). The number of calculations required
to map the BO surface accurately as a function of two normal
coordinates is approximately the square of the number required
for one coordinate, making this computationally unfeasible
if all pairs of modes were to be included. Our tests show
that the V2 terms are small for most modes, as the harmonic
approximation works well for vibrations in diamond [35].
The only large V2 term corresponds to the 2-dimensional BO
subspace spanned by two soft modes (u1,u2) that are present in
the tetrahedral structure of the diamond vacancy. This V2 term
has three equivalent minima, corresponding to a tetragonal
distortion along each Cartesian direction. No matter how the
orthogonal normal coordinates (u1,u2) are chosen, it is not
possible for the axes to pass precisely through more than one
of these minima. This means that it is impossible to capture the
behavior of the system with 3 minima using only the V1 terms
for these soft modes; the associated V2 term must therefore be
included. Furthermore, the vibrational wave function for this
V2 subspace of the BO surface cannot be described correctly
as a product of two states labeled by the two corresponding
normal modes (u1,u2). Separating the wave function in this
way breaks the rotational symmetry of the problem. Instead,
for this subspace, we separate the wave function using polar

coordinates, ru =
√

u2
1 + u2

2 and θu = arctan(u2/u1), where

the ui are written in units of 1/
√

2|ωi,s |, with ωi,s the imaginary
harmonic soft phonon frequencies. This preserves the correct
symmetry of the problem and allows an accurate wave function
to be determined. The usual wave function |φ1(u1)〉 |φ2(u2)〉
is reexpressed as |R(ru)〉 |T (θu)〉, where |R(ru)〉 is written as
a sum of isotropic harmonic oscillator radial basis states, and

|T (θu)〉 is a sum of sinusoids. A total of 80 angular basis
functions and 20 radial basis functions are used for these
calculations. As all of the other modes are almost harmonic
and therefore well described by the V1 terms, the energy contri-
bution from this particular V2 subspace can simply be added to
the energy of the rest of the V1 terms of the tetrahedral defect.

It would be extremely computationally expensive to map
all 762 anharmonic modes for both the tetrahedral and the
tetragonal symmetry states of the vacancy, even if only the V1

terms were included. However, we can take advantage
of the small anharmonicity in pristine diamond [35]. The
fact that pristine diamond is well described by the harmonic
approximation implies that a necessary condition for modes
to have significant anharmonic character is that they are
strongly affected by the presence of the vacancy. We expect
that these modes will generally have short wavelengths and
high energies, as over longer length scales the effect of the
vacancy will be averaged out. The effect of the vacancy on
each mode can be calculated as the difference between the
vacancy harmonic vibrational density of states (vDoS) and
the pristine vDoS at the frequency of each mode, �g(ω) =
gvac

vib (ω) − g
pris
vib (ω). We can then obtain an accurate value for the

anharmonic correction to the energy without having to map all
762 modes by simply mapping the modes in descending order
of �g(ω), using the harmonic approximation for all unmapped
modes, and converging the anharmonic correction with respect
to the number of modes mapped. Converging the correction
to within 0.1 meV requires 32 modes to be mapped for the
tetrahedral state, but 350 for the tetragonal state, implying that
the distortion away from tetrahedral symmetry leads to a large
increase in anharmonicity.

To further reduce the computational expense of the anhar-
monic calculations, an energy cutoff of 350 eV was used,
with a 5×5×5 Monkhorst-Pack k-point grid [43], as the shape
of the BO surface is well converged for these parameters.
In some calculations larger values of these parameters were
used, corresponding to even stricter convergence criteria.
The energy differences between structures were converged
to within 0.5 meV per atom, with the self-consistency energy
threshold for the DFT calculations set to 10−6 eV per atom. The
anharmonic correction to the energy in the pristine 256-atom
supercell was calculated from the anharmonic correction for a
16-atom fcc supercell.

III. RESULTS

A. Jahn-Teller effect and dynamical stability

Figure 2 shows the calculated electronic density of states
(eDoS) for the pristine, tetrahedral, and tetragonal vacancy
structures. There is little difference between the eDoS of the
pristine and vacancy states, apart from the appearance of a
peak in the band gap almost exactly at the Fermi level in the
vacancy structures. This state arises from the four “dangling
bonds” around the vacancy, as predicted by the Watkins model.
The inset to Fig. 2 shows that the peak splits into two upon
introduction of the tetragonal distortion, as would be expected
for a static Jahn-Teller distortion. These peaks correspond
to the singlet and doublet states predicted by the Watkins
model [19].
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FIG. 2. Electronic density of states of diamond. The dotted line
marks the Fermi energy, εF. The inset contains the eDoS of the
vacancy gap state, showing that the tetragonal distortion splits the
state into a singlet at around −0.3 eV and a doublet at around 0.3 eV.

Harmonic calculations show that the tetrahedral state is
dynamically unstable, that is, it exhibits two soft modes, with
frequencies ω1,s and ω2,s , that correspond to tetragonal dis-
tortions. Unlike the tetrahedral symmetry state, the tetragonal
configuration is dynamically stable, leading to the conclusion
that, at this level of theory, a static Jahn-Teller distortion of
tetragonal symmetry is favored.

Including anharmonicity in the treatment of the tetrahedral
configuration provides a very different picture. Figure 3 shows

FIG. 3. Anharmonic Born-Oppenheimer energy surface mapped
along the direction of one of the two soft modes of the tetrahedral
structure, as well as its decomposition into symmetric and antisym-
metric parts. The symmetric part of the anharmonic energy surface is
clearly quartic, giving two minima.

FIG. 4. (a) Born-Oppenheimer energy surface in the plane
spanned by the two soft modes of the tetrahedral structure. The static
tetrahedral structure lies on the local maximum at the origin. Three
equivalent minima corresponding to the three possible tetragonal dis-
tortions are arranged symmetrically around the tetrahedral structure.
Each contour line represents an energy increase of 0.0615 eV. (b)
Anharmonic vibrational ground state probability density as a function
of the amplitudes of the soft modes of the tetrahedral structure. The
density has three peaks that correspond to the minima of the BO
surface in (a).

the BO surface mapped along one of the soft mode directions,
split into symmetric and antisymmetric contributions to the
anharmonic energy surface. The antisymmetric part mostly
arises due to the fact that any given direction cannot pass
through two minima and the origin, meaning that both
minima cannot be well mapped by a one-dimensional slice,
as discussed above. However, the symmetric contribution
clearly shows that quartic anharmonicity is present. Due to
the impossibility of describing all three minima correctly
using one-dimensional subspaces spanned by either soft mode
individually, it is necessary to include the full 2-dimensional
subspace spanned by both soft modes. Figure 4(a) shows the
V2 term of the BO surface mapped on the plane spanned by the
two soft modes, and Fig. 4(b) shows the anharmonic ground
state nuclear density in this subspace. In addition to the slice
shown in Fig. 3, further slices through the BO surface in
Fig. 4(a) can be found in the Supplemental Material [49]. The
anharmonic ground state vibrational density of the tetrahedral
structure has peaks in each of the three minima of the BO
surface, which lowers the overall energy of the system. The
fact that the wave function is shared between the minima shows
that, when anharmonic vibrational effects are included, the
Jahn-Teller effect in this system becomes dynamic rather than
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static, with the system maintaining the full Td point symmetry
of the pristine lattice.

The dynamical stability of the tetrahedral state is somewhat
sensitive to the exact form of the BO surface found in the DFT
calculations. If the relaxed LDA lattice constant (3.529 Å)
is used when mapping the 2-dimensional BO surface of the
pair of soft modes, the tetrahedral state is still dynamically
unstable at 0 K, becoming stable at 16.9 K. However, using
the experimental lattice constant of 3.567 Å [42] reduces
the size of the dynamical instability significantly, decreasing
the absolute value of the already small ground state energy
associated with the V2 subspace by an order of magnitude.
Using the experimental lattice constant the tetrahedral state is
calculated to become dynamically stable at 8.6 K. Given the
errors inherent in DFT calculations, our results are consistent
with the tetrahedral state being dynamically stable down to
liquid helium temperatures, as implied by experiment [25],
and even to absolute zero.

The minima in the BO surface are, in the polar coordinates
defined above, at ru = 1.64/

√
2|ωs |, θu = 39◦,159◦,279◦,

which correspond to tetragonal distortions along the x, z, and y

directions, respectively. ωs = (ω1,s + ω2,s)/2 � ω1,s � ω2,s .
The values of θu depend on the precise choice of the axes
defined by the two soft modes. The displacement patterns
corresponding to the modes u1 and u2 in this work are
presented in the Supplemental Material [49], allowing these
minima to be unambiguously identified. At these minima,
the four nearest neighbors of the vacancy are displaced from
their tetrahedral equilibrium positions; they are displaced by
0.074 Å away from the vacancy along the distortion direction,
but by half this distance towards the vacancy in the other two
directions. The tetrahedral structure is at a maximum of the BO
surface along the direction of the soft modes, but a minimum
along all of the other modes, placing the tetrahedral structure
at a saddle point of the BO surface.

B. Thermodynamics

The tetragonal and pristine structures are dynamically
stable at the harmonic level, and the previous section shows
that the tetrahedral structure is also dynamically stable at low
temperatures when anharmonicity is accounted for. Having
therefore established that all three structures—tetrahedral,
tetragonal, and pristine—are dynamically stable at low temper-
ature at the anharmonic level, we turn to their thermodynamics.
The static lattice, vibrational, and formation energies at 20 K
are reported in Table I for all three structures, as at this tem-

perature all three are dynamically stable. The harmonic energy
Ehar and the anharmonic correction �Eanh = Eanh − Ehar,
per atom, are given, as well as the vacancy formation energy,
which is calculated as [14]

Ef = Evac − N − 1

N
Epris,

where Evac and Epris are the total energies of the system with
and without the vacancy, respectively, and N is the number of
atoms in the pristine supercell. The values of Ef for the two
different symmetry states of the vacancy are presented in the
third part of Table I, at three levels of theory: static (electronic),
harmonic vibrational, and anharmonic vibrational.

Because the tetrahedral state is dynamically unstable at
the harmonic level (although not at the anharmonic level),
due to the presence of the two soft modes, a harmonic
vibrational energy cannot strictly be defined for this structure.
Despite this, we have included an estimated value for the
tetrahedral harmonic energy, calculated by simply cutting out
the contribution of the two soft modes, to enable comparisons
between the two symmetry states. The fact that this value
involves the unphysical removal of two modes is noted in
Table I.

With this caveat in mind, we can look at the thermodynamic
stability of the two symmetry states at 20 K. When only
electronic and harmonic effects are included in the formation
energy, the state with tetragonal symmetry is the most
stable, although the inclusion of harmonic vibrational effects
reduces the Jahn-Teller relaxation energy—the energy differ-
ence between the tetrahedral and tetragonal structures—from
0.275 eV to 0.158 eV. Upon inclusion of anharmonic effects,
the tetrahedral state becomes the most stable, as observed
experimentally, by 3 meV. The predicted final formation
energy for the neutral vacancy, including anharmonic effects,
is therefore 8.373 eV, which is close to the estimates from
experiments of 9–15 eV [50]. The formation energy of the
unrelaxed vacancy at the static level is calculated to be
8.166 eV, implying a total relaxation energy of 0.989 eV at
this level of theory. (This result is not included in Table I.)

Comparing the vDoS of the vacancy structures to that
of pristine diamond gives further insight into the effect
of the vacancy on the vibrational properties. Figure 5(a)
shows the harmonic vDoS for all three structures at high
energies, with the full vDoS as an inset, and Fig. 5(b)
shows the difference between the harmonic and anharmonic
cumulative vDoS, �G(ω) = ∫ ω

0 dω′ghar(ω′) − ganh(ω′), for

TABLE I. DFT static lattice energies, vibrational energies, and formation energies for each structure at 20 K. The second column shows
the electronic static lattice energy Estatic per atom for the pristine, tetrahedral, and tetragonal structures relative to the pristine structure. The
next two columns show the harmonic vibrational energy Ehar and anharmonic energy correction �Eanh = Eanh − Ehar per atom for the three
structures. The last three columns show the formation energy at the static, harmonic, and anharmonic levels of theory, Estatic

f , Ehar
f , and Eanh

f ,
respectively. The tetrahedral structure is dynamically unstable at the harmonic level, as marked by (italicized brackets).

Static energies Vibrational energies Vacancy formation energies

Structure Estatic (eV/atom) Ehar (eV/atom) �Eanh (meV/atom) Estatic
f (eV) Ehar

f (eV) Eanh
f (eV)

Tetrahedral 0.0292 (0.1826) 0.190 7.451 (8.343) 8.373
Tetragonal 0.0281 0.1831 0.821 7.176 8.185 8.376
Pristine 0.0000 0.1791 0.071 0.000 0.000 0.000
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FIG. 5. (a) shows the harmonic vibrational density of states for
the pristine, tetrahedral vacancy and tetragonal vacancy structures in
diamond, shown at high energies above 0.1 eV in the main plot,
and in full in the inset. Note the main differences between the
vacancy states and the pristine structure occur at high energies.
(b) shows the difference between the harmonic and anharmonic
cumulative vDoS, �G(ε) = ∫ ε

0 dε′ghar(ε′) − ganh(ε′), of the vacancy
and pristine structures, constructed using Gaussian smearing of the
frequencies.

both symmetry states of the vacancy as well as the pristine
lattice. The cumulative densities of states were formed by
broadening the mode frequencies with Gaussians (of width
8.163×10−4 eV for the vacancy states and 5.442×10−3 eV
for the pristine lattice) and cumulatively summing them. This
allows us to see how the presence of anharmonicity changes
the frequencies themselves. Figure 5(a) confirms that the
presence of the vacancy only has a significant effect on high
energy vibrations. This justifies our approach of including
only the highest energy vibrational modes in the anharmonic
calculations. The atoms neighboring the vacancy tend to

have larger vibrational amplitudes than the other atoms in the
very highest energy modes for both symmetry configurations,
while for lower energy modes the amplitudes are comparable.

Figure 5(b) shows that the effect of anharmonicity is
much more pronounced in the tetragonal configuration than
in the tetrahedral or pristine structures. In the tetrahedral
and pristine structures, the changes in the vDoS are of a
similar size, and are much smaller than the changes seen in
the tetragonal case. This demonstrates that distortions away
from the tetrahedral symmetry of the pristine lattice strongly
increase the anharmonicity of the phonon modes, with the
tetrahedral vacancy retaining the weak anharmonic character
of pristine diamond. The optical modes at high energies are
clearly more affected by the inclusion of anharmonicity than
the low-energy acoustic modes. In the pristine and tetrahedral
structures, anharmonicity raises the frequency of some modes
while lowering those of others, leading to both positive
and negative values of �G. In the tetragonal configuration,
however, it generally raises the frequency of the modes by
a small amount, showing that the leading anharmonic term
is quartic in character, as cubic anharmonicity always acts to
lower the energy in one dimension [35].

Given the above results at 20 K, we briefly examine the
temperature dependence of the formation energies of the
tetrahedral and tetragonal structures. Neglecting the effect
of thermal expansion, which is very small for diamond
over the range of temperatures considered [51], we calculate
the anharmonic vibrational contribution to the free energy
at a set of finite temperatures, using the excited states of
the VSCF Hamiltonian to construct a partition function Z ,
from which we can calculate a free energy F = −kBT lnZ
[35]. For these calculations, 80 basis functions were used to
obtain accurate excited states. Figure 6 shows the anharmonic
formation energy of each symmetry state of the vacancy
for a range of temperatures up to 400 K. It is clear that
the tetrahedral structure remains the most stable over this
temperature range; indeed, the difference in the formation
energies of the two symmetry states increases from 0.003
to 0.177 eV at 400 K. The calculated value of the vacancy
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FIG. 6. Temperature dependence of the formation energies of the
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formation energy at room temperature (300 K) is 8.172 eV,
again in reasonable agreement with experimental estimates of
9–15 eV [50].

IV. CONCLUSIONS

Our results show that the tetrahedral symmetry structure of
the neutral vacancy in diamond is stabilized down to almost
zero temperature by anharmonic vibrations. The vacancy
undergoes a dynamic Jahn-Teller distortion which has the
full Td point group symmetry of the pristine system, as
observed experimentally. The anharmonic vibrational wave
function of the tetrahedral defect has been calculated, and
shown to be shared evenly among the three minima in
the Born-Oppenheimer surface, which correspond to the
three tetragonal distortions. We have also calculated the
temperature dependence of the vacancy formation energy
up to 400 K. Our value for the formation energy of the
neutral vacancy agrees well with experimental estimates of
9–15 eV [50].

Our results for the isolated neutral vacancy also imply that
our method could be used to calculate anharmonic properties
of other point defects, including those in diamond. Two
examples of such defects are the Si-V or N-V centers, which
are especially of interest due to their possible use as qubits
in quantum computing [7–13]. Studies of their vibrational
properties, including anharmonicity, would lead to a fuller
understanding of these important defects.
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[2] T. Schröder, S. L. Mouradian, J. Zheng, M. E. Trusheim, M.
Walsh, E. H. Chen, L. Li, I. Bayn, and D. Englund, Quantum
nanophotonics in diamond, J. Opt. Soc. Am. B 33, B65 (2016).

[3] C. Freysoldt, B. Grabowski, H. Tilmann, J. Neugebauer, G.
Kresse, A. Janotti, and C. G. Van de Walle, First-principles
calculations for point defects in solids, Rev. Mod. Phys. 86, 253
(2014).

[4] D. A. Drabold and S. Estreicher (eds.), Theory of Defects in
Semiconductors, Topics in Applied Physics (Springer-Verlag,
Berlin, 2007), Vol. 104.

[5] L. J. Rogers, K. D. Jahnke, M. W. Doherty, A. Dietrich, L. P.
McGuinness, C. Müller, T. Teraji, H. Sumiya, J. Isoya, N. B.
Manson, and F. Jelezko, Electronic structure of the negatively
charged silicon-vacancy center in diamond, Phys. Rev. B 89,
235101 (2014).

[6] A. Gali and J. R. Maze, Ab initio study of the split silicon-
vacancy defect in diamond: Electronic structure and related
properties, Phys. Rev. B 88, 235205 (2013).

[7] P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D.
Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham,
D. J. Twitchen, J. I. Cirac, and M. D. Lukin, Room-temperature
quantum bit memory exceeding one second, Science 336, 1283
(2012).

[8] L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M.
Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer,
and F. Jelezko, All-Optical Initialization, Readout, and Coherent
Preparation of Single Silicon-Vacancy Spins in Diamond,
Phys. Rev. Lett. 113, 263602 (2014).

[9] A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya,
A. S. Zibrov, F. Jelezko, and M. D. Lukin, Indistinguishable
Photons from Separated Silicon-Vacancy Centers in Diamond,
Phys. Rev. Lett. 113, 113602 (2014).

[10] G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham,
R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler,
V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Ultra-
long spin coherence time in isotopically engineered diamond,
Nat. Mater. 8, 383 (2009).

[11] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok,
L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen,
L. Childress, and R. Hanson, Heralded entanglement between
solid-state qubits separated by three metres, Nature (London)
497, 86 (2013).

[12] H. S. Knowles, D. M. Kara, and M. Atatüre, Observing
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