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Numerical analytic continuation: Answers to well-posed questions
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We formulate the problem of numerical analytic continuation in a way that lets us draw meaningful conclusions
about the properties of the spectral function based solely on the input data. Apart from ensuring consistency with
the input data (within their error bars) and the a priori and a posteriori (conditional) constraints, it is crucial to
reliably characterize the accuracy—or even ambiguity—of the output. We explain how these challenges can be
met with two approaches: stochastic optimization with consistent constraints and the modified maximum entropy
method. We perform illustrative tests for spectra with a double-peak structure, where we critically examine which
spectral properties are accessible (second peak position and its spectral weight) and which ones are lost (second
peak width/shape). For an important practical example, we apply our protocol to the Fermi polaron problem.
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I. INTRODUCTION

Numerous problems in science, from spectral analysis to
image processing, require that we restore the properties of a
function A(z) from a set of integrals

gn = G[n,A] ≡
∫ ∞

−∞
dzK(n,z)A(z), n = 1, . . . ,N, (1)

where K(n,z) is a known kernel and {gn} is a finite set of
experimental or numerical input data with error bars. An
important class of such problems—known as numerical an-
alytic continuation (NAC)—deals with “pathological” kernels
featuring numerous eigenfunctions with anomalously small
eigenvalues. An archetypal NAC problem is the numerical
spectral analysis at zero temperature, where the challenge is to
restore the non-negative spectral function A(z � 0) satisfying
the equation

gn =
∫ ∞

0
dze−zτnA(z), (2)

from numerical data for gn = g(τn � 0).
The NAC problem is often characterized as ill-posed.

Mathematically, the near-degeneracy of the kernel implies
two closely related circumstances: (i) the absence of the
resolvent, and (ii) a continuum of solutions satisfying the input
data within their error bars (even when integrals over z are
replaced with finite sums containing less or equal to N terms).
Nowadays, the first circumstance is merely a minor technical
problem, as there exists a number of methods allowing one
to find solutions to (1) without compromising the error bars
of gn.

The second circumstance—the ambiguity of the solution—
is a more essential problem. It is clear that if one formulates the
goal as to restore A(z) as a continuous curve, or to determine its
value on a given grid of points, then the goal cannot be reached
as stated, irrespective of the properties of the kernel K(n,z).
The input data set is finite and noisy, thereby introducing a
natural limit on the resolution of fine structures in A(z).

Fortunately, the above-formulated goal has little to do
with the practical world. In an experiment, all devices are
characterized by a finite resolution function and the data they
collect always correspond to integrals. The data are processed
by making certain assumptions about the underlying function.
This motivates an alternative formulation of the NAC goal
involving integrals of A(z) that render the problem well-
defined. With additional assumptions about the smoothness
and other properties of A(z) behind these integrals, consistent
with both a priori and a posteriori knowledge, the ambiguity
of the solution can be substantially suppressed. The simplest
setup is as follows.

Given a set of finite intervals {�m}, determine the integrals
of the spectral function over these intervals:

im = �−1
m

∫
z∈�m

dzA(z), m = 1, . . . ,M, (3)

along with the corresponding dispersions of fluctuations {σm}
(straightforwardly extendable to the dispersion correlation
matrix {σmm′ }).

Naively one might think that nothing is achieved by going
from the integrals in (1) to the integrals in (3) because the latter
have exactly the same form with the kernel K̄(m,z) = �−1

m for
z ∈ �m and zero otherwise (other forms of the “resolution
function” K̄(m,z) are discussed in Sec. II):

im = I [m,A] =
∫ ∞

−∞
dzK̄(m,z)A(z), m = 1, . . . ,M. (4)

This impression, however, is false because kernel properties
are at the heart of the problem. If for appropriately small
intervals [sufficiently small to resolve the variations of A(z)],
the uncertainties for im remain small, then one can draw
reliable conclusions for the underlying behavior of A(z) itself.
The difference between “good” (e.g., as in Fourier transforms)
and pathological kernels is that for the latter, due to the
notorious sawtooth instability, the uncertainties for im quickly
become too large for a meaningful analysis of fine structures
in A(z).
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To obtain a solution from the integrals (3), one has to invoke
the notion of conditional knowledge. The most straightforward
approach is to set the spectral function values at the middle
points zm of the intervals �m to Afin(zm) = im. This is only
possible if the intervals can be made appropriately narrow
without losing accuracy for the integrals. With this approach
we assume that the function is nearly linear over the intervals
in question. This is a typical procedure for experimental data.
Quantifying the error bar on Afin(zm) necessarily involves two
numbers: the “vertical” dispersion σm is directly inherited from
im, and the “horizontal” error bar �m/2 represents the interval
half-width.

The reader should be aware of two issues regarding such
error bars. First, the error bars for different points are not
independent but contain significant multipoint correlations.
For example, an unrestricted integral

∫
dzA(z) is typically

known with an accuracy that is orders of magnitude better
than what would be predicted by the central limit theorem
if this integral is represented by a finite sum of integrals
over nonoverlapping intervals. Second, the errors are not
necessarily distributed as a Gaussian. Atypical fluctuations
can have a significant probability and their analysis should not
be avoided as the actual physical solution may well be one
of them. To this end, it is important to explore the minimal
and maximal values that the integral im can take, and check
that these are not significantly different from the typical value
of im. In certain cases this criterion cannot be met without
increasing the intervals �m to an extent when the assumption
of linearity of A(z) becomes uncontrolled, implying that an
important piece of information about the shape of A(z) in this
interval is missing. A characteristic example that plays a key
role in the subsequent discussion is presented in Fig. 1, where
the challenge is to extract the shape of the second peak.

In the more sophisticated approach used in this work,
the values of Afin(zm) can be further optimized (without
compromising the accuracy of the solution with respect
to gn) to produce a smooth curve. This protocol has the
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FIG. 1. Challenging example of a spectrum A(z) for the NAC
problem (2). As shown in the main part of the text, the significant
width of the first peak makes it essentially impossible to controllably
restore the width of the second peak, even with small relative error
bars (∼10−5) on gn. On the other hand, the first two moments of the
second peak, characterizing its weight and position, can be extracted
reliably.

additional advantage of eliminating minima, maxima, gaps,
and sharp features that are not guaranteed to exist by the
quality of input data. The nature of the problem is such that
very narrow peaks (or gaps) with tiny spectral weight can
always be imagined to be present (for narrow intervals they
will certainly emerge due to the sawtooth instability). Our
philosophy with respect to these features is to erase them
within the established error bounds and obtain a solution that
is insensitive to the interval parameters.

Having established a smooth solution, one may nevertheless
ask whether a particular feature of the solution can, in
principle, have significantly different properties. For example,
if the NAC procedure suggests a peak, one may wonder if
the true spectral function could have a much narrower peak
with the same area, and if so, what is its smallest possible
width. A NAC protocol should be able to answer this type of
question fast and reliably. In this work, we explain how these
goals can be achieved in practice. Many technical details of the
protocol that we propose to abbreviate as SOCC (stochastic
optimization with consistent constraints) were already pub-
lished in Refs. [1–3] as separate developments. The crucial
advances here are (i) the final formulation based on integrals
of the spectral function, and (ii) the idea of working with
linear combinations of pre-calculated “basic” solutions. The
latter allows one to readily apply consistent constraints without
compromising the error bars on the input data. Consistent
constraints are also crucial for assessing what features can be
resolved and what information is unrecoverable.

In what follows, the term “consistent constraints” applies
to (i) the general principle of utilizing the a priori and
revealing the a posteriori (conditional) knowledge without
compromising the error bars of the input data and (ii) a partic-
ular set of numerical procedures based on ideas respecting
this principle. Our SOCC protocol involves two different
consistent-constraint procedures. The first one, borrowed
from the NAC method of Ref. [3], is now used solely to
(dramatically!) enhance the performance of the stochastic-
optimization part of the protocol searching for basic solutions.
The most important consistent-constraint procedure is used to
postprocess the set of basic solutions.

The paper is organized as follows. In Sec. II, we describe the
SOCC method consisting of three distinct stages, and explain
how a smooth solution can be obtained without any bias with
respect to solving Eq. (1) and analyzed for possible atypical
deformations. In Sec. III, we briefly review the maximum
entropy method (MEM) [4–9]. In Sec. IV, we explore what
SOCC and MEM methods predict for the test spectral function
shown in Fig. 1, and how one should analyze the final solution
with respect to its possible smooth transformations. In Sec. V,
we apply our findings to the physical spectral function of the
resonant Fermi polaron [10–17]. We conclude in Sec. VI.

II. STOCHASTIC OPTIMIZATION
WITH CONSISTENT CONSTRAINTS

The formulation of the SOCC method is relatively simple
and consists of three parts.

(1) Finding a large set of solutions Aj (z) [j =1, . . . ,J �1]
to Eq. (1) that satisfy the input data within their error bounds. In
what follows, we call them “basic” solutions. Basic solutions
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are not biased in any way to be smooth or to satisfy any
other requirements based on knowledge about the problem
outside of Eq. (1). The irregularity of basic solutions embodies
what is referred to as an ill-posed problem. In Sec. II A, we
briefly explain how these solutions are found by the stochastic
optimization procedure (most technical details were published
previously in Refs. [1,2]) and how the consistent constraints
method [3] is used to improve drastically the speed of the
stochastic optimization protocol.

(2) Using the basic solutions Aj (z) to compute the inte-
grals (4) with a different kernel K̄(m,z). There are several
choices here. One of them is given by Eq. (3) and amounts
to computing integrals from Aj (z) over finite intervals {�m}
centered at {zm}. However, one is also free to consider
normalized continuous kernels with unrestricted integration
over z, such as Lorentzian (or Gaussian) shapes centered at
points {zm} with the width {�m} at half-height, e.g.,

K̄(m,z) = �m/π

(z − zm)2 + �2
m

. (5)

Thus obtained sets of integrals {i(j )
m } are then used straightfor-

wardly to compute averages

im = J−1
J∑

j=1

i(j )
m , (6)

and dispersions [18]

σ 2
m = J−1

J∑
j=1

(
i(j )
m − im

)2
. (7)

To characterize possible two-point correlations, one should
compute the correlation matrix

σmm′ = J−1
J∑

j=1

(
i(j )
m − im

)(
i

(j )
m′ − im′

)
. (8)

Strictly speaking, there is no reason to stop characterizing
correlations at the two-point level. One may proceed with
computing multipoint averages but the effort quickly becomes
expensive and the outcome cannot be presented in a single
plot. An alternative “visualization” of multipoint correlations
is discussed in Sec. II B.

(3) Interpreting the result. The simplest interpretation and
an estimate of the dispersion for typical fluctuations is to
assume that A(z) is nearly linear over the range of each
interval. This leads to the solution Afin(zm) = im with vertical
and horizontal “error bars” σ (v)

m = σm and σ (h)
m = �m/2. The

vertical error bars may be overestimated because fluctuations
at different points are correlated. However, as explained in
the Introduction, the correct answer may correspond to some
atypical shape, and this possibility has to be addressed as well.

An alternative protocol, discussed in Sec. II B, determines
the final solution by selecting a superposition of basic solutions

Afin(z) =
J∑

j=1

cjAj (z),
J∑

j=1

cj = 1, (9)

such that A(z) remains non-negative (with high accuracy) and
the coefficients cj are optimized to impose smooth behavior

or any other “conditional knowledge.” Formally, the simplest
interpretation corresponds to cj = 1/J .

A. Search for basic solutions

The search for basic solutions relies on the minimization of

χ2 = N−1
N∑

n=1

(
gn − G[n,A]

δn

)2

, (10)

where δn is the error of the gn value. Without loss of generality,
we assume that the components of the vector �g = (g1,g2, . . . )
are uncorrelated; otherwise, one has to perform a rotation
to the eigenvector basis of the two-point correlation matrix
〈(gn − 〈gn〉)(g′

n − 〈g′
n〉)〉 where the components of �g become

statistically independent. This linear transformation leads to an
equation that has exactly the same form as (1) with a rotated
kernel. We choose a maximal tolerance χc of order unity and
search for functions A(z) > 0 with χ2 < χ2

c , which are then
added to the set of basic solutions for further processing.

Information about the input data is limited to the objective
function (10). Truly unbiased methods should not assume
anything about A(z) that is not part of exact knowledge,
such as the predetermined grid of points, and the number
and parameters of peaks/gaps. In the stochastic optimization
method of Refs. [1,2], each solution is represented by a set
of positive-definite rectangular shapes (the δ-function can be
viewed as the limiting case of an infinitely narrow and infinitely
high rectangular shape with fixed area), which are allowed to
have multiple overlaps, see panel (a) in Fig. 2. More precisely,
a solution is represented as a sum

A(z) =
R∑

r=1

η{Pr }(z) (11)

z1 z2 z3 z9 z5 z6 z8 z7 z4 z10 

A(z) 

z 

(a)  

(b)  

(c)  

z(min) z(max) 

z(min) 

z(min) 

z(max) 

z(max) 

A(z) 

A(z) 

FIG. 2. (a) Spectral function parametrization by a set of rectan-
gles. (b) Illustration of the treatment of intersections of rectangles.
(c) Identical reparametrization of the spectrum.
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of rectangles {Pr} = {hr,wr,cr},

η{Pr }(z) =
{
hr, z ∈ [cr − wr/2,cr + wr/2],
0 , otherwise, (12)

where hr > 0, wr > 0, and cr are the height, width, and center
of the rectangle Pr , respectively. In what follows, we refer to

C = {{Pr}, r = 1, . . . ,R}, (13)

as a “configuration.” All rectangles are restricted to the
specified range of the A(z) support, [z(min),z(max)], i.e., for
all rectangles cr − wr/2 > z(min) and cr + wr/2 < z(max). The
spectrum normalization is given by

∑R
r=1 hrwr = N0, and

G[n,A] in Eq. (1) can be written as

G[n,A] =
R∑

r=1

K(n,r)hr, (14)

where

K(n,r) =
∫ cr+wr/2

cr−wr/2
dz K(n,z). (15)

The number of rectangles and all continuous parameters
characterizing their position, width, and height are found
by minimizing the objective (10). Optimization starts from
a randomly generated set of rectangles, and finds a large
number of dissimilar basic solutions Aj (z) with χ2 < χ2

c .
More precisely, the search is based on a chain of randomly
chosen updates over the configuration space of shapes, which
fully explore the sawtooth fluctuations of basic solutions. This
is important for the successful elimination of noise in the final
solution.

Updates proposing small modifications of the shape
(“elementary” updates) have the disadvantage of long com-
putation time for a basic solution. To speed up the search,
we supplement the standard protocol of Refs. [1,2] with
consistent-constraints (CC) updates, which propose a radical
shape modification based on the minimization of the positive-
definite quadratic form χ2 + ∑

i oi by matrix inversion as
described in Ref. [3]. Here, oi are various positive-definite
quadratic forms, or “penalties,” that ensure that the matrix to
be inverted is well-defined. This is achieved by penalizing the
derivatives of A(z) (computed on the grid based on the current
configuration {C}, see below) and enforcing A(z) � 0. The
CC update involves a number of iterations when penalties oi

are adjusted self-consistently in such a way that at the end of
the update 0 <

∑
i oi � χ2. Explicit forms for {oi} and the

adjustment protocols are described in detail in Ref. [3] (see
also O1 and O4 forms in Sec. II B).

Even though the CC updates do not compromise the
goal of minimizing χ2, their efficiency is based on penalties
that suppress sawtooth fluctuations. To exclude possible bias
originating from CC, updates on basic solutions we proceed
as follows. The global update of the SOCC method consists of
thousands of elementary updates Ltot that are divided into
two groups: La stage-a updates and Lb stage-b updates,
where La + Lb = Ltot and La < Lb. Updates increasing χ2

are temporarily considered “accepted” (and the resulting
configuration recorded) with high probability during stage-a,
but this probability is reduced during stage-b that favors

updates decreasing χ2. The idea is to use La updates to
escape from the local minimum of χ2 in the multidimensional
configuration space in a hope to find a better minimum
afterwards. The global update is accepted only if a smaller
value of χ2 was recorded in the course of applying elementary
updates, and the new configuration becomes the one with
the smallest χ2. We apply CC updates during stage-a of a
global update when the increase of χ2 is allowed, and proceed
with a large number of elementary updates, which results in a
configuration with fully developed sawtooth instability.

We found that CC updates have no effect on the self-
averaging of the sawtooth noise in the equal-weight super-
position of basic solutions, improve typical χ2 values for
basic solutions, and significantly decrease the computation
time required for finding basic solutions.

To run the CC update, one has to re-parameterize the
configuration as a collection of nonoverlapping rectangles
in order to be able to use their heights for estimates of
the function derivatives. Panel (b) in Fig. 2 illustrates how
overlaps of rectangles are understood in the SOCC method.
This leads to an identical re-parametrization in terms of
nonoverlapping rectangles {P̃r} = {̃hr,w̃r ,̃cr}. The conversion
is done as follows. First, the set of rectangle parameters
{cr − wr/2} ∪ {cr + wr/2} is ordered to form a grid of new bin
boundaries that also include the support limits z(min) and z(max).
Second, bin centers and widths become centers and widths of
the ordered set of new rectangles, respectively:

c̃r+1 > c̃r ∀r,

c̃1 − w̃1/2 = z(min), (16)

c̃r − w̃r/2 = c̃r−1 + w̃r−1/2 ∀r,

c̃2R+1 + w̃2R+1/2 = z(max). (17)

Figures 2(b) and 2(c) illustrate how the conversion from
{Pt } to {P̃t } amounts to an identical representation of the
spectrum: R original rectangles introduce 2R boundaries on
the [z(min),z(max)] interval and split it into 2R + 1 rectangles
obeying conditions (16)–(17). Note that some rectangles have
zero height when submitted into the CC update. The update
modifies the values of all h̃ parameters and generates a new
set {̃h′

r}. Since {P̃r} is a particular case of {Pr}, there is no
need to perform any additional transformation to proceed with
elementary updates.

B. Preparing the final solution

Because all basic solutions satisfy Eq. (1), one can immedi-
ately check that a linear combination of basic solutions, Eq. (9),
always leads to a solution of Eq. (1) with the same accuracy
cutoff χc as the basic solutions, provided that all c-coefficients
are non-negative. Indeed, by linearity of the problem and the
condition

∑J
j=1 cj = 1,

G[n,Afin] =
J∑

j=1

cjG[n,Aj ] ,

gn − G[n,Afin] =
J∑

j=1

cj (gn − G[n,Aj ]) . (18)
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Substituting these expressions into the χ2 form for the final
solution and employing the Cauchy–Bunyakovsky–Schwarz
inequality for χjj ′ , we get

χ2 =
J∑

j,j ′=1

cj cj ′χjj ′ � C̄2 χ2
c , with C̄ =

J∑
j=1

|cj |, (19)

χjj ′ = N−1
N∑

n=1

(gn − G[n,Aj ])(gn − G[n,Aj ′ ])

δ2
n

. (20)

If some c coefficients are negative, the accuracy of the final
solution is guaranteed only if C̄ is not large. One may argue that
the upper bound χ2 � C̄2 χ2

c is substantially overestimating
deviations, and the actual accuracy is better. Let C+ =
(1 + C̄)/2 and C− = (1 − C̄)/2 be the sums over all pos-
itive and all negative coefficients, respectively. Then linear
superpositions of basic solutions involving only positive and
only negative coefficients and divided by C+ and C− (we
denote them as A+ and A−, respectively), have their χ2

measures smaller or equal to χ2
c , by Eq. (19). The final

solution can be identically written as Afin = C+A+ + C−A−,
and its χ2-measure is nothing but the two state version of
Eq. (19). Since the G[n,A] values are derived from spectral
density integrals they are smooth functions of n and random
point-to-point sign fluctuations of gn − G[n,A] are arising
predominantly from gn. Thus, the expectation is that χ+− is
positive, in which case

χ2 � (C2
+ + C2

−)χ2
c − 2C+|C−|χ+− � 1 + C̄2

2
χ2

c . (21)

In practice, sign positivity of the spectral density severely
restricts the possibility of having large |C−| and C̄ in the
final solution and |C−| tends to remain smaller than unity
automatically. Finally, Eq. (19) is only an upper bound, and
superpositions with C̄ as large as 2 may still have χ2 < χ2

c .
These considerations lead to an important possibility of

modifying the shape of the final solution in order to satisfy
additional criteria formulated outside of Eq. (1). The key
observation, and crucial difference to other NAC methods,
is that “conditional knowledge” protocols are invoked after
all basic solutions are determined, meaning that they remain
unbiased with respect to the input data.

As discussed in the Introduction, the most conservative
philosophy regarding sharp spectral features, such as peaks
and gaps, is to eliminate them if they are not warranted
by the quality of the input data. (Our method does allow
to answer the question whether a given sharp feature is
compatible with the input data, see below.) To implement the
idea, we formulate the problem of determining an appropriate
set of {cj } coefficients as a linear self-consistent optimization
problem closely following the consistent constraints method
of Ref. [3]. The objective function to be minimized consists of
several terms, O = ∑5

k=1 Ok , each being a quadratic positive-
definite form of cj . More terms can be added if necessary to
control higher-order derivatives, enforce expected asymptotic
behavior, etc.

To suppress large derivatives we consider the following
form:

O1 =
K∑

k=2

{
D2

k [A′(zk)]2 + B2
k [A′′(zk)]2

}
, (22)

where {zk} is the grid of points used to define the first
and second discrete derivatives of the function A(z). The
sets of coefficients Dk and Bk are adjusted under iterations
self-consistently in such a way that contributions of all zk

points to O1 are similar.
The unity-sum constraint on the sum of all coefficients in

the superposition is expressed as

O2 = U

⎛
⎝ J∑

j=1

cj − 1

⎞
⎠

2

, (23)

with a large constant U .
Since O1 + O2 does not constrain the amplitudes and signs

of all cj the minimization cannot proceed by matrix inversion.
To improve matrix properties, we add a “soft” penalty for large
deviations of cj from the equal-weight superposition

O3 =
J∑

j=1

(cj − 1/J )2 . (24)

To ensure that the spectral function is non-negative (with
high accuracy), we need z-dependent penalties (to be set self-
consistently) that suppress the development of large negative
fluctuations:

O4 =
K∑

k=1

QkA(zk)2 . (25)

Finally, we can introduce a penalty for the solution to
deviate from some “target” function (or “default model”)
AT (zk):

O5 =
K∑

k=1

Tk [A(zk) − AT (zk)]2 . (26)

The main purpose of O5 is to address subtle multipoint
correlations between allowed shapes: by forcing the solution
to be close to a certain target function one can monitor how
the solution starts developing additional sawtooth-instability-
related features or violates the unity-sum constraint. This
penalty is zero when preparing Afin in the absence of any
target function.

The self-consistent optimization protocol is as follows. We
start with cj = 1/J and compute A(zk). The initial sets of
coefficients in O1 are defined as Dk = D and Bk = D, where
D is some small positive constant (its initial value has no
effect on the final solution because penalties for derivatives
will be increased exponentially under iterations). Since the
positivity of A(z) is guaranteed in the initial state, we set
Qk = 0. After the quadratic form for the objective function O

is minimized, the new set of c-coefficients is used to define
a new solution A(z), penalties for derivatives are increased,
D → fD, Dk → f Dk , Bk → f Bk by some factor f > 1, and
then all penalties in O1 and O4 are adjusted self-consistently
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as follows:
(i) If Dk|A′(zk)| > D, we assign Dk = D/|A′(zk)|;
(ii) if Bk|A′′(zk)| > D, we assign Bk = D/|A′′(zk)|; and
(iii) if A(zk) < 0, we assign a large penalty suppressing the

amplitude of the solution at this point, Qk = Q, where Q is a
large constant; otherwise the value of Qk is decreased by two
orders of magnitude.

In this work, we use U = 106, Q = 106, and f = 2. This
sets the stage for the next iteration of the O-optimization
protocol.

Since the accuracy expression, Eq. (18), relies on the
substitution gn = ∑J

j=1 cjgn, it is crucial that the unity-sum
constraint is satisfied for all input data points,∣∣∣∣∣∣

J∑
j=1

cj − 1

∣∣∣∣∣∣ < ε, ε = min{|δn/gn|}n. (27)

This provides the required criterion for terminating iterations.
The final solution (9) is based on the last set of c coefficients
that satisfied the condition χ2 < χ2

c .
In the absence of the target objective O5, the procedure is

guaranteed to produce a final solution Afin(z) with smooth
behavior because our initial solution already satisfies all
requirements. The derivative objective is forcing A(z) to be
as smooth as possible within the subspace of fluctuations that
keep χ2 small.

With the help of O5 one can explore how the solution is
modified if one forces it to go through some set of points [3].
The simplest case would be to set Tk = T for some point zo

(where T is a large number; in this work T = 106) and zero
otherwise, and shift AT (zo) away from Afin(z0). The solution
going through the point AT (zo) is no longer guaranteed to be
smooth in the vicinity of zo and for large deviations from the
final solution will develop the sawtooth instability at zo.

The most interesting choices for zo are the minima and
maxima of the spectrum. Despite the fact that our protocol is
to erase sharp features not warranted by the input data quality,
we can still address questions such as “can this spectral peak (or
gap) be made narrower/higher/lower and by how much, before
the solution becomes unstable against developing secondary
features?” This question cannot be fully answered at the level
of the correlation matrix (8) because (i) spectral functions
have subtle multipoint correlations, and (ii) the notion of a
“typical” solution has no physical meaning in this context.
The only way to answer this question is to have access to a
large representative set of unbiased basic solutions.

The objective O5 offers a generic way of exploring
various possibilities for underlying features hidden behind the
accuracy of input data. Clearly, there are other alternatives for
addressing specific questions. For example, one can isolate a
spectral peak to some interval and compute the dispersion
dj of each basic solution j over this interval. Next, the
distribution function W (d) over all basic solutions is composed
and analyzed. If W (d) has a narrow region of support around
its average 〈d〉 value, then the peak width cannot significantly
deviate from 〈d〉. If W (d) is nonzero for d � 〈d〉 then one has
to conclude that the actual peak might be much narrower (and,
correspondingly, have a much higher amplitude) than what is
predicted by the typical smooth solution Afin.

III. MAXIMUM ENTROPY METHOD

Numerous NAC schemes are based on a totally different
philosophy and impose additional restrictions/penalties on
the allowed functional shapes of A(z) in the process of
solving Eq. (1). In other words, the search for solutions is
biased with “conditional knowledge” from the very beginning.
Historically, the Tikhonov-Phillips regularization method [19–
22] was the first to advocate this approach. Currently, the most
popular scheme of this type is the maximum entropy method
[4–9]. Other schemes worth mentioning are singular value
decomposition [23], non-negative least squares [24], stochastic
regularization [25], and averaging Padé approximants [26,27].
In the stochastic sampling method of Refs. [8,28–30], the
remaining bias is in the form of the predetermined grid
of frequency points, and the final solution is an average
over a certain “thermal” ensemble (see also Ref. [31] for a
further refinement). Fast effective modification of stochastic
optimization (FESOM) [32] also uses the predetermined grid
of frequency points.

We now briefly review the maximum entropy method [7],
which can be seen as a special case of stochastic sampling
methods [28,30]. Instead of minimizing χ2 one constructs a
functional Q = 1

2χ2 − αS[A], where S[A] is the “entropy”
term. The positive parameter α is a Lagrange multiplier that
can also be thought of as a “temperature” by analogy to
classical statistics (note that our definition of χ2 differs by
a factor of N from the standard MEM formulation; this is,
however, only a matter of convention). The entropy term S[A]
takes the form S[A] = − ∫

dzA(z) ln [A(z)/M(z)] with M(z)
being the default model. For very large values of α, the default
model term dominates in Q, reflecting our ignorance about
the system. For very low values of α, the “energy” term
χ2 dominates, reflecting the quality of the input data. For
intermediate values of α, one interpolates between these two
limits and obtains a trade-off between accuracy and smooth
behavior enforced by the default model. We are using Bryan’s
method [5] to implement the minimization procedure: the
final answer is obtained by averaging over all values of α

weighted with the respective a posteriori probability (we saw
however little difference between Bryan’s method and the
classical MEM in the examples below). In Bryan’s method,
a singular value decomposition is also applied, which reflects
the fact that the finite precision of storing floating point
numbers in combination with the poor conditioning of the
kernel puts severe limitations on the information that can
possibly be retrieved. One can hence reduce the search space
at no substantial loss; in practice, only 5 to 20 search directions
survive this step. The remaining minimization is performed by
the Levenberg-Marquadt algorithm. Bryan’s method is, after
25 years, still the de facto standard for inversion problems in
condensed matter physics. One of its most attractive features
is its speed: a few seconds on a laptop usually suffice to get
a reasonable answer provided good starting parameters (for
the grid, default model, and the range of α) have been found.
Nevertheless, the obtained answer (including the a posteriori
probability distributions) should always be carefully checked.

A major issue is that the solution may strongly depend on
the default model. (Note that the error bars which Ref. [7]
calculates, are conditional on the default model and do hence
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not reflect variability with respect to different default models.)
A practitioner usually wants to explore different (classes of)
default models in order to get an idea of the robustness of the
obtained answer, and sometimes to examine if lower values
of χ2 can be found for other solutions which are equally
smooth. In this regard, all these solutions are reminiscent of
basic solutions discussed above, but the probability density
of solutions is different due to the difference in protocols:
in the spirit of MEM one does not want default models that
are too similar or default models that are too close to the
obtained answer (an iteration where the new default model is
the answer from a previous run, is considered a self-defeating
strategy). This raises an important question of what strategy
should be used to produce a representative set of basic solutions
within MEM. One possibility is stochastic exploration of the
configuration space of default models.

IV. PERFORMANCE TESTS

We perform blind tests of our method for two different
kernels. The function g(τn) was prepared from equation (1) and
uncorrelated Gaussian noise was afterwards added to g(τn).

A. Resolving the width of the high-energy peak

In this section, we assume that the spectral function A(z) is
identically equal to zero at z < 0, non-negative at z > 0, and
the kernel is K(τn,z) = e−zτn , see Eq. (2).

The spectral function for tests 1 and 2 (shown in Fig. 1)
contains two peaks of finite width and has the following form
(up to a normalization constant):

A(z) = c1

σ1
exp

[
− (z − z1)2

2σ 2
1

]
+ c2

σ2
exp

[
− (z − z2)2

2σ 2
2

]
,

(28)

where z1 = 0.74, c1 = 0.62, σ1 = 0.12, z2 = 2.93, c2 = 0.41,
and σ2 = 0.064. The spectrum is normalized to unity before
adding uncorrelated Gaussian noise with relative standard
deviation σ = 10−3 for test 1 and σ = 10−5 for test 2.

In the spectrum for test 3, the low-frequency peak is not a
Gaussian but a δ-function with the same position and weight,

A(z) =
√

2π c1 δ(z − z1) + c2

σ2
exp

[
− (z − z2)2

2σ 2
2

]
, (29)

where z1 = 0.74, c1 = 0.62, z2 = 2.93, c2 = 0.41, and σ2 =
0.064. The relative standard deviation of the uncorrelated
Gaussian noise is σ = 10−5.

The challenge for NAC is to judge whether one can resolve
the width of the high-frequency peak. To this end we consider
two possible setups for MEM and SOCC. In the standard
setup we assume a flat default model for MEM and the
SOCC procedure of generating smooth solutions as described
in Sec. II B in the absence of the default model penalty O5.
To study possible deformations of the second peak, we then
introduce a narrow-peak default model in MEM and rerun
the simulation, or, in the case SOCC, we insist that the
final solution goes through a much higher point at the peak
maximum. The width of the high-frequency peak is deemed
impossible to resolve if one can reduce it by a factor of two,
while the spectrum remains well-defined.
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0.5 1.00
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3 Possible to
stretch

z

A(z)

FIG. 3. Results for test 1, featuring two peaks of finite width
with noise level 10−3. Shown is the comparison between the actual
spectrum (red solid line), the smooth SOCC spectrum (blue short-
dashed line), and the pulled-up high-energy peak SOCC solution
(green dashed line). The error bars for the smooth SOCC spectrum
{σm} are determined from Eq. (7).

We note that better reproducibility of the low-frequency
peak is a particular property of the kernel (2). For example,
for the analytic continuation of the current-current correlation
function to the optical conductivity, the main challenge is to
resolve the spectral density at zero frequency [33].

Analysis of test 1 shows that the low-energy peak can be
well resolved by both SOCC and MEM (see the insets in
Figs. 3 and 4, respectively). On the other hand, the high-energy
peak width is severely overestimated by both methods in the
standard setup (Figs. 3 and 4). However, both methods allow
one to pull the high-frequency peak up at least by a factor of
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3A(z) Possible to
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FIG. 4. Results for test 1, featuring two peaks of finite width
with noise level 10−3. Shown is the comparison between the actual
spectrum (red solid line), the MEM spectrum with a flat default model
(blue short dashed line), and the MEM spectrum with a pulled-up
high-energy peak in the default model (green dashed line).
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FIG. 5. Distribution of the second moment for the high-frequency
peak in test 1 (short-dashed black line), test 2 (dashed blue line), and
test 3 (red solid line), among all basic solutions. The vertical line
shows the second moment σ0 = 0.064 of the original spectrum.

four above the actual spectrum. Specifically, if the second peak
in the MEM default model is set to be much narrower than the
actual one, then MEM produces an answer of the same width as
this default model. Similarly, the superposition of basic SOCC
solutions can be forced to have a much higher amplitude at
the second peak maximum by employing an appropriate target
function. In SOCC, one may also see direct evidence that the
second peak width is questionable by considering statistics of
the second moments σ for the high-frequency peak among all
basic solutions. The corresponding distribution is presented
in Fig. 5. The probability to find a solution with a vanishing
width (σ → 0) for the high-frequency peak does not go to
zero for test 1 and, hence, the imaginary-time data for g(τn)
(within their accuracy) do not rule out a δ-function for the
high-frequency peak.

Further insight is provided by test 2, which differs from
test 1 only in the noise level, which is reduced by two orders
of magnitude. One readily observes that, in contrast to test
1, the standard setups of SOCC and MEM give a very good
description of the high-frequency peak (Figs. 6 and 7). Does
this mean that one can be absolutely sure that the width of the
peak is finite? The answer is no, because one can still easily pull
the peak up by a factor of four. Moreover, SOCC analysis of
second moments (see Fig. 5) demonstrates that a δ-functional
shaped second peak is still a possibility, despite improved error
bars. In these examples, tighter error bars allow only to reduce
the upper bound on the width of the second peak. Much smaller
error bars, which are unrealistic for Monte Carlo simulations
of g(τn), would be required to controllably resolve the actual
width of the second peak.

Test 3 has the same Gaussian noise as test 2 but the low-
frequency peak is now replaced by a δ-function, see Eq. (29).
This crucially changes the results. Now the high-frequency
peak is well reproduced not only in the standard setup of
SOCC and MEM but also in attempts to pull the solution up,
see Figs. 8 and 9, respectively. Stability of results for the second
peak width is also evident in the probability distribution for the
second moment shown in Fig. 5. The distribution is peaked at
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A(z)

FIG. 6. Results for test 2, featuring two peaks of finite width
with noise level 10−5. Shown is the comparison between the actual
spectrum (red solid line) and the smooth SOCC spectrum (blue
short-dashed line), the pulled-up high-energy peak SOCC solution
(green dashed line). The error bars for smooth SOCC spectrum {σm}
determined from Eq. (7).

the correct value σ2 = 0.064 and is rather narrow, indicating
that a narrower peak would compromise the error bars.

We emphasize that the success of resolving the width of
the second peak in test 3 is due to a combination of two
circumstances: the small width of the first peak and the high
accuracy of the input data. To see this, it is instructive to
consider the physical example of the Fermi polaron (see
Sec. V), where the width of the first peak is very small, but the
accuracy of the input data is significantly lower than in test 3.
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FIG. 7. Results for test 2, featuring two peaks of finite width
with noise level 10−5. Shown is the comparison between the actual
spectrum (red solid line), MEM with a flat default model (blue short-
dashed line), and MEM with a pulled-up high-energy peak in the
default model (green dashed line).
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FIG. 8. Results for test 3, characterized by a δ-function at low
frequency and a peak of finite width at high frequency with noise level
10−5. Shown is the comparison between the actual spectrum (red solid
line), the smooth SOCC spectrum (blue short-dashed line), and the
maximally pulled-up high-energy peak SOCC solution (green dashed
line). The error bars for smooth SOCC spectrum {σm} determined
from Eq. (7).

B. Fermi distribution kernel

Test 4 analyzes the possibility of resolving spectral densities
at the Fermi level from the analytic continuation of g(τ ). Here,
the spectrum A(z) is defined in the range −∞ < z < ∞ and
the kernel is K(τn,z) = exp{−zτn}/(1 + exp{−zβ}) with β =
6. The uncorrelated Gaussian noise is added at the 10−5 level.
One can see in Figs. 10 and 11 that both SOCC and MEM
give a good description of the spectral function in the vicinity
of the chemical potential (at z = 0). Also, the height of the
middle peak at near zero frequency cannot be significantly
pulled up without distorting the rest of spectrum. Specifically
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Z

A(z) Impossible to stretch
beyond this point

FIG. 9. Results for test 3, characterized by a δ-function at low
frequency and a peak of finite width at high frequency with noise
level 10−5. Shown is the comparison between the actual spectrum
(red solid line), the MEM spectrum with a flat default model (blue
short-dashed line), and the MEM spectrum with a double Gaussian
default model where the second peak is maximally pulled up (green
dashed line).
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FIG. 10. Results for test 4 with a Fermi distribution kernel and
noise level 10−5. Shown is the comparison between the actual
spectrum (red solid line), the smooth SOCC spectrum (blue short-
dashed line), and the maximally pulled up central peak SOCC solution
(dashed green line). The logarithmic plot in the inset highlights the
comparison of low-intensity features. The error bars for the smooth
SOCC spectrum {σm} are determined from Eq. (7).

for MEM, trying different default models with one, two, or
three Gaussian peaks did not improve the answer; in all cases
trying to find narrower peaks resulted in secondary oscillations
reminiscent of numerical instabilities. We conclude that the
fermionic spectrum can be restored for the given parameters
with high quality.

V. APPLICATION OF SOCC TO THE FERMI
POLARON PROBLEM

We now test the SOCC method on a physical system—the
resonant Fermi polaron (a spin-down fermion in a sea of
noninteracting spin-up fermions) [34,35]; here in three dimen-
sions and for equal mass of spin-up and spin-down particles.
The coupling between the polaron and its environment is
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FIG. 11. Results for test 4 with a Fermi distribution kernel and
noise level 10−5. Shown is the comparison between the actual
spectrum (red solid line) and the MEM spectrum in the default setup
(blue dashed line).
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characterized by a single dimensionless parameter kF a, where
kF is the Fermi wave vector and a the s-wave scattering
length. Here we examine a typical situation at kF a = 0.8
when the polaron state at zero momentum is metastable but
has a very long relaxation time, implying that the lowest peak
in the polaron spectral function is a sharp resonance nearly
indistinguishable from a δ-function.

The imaginary-time polaron Green’s function at zero
temperature and zero momentum, gn = g(τn), was obtained
with diagrammatic Monte Carlo, see Refs. [1,13,36]. We are
able to achieve very high precision in our results for g(τ )
with a relative error as low as O(10−7 − 10−9) at τ close to
zero,O(10−4 − 10−3) around τ = 1/εF (where εF is the Fermi
energy of spin-up fermions) and a few percent at the largest
τ considered for the analytic continuation. The kernel at zero
temperature is K(τn,z) = e−zτn .

The polaron spectral function features two peaks. The
position and weight of the first polaron peak are fixed with
high accuracy by the asymptotic decay of the Green’s function,
−g(τ → ∞) → Z1e

−E1τ . Our data at large εF τn can be fitted
to a single exponential (within error bars) indicating that the
polaron remains a well-defined quasiparticle in this param-
eter range. The particle-hole continuum emerges at higher
frequencies as a second broad peak. A key question we want
to address here is its spectral width. This has been discussed
in the context of the repulsive polaron state [11,14–17].
In order for it to qualify to be a well-defined quasiparticle,
the peak width needs to be sufficiently narrow (much smaller
than the Fermi energy, corresponding to a sufficiently long life
time). Thus resolving the width accurately is very important
to correctly interpret this spectrum. Note that this spectrum
has the same general features as the spectrum for test 1 in the
previous section.

When SOCC is used to produce a smooth solution the
second peak emerges as a broad spectral feature. If this was
indeed the case, the metastable repulsive polaron picture would
be inapplicable for kF a = 0.8. However, the same set of basic
solutions can be optimized to have a much narrower peak,
see Fig. 12, implying that a well-defined repulsive polaron
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A(z)

FIG. 12. Spectral density of the resonant Fermi polaron for
kF a = 0.8 at zero momentum and zero temperature. The smooth
SOCC spectrum with the second peak dispersion σ2 = 0.48 is shown
by the blue short dashed line. However, a much narrower solution
for the second peak with σ2 = 0.12 (green dashed line) can also be
obtained from the same set of basic solutions. The MEM spectra with
broad and narrow second peaks are shown by solid lines.

quasiparticle cannot be ruled out. Likewise, solutions with
broad and narrow second peaks emerge as viable competing
alternatives in MEM. Given that the second peak dispersion
can be reduced by a factor of four without compromising the
accuracy of the final solution, we have to conclude that the
quality of the input data is insufficient to determine the actual
width.

VI. CONCLUSIONS

The most challenging aspect of numerical analytic continu-
ation is not the algorithm of finding a stable (smooth) solution
consistent with the input data, but the protocol of assessing
its accuracy and unambiguity. We have implemented such
a protocol based on the method of stochastic optimization
with consistent constraints and demonstrated how a similar
strategy can be followed with the maximum entropy method
by exploring the space of default models. Irrespective of the
method, the procedure has to deal with either integrals of the
spectral function (rather than the function itself) and/or certain
a priori and a posteriori constraints consistent with the error
bars on the input data. We do not suggest that the SOCC method
is “better” or “superior” to MEM; rather, we stress that a
specific solution is (speaking generally) biased systematically
and its error bars cannot be quantified by considering small
Gaussian fluctuations. The proper treatment of the analytic
continuation problem should be based on an analysis dealing
with a large representative set of solutions, and currently only
the SOCC method is “complete” in this regard.

It is important to distinguish between two cases. The first
(simplest) case is when all physically meaningful solutions do
not differ substantially, upon possible smearing of unimportant
(below the resolution) fine details of the otherwise smooth
spectral function. The second case, exemplified by the spectral
function in Fig. 1, is when a piece of important physical
information is inevitably lost. In the first case, a reasonable
characterization of uncertainties can be achieved by coarse-
graining, like, e.g., Eq. (3). In the second case, one has to
employ a more elaborate approach to reveal the different
possible physical solutions that do not compromise the error
bars of the input data.

Much of our attention has been paid to the protocol of
treating the second case. We have shown how it can be handled
with SOCC and modified MEM. With MEM one has to explore
various default models and resulting solutions that remain
consistent with input error bars. A useful feature of the SOCC
approach is that such an analysis—and, more generally, the ap-
plication of all possible consistent constraints—can be imple-
mented at the post-processing stage using a representative set
of “basic” solutions generated by the stochastic-optimization
protocol. The linearity of the problem (1) is crucial here, as
it guarantees that any superposition of basic solutions with
non-negative weights is also a solution to Eq. (1) within the
same or better level of accuracy. Even if the superposition
coefficients are allowed to be negative, the procedure typically
keeps the accuracy of the final solution at the level of basic
solutions. This allows one to implement consistent constraints
by choosing the superposition coefficients to minimize the
corresponding objective function.
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M. Köhl, Nature (London) 485, 619 (2012).

[13] O. Goulko, A. S. Mishchenko, N. Prokof’ev, and B Svistunov,
Phys. Rev. A 94, 051605 (2016).

[14] M. Parish and J. Levinsen, Phys. Rev. B 94, 184303 (2016).
[15] K. Kamikado, T. Kanazawa, and S. Uchino, Phys. Rev. B 94,

184303 (2016).
[16] R. Schmidt and T. Enss, Phys. Rev. A 83, 063620 (2011).
[17] P. Massignan and G. M. Bruun, Eur. Phys. J. D 65, 83 (2011).
[18] Such a statistical treatment of multiple independent solutions

was first suggested in the fast modification of SOM method,
see Ref. [32].

[19] A. N. Tikhonoff, Dokl. Akad. Nauk (SSSR) 39, 195 (1943); 151,
501 (1963) [Sov. Math. 4, 1035 (1963)].

[20] D. L. Phillips, J. ACM 9, 84 (1962).
[21] A. N. Tikhonoff and V. Y. Arsenin, Solutions of Ill-posed

Problems (Winston and Sons, Washington, 1977).
[22] A. N. Tikhonov, A. Goncharsky, V. V. Stepanov, and A.

Yagola, Numerical Methods for the Solution of Ill-posed
Problems (Springer-Science+Business Media, B. V., Moscow,
1995).

[23] C. E. Creffield, E. G. Klepfish, E. R. Pike, and S. Sarkar,
Phys. Rev. Lett. 75, 517 (1995).

[24] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems
(Society for Industrial and Applied Mathematics, Philadelphia,
1995).

[25] I. S. Krivenko and A. N. Rubtsov, JETP Lett. 94, 768
(2012).
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