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A modal expansion approach is developed and employed to investigate and elucidate the nonlinear mechanism
behind the multistability and formation of coupled multimode polariton solitons in microcavity wires. With pump
switched on and realistic dissipation parameters, truncating the expansion up to the second-order wire mode, our
model predicts two distinct coupled soliton branches: stable and unstable. Modulational stability of the stationary
homogeneous solution and soliton branches stability are studied. Our simplified 1D model is in remarkably
good agreement with the full 2D mean-field Gross-Pitaevskii model, reproducing correctly the soliton existence
domain upon variation of pump amplitude and the onset of multistability.
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I. INTRODUCTION

Future advances in optical quantum information processing
will require development of ‘on chip’ capabilities. Integrated
optical technologies for quantum computing based on linear
optics have been under active development in the recent
decade [1]. However, nonlinear optical interactions ‘on a chip’
are largely unexplored and may play a key role.

Nonlinear interactions with microcavity exciton-polaritons
(entangled light-matter states that result from strong coupling
of the quantum well exciton to the microcavity photons) are
particularly attractive candidate for physical implementation
of polaritonic integrated circuits ‘on a chip’ [2,3], owing to
a number of advantages intrinsic to this system, compared
to bare photons and excitons alone. Due to the excitonic
component, exciton-polaritons exhibit weaker diffraction than
the photons and can be confined within structures with
submicron size. The strong interparticle interactions result in
very strong and fast low-threshold optical nonlinearities [4]
arising from parametric scattering of exciton-polaritons [5,6],
driven by Coulomb exchange interaction and phase-space
filling [7]. On the other hand, owing to their photon component,
exciton-polaritons are extremely light particles, which allows
build-up of many-body coherent effects such as Bose-Einstein
condensation (BEC) [8], suggesting the possibility of creating
a polariton condensate at high temperatures.

Recently a number of nonlinear self-localisation phenom-
ena with microcavity polaritons in strongly-coupled planar
quantum well semiconductor microcavities have been demon-
strated, such as bright [9] and dark hydrodynamic polariton
solitons [10], superfluidity [11], pattern formation [12,13],
vortices [14,15] and self-organisation of vortices and anti-
vortices in lattices [16,17]. In open dissipative systems, when
the dispersion and decay of the polariton wave packets is
balanced by the nonlinearity and pump, a nonlinear mode
that travels undistorted forms, known as polariton soliton.
We note that there exists a quantum-classical correspondence
between the collective fluid dynamics of a Bose-Einstein
polariton condensate and a polariton soliton. Polariton BEC
is a spontaneous quantum phase transition driven by quantum
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fluctuations, resulting in momentum space polariton locali-
sation, as opposed to dissipative solitons that are classical
localized structures in real space. These classical localized
entities may be formed by different mechanisms, such as
resonant coherent pump and a superimposed seed (or random
classical noise) stimulation in the optical parametric triggered
regime, by non-resonant incoherent pump excitation in the
presence of a saturable absorber [18], or inhomogeneous
pumps and/or trapping potentials [19]. For instance, it has
been recently demonstrated [18] that dissipative polariton
solitons may exist both in the presence of Kerr-like (para-
metric polariton) nonlinearity and in its absence. In the
quantum case, the exciton-polariton condensate flows without
friction and thus can be viewed as a ‘quantum soliton’.
In what follows, we are going to consider dissipative soli-
tons in the coherent triggered optical parametric oscillator
regime.

Optical bistability is yet another manifestation of mi-
crocavity polariton nonlinearity. When the excitation laser
is blue-detuned with respect to the lower polariton (LP)
branch the response of the excited mode becomes bistable
in a finite range of excitation powers. When sweeping the
excitation power forward and backward, an hysteresis curve
is observed that arises from Kerr-like nonlinearity induced by
polariton-polariton interactions [20]. The optical polarization
(spinor) multistability of microcavity polaritons has been
extensively studied both theoretically [21–24] and experi-
mentally [25–29]. It has been theoretically demonstrated [30]
that multistability in a multicomponent polaritonic fluid can
be realized either by two coherent pumps, or considering
the polarization degree of freedom. Polariton bistability
associated with parametric scattering processes under inco-
herent pumping has been demonstrated theoretically [31] and
experimentally [32].

When two or more stationary stable states coexist, a
different kind of optical multistability – spatial multistability
– takes place, characterized by specific transverse spatial
profiles, with one-to-one correspondence to each of the stable
states of the optical multistability curve. This phenomenon has
been initially discussed in the context of mode competition,
transverse laser dynamics and pattern formation in a laser cav-
ity [33]. Recently spatial multistability has been demonstrated
experimentally using 3D-confined 0-dimensional microcavity
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exciton-polaritons in patterned mesas (polariton quantum
boxes) [34]. It has been shown that the spatial profile of the
transmitted beam is determined by the lateral confinement of
the optical modes. This multimode interacting system has been
described by an extension to multimodes of the mean-field
spinor Gross-Pitaevskii equations [35] in a exciton-photon
basis.

In a recent work [36] we found composite ’multimode’
polariton solitons in 1D microcavity wires [37], particularly
promising building blocks for planar polaritonic integrated
circuits, that result from the superposition of the fundamental
and multiple higher-order co-existing transverse cavity modes.
Unlike single-mode polariton soliton solutions previously
found in planar semiconductor microcavities that are stable
within the bistability domain, the multimode solitons exhibit
more complex multistable behavior. Polariton soliton forma-
tion is based on self-localisation phenomena triggered by
modulational instabilities and in this respect, it resembles the
pattern formation due to transverse instability in a resonantly
pumped planar microcavity, discussed in [38,39]. The spatial
multistability does not involve polariton spin degree of
freedom and differs from both the polarization multistability,
and the spatial multistability described in [34]. While there
is one-to-one correspondence between the transverse modes
in a 0-D polariton quantum box and the stable states in
the multistability curve in [34], there is no such one-to-one
correspondence between the transverse modes and the stable
states (branches) in the multistability curve of a 1D microcavity
wire: the polariton mode gradually reshapes and evolves
when sweeping the pump amplitude along a given stable
branch.

In this study, we shall focus on the bright multimode
polariton solitons and the associated multistable behavior.
We shall show that this peculiar type spatial multistability
and the multimode polariton solitons, that can be supported
by it, requires development of a multimode model, similar
to [34]. The 2D mean-field Gross-Pitaevskii is a generic model,
which encapsulates the correct dispersion of all polaritonic
modes in the wire, however it conceals all the details of
inter-modal nonlinear interactions within the “convoluted
envelope” form. In particular, it fails to explain the observed
spatial multistability, the multimode polariton soliton domains
of existence and the peculiar non-monotonous soliton velocity
behavior in microcavity wires with different widths [40].
Therefore, the 2D model does not provide important pa-
rameters that can be externally controlled and modified to
achieve control over the multimode interactions and polariton
dynamics.

In order to get a deeper insight into the soliton solutions
we need to go beyond the two-mode description within the
driven-dissipative Gross-Pitaevskii equations. We develop a
modal expansion method, expanding the nonlinear polariton
modes in the basis of free polariton modes. The multimode
analysis helps to investigate in detail conditions, dynamics
and stability of coupled soliton formation and identify reliably
ranges of soliton existence.

The 1D reduced coupled-mode model, that we develop
in this paper, provides fundamental understanding of the
nonlinear mechanisms behind these interactions and means for
control e.g. through the polariton dispersion. Understanding

and exercising such control holds benefits for the fabrication
technologies targeting novel polaritonic integrated devices
based on structured microcavities [37,41]. Furthermore, our
approach permits to describe some soliton branches, such
as multihumped soliton branches, which are otherwise hard
to find by a straightforward numerical propagation in the
2D model. In addition, finding and analyzing numerically
exact solitons as stationary solutions, e.g. by Newton-Raphson
method, also proves to be a hard task within the 2D model.
For such tasks, our derived coupled-modes model offers a
significant advantage.

Another motivation for the present work comes from the
generally unsolved problem of understanding nonlinear pulse
propagation in multimode systems, such as optical fibres,
nonlinear optical and polaritonic waveguides. The latter has
become a topic of considerable interest in view of pushing the
inherent limits for information transmission of the communi-
cation technologies by space-division multiplexing, exploiting
multiple spatial transverse mode channels, and high-speed
applications, such as all-optical switching using ultrashort high
peak power pulses. Several experiments have demonstrated
that there is also significant potential for new spatial and
spectral nonlinear effects in multimode fibers [42,43] and
nonlinear waveguides [44].

Self-localisation optical phenomena in multimode systems
are possible as a result of counter-balancing of a com-
bination of dispersive effects: (i) material dispersion, due
to frequency-dependent dielectric response; (ii) waveguide
modes dispersion; (iii) variation of the group velocity of
each waveguide mode, and nonlinearity. For instance in
optical fibres, ‘complex envelope’ multimode solitons have
been theoretically predicted in the early 80s [45–47] and
only very recently experimentally studied [48,49]. Nonlinear
localization effects such as ‘soliton trapping’ [50] has recently
been theoretically demonstrated whereby two solitons in
different modes shift their spectra and travel at the same
speed in spite of considerable intermodal differential group
delay between them. For third-order nonlinear processes such
as four-photon mixing, which are not automatically phase
matched, it is possible to use the dispersion of the waveguide
modes to compensate for material group dispersion in such a
way as to achieve phase matching. This has been demonstrated
by the observation of four-photon mixing in a multimode
fibre [51]. In multimode systems the dominant dispersive
effect originates from the difference in the group velocity of
each excited mode. Under suitable conditions, the different
modes interact among themselves in such a way as to give
rise to a self-localization mechanism, due to nonresonant (in-
termodal cross-phase modulation through Kerr nonlinearity)
and/or resonant (four-wave mixing) nonlinearities [50] that
prevents the pulse from broadening as a consequence of modal
dispersion [47].

In this work we show that a similar nonlinear self-
confinement mechanism takes place when a light-matter
wave polariton soliton, rather than an optical soliton, prop-
agates in a microcavity wire. Self-localized light-matter
wave packets in multimode polariton systems result from
compensation of the polariton modes dispersion and group
velocity dispersion of each cavity mode with nonlinearity.
A new nonlinearity component is the intermodal nonlinear
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coupling that arises from intermodal cross-phase modulation
(through Kerr nonlinearity) and polariton parametric scattering
(polariton four-wave mixing). Hence, multimode polariton
solitons can be viewed as resulting from distribution of the
excitation energy over multiple spatial modes and consisting
of synchronized, nondispersive pulses in multiple spatial
modes, interacting via parametric polariton nonlinearity. Here,
the dominant dispersive effect originates from the differ-
ence in the group velocity of each excited cavity polariton
mode.

On the other hand, polariton propagation in multimode
systems is an interplay of complex nonlinear spatiotemporal
phenomena and waveguide imperfections: The pulse effective
coherence length is reduced from the strictly infinite coherence
length of perfect phase matching by waveguide imperfections.
In a parametric scattering process the pump can be either
redistributed between several different polariton modes and
the Stokes signal appears in one of these modes while
anti-Stokes appears in a different mode, or the pump photons
can be in the same mode. These two cases are referred to
as “mixed-mode pump” and “single-mode pump” processes.
It has been demonstrated that mixed-mode pump processes
result in pulses that have much longer coherence lengths
than single-mode pump processes [52]. This is a key reason
for the interest in multimode polariton solitons, as they
are expected to be more robust and able to propagate over
much longer distances without being destroyed in a realistic
waveguide with imperfections. Furthermore, as has been
pointed out in Ref. [49], they are expected to exhibit novel
spatiotemporal dynamics and, like single-mode solitons, may
provide a convenient framework for understanding more com-
plex nonlinear phenomena in confined multimode polariton
systems.

The paper is organized as follows: We derive the modal
equations, starting from the mean-field driven-dissipative
Gross-Pitaevskii model, compute the multistability curves
with parameters taken from Ref. [36], and perform stability
analysis of the stationary homogeneous nonlinear solution
in Sec. II. The coupled polariton soliton branches are com-
puted in Sec. III for nonzero pump and realistic dissipation.
Stability analysis of the soliton solutions is performed,
identifying stable and unstable soliton branches. In Sec. IV
we compare our 1D reduced model with the full model
by reconstructing the 2D soliton from the stable soliton

profiles of the first two even modes and by projecting the
full-model solutions onto these modes. Finally, we compare
the domain of soliton existence predicted from our reduced
model with the one inferred from the full 2D mean-field
model and show remarkably good agreement between the
two.

II. MODAL EQUATIONS

The starting point is our mean-field driven-dissipative
Gross-Pitaevskii model [36] in a tilted along the wire reference
frame, in which, for the sake of generality, we introduce
inclined at an angle α to the channel pump with in-plane wave
vector components, qx = q cos(α) qy = q sin(α) [Fig. 1(a)]:

i∂tE + [
(∂x + iqx)2 + ∂2

y

]
E + [iγc + δc + U (y)]E

+�R(y)ψ = iEpeiqyy−i�t , (1)

i∂t	 + (iγe + δe)ψ + �R(y)E = |ψ |2ψ, (2)

where E and 	 are the averages of the photon and exciton
creation or annihilation operators, the normalization is such
that (ωR/g)|E|2 and (ωR/g)|	|2 are the photon and exciton
numbers per unit area, g is the strength of exciton-exciton
interaction [9], Ep is the normalized pump amplitude, ωR is
the Rabi frequency in a planar homogeneous cavity, and time
is measured in the units of T = 1/ωR . The unit length, L =√

�/(2mcωR), is determined by the effective cavity photon
mass mc; δe,δc, and the pump frequency � are detunings from
a reference frequency. The lateral confinement in the cavity
plane (along the y axis) is described by an effective potential
U (y) in the photonic component and a spatially confined
normalized coupling �R(y):

U (y) = Ubg

[
1 − e−(2y/w)8]

, �R(y) = e−(2y/w)8
, (3)

where w is the dimensionless wire width. As demonstrated in
our previous work [36], the above super-Gaussian potentials
give an accurate description of the dispersion of the lowest five
guided modes of the wire.

We describe the multistable behavior of homogeneous solu-
tions, and the apparent multimode structure of the numerically
observed solitons in Ref. [36], as the result of interplay
between the external pump, loss, and nonlinear interactions
between multiple guided modes of the wire. In other words,

FIG. 1. (a) Scheme of the microcavity polaritonic wire structure with a tilted in-plane cw pump; (b) linear polariton dispersion with
parabolic fit (dashed curves): All parameters are as in Ref. [36], and coefficients for parabolic fits are listed in Appendix B, Eqs. (B1)–(B3).
(c) Modal profiles for q = 1.4237 (which corresponds to pump inclination at 20 degrees). All modes are normalized such that Nj = 1 in
Eq. (6). Dashed curve indicates scaled profile of the potential �R(y).
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we treat nonlinearity, pump, and dissipation as perturbations
and expand the solutions in free polariton modes with slowly
varying amplitudes Fj :

[E,ψ]T = �x =
∑

j

∫ [
s

1

Nj

Fj (t,k)�xj (y,k) + s3 �Bj (t,y,k)

+O(s5)

]
eikx−iωj (k)t dk. (4)

Here s is a dummy small parameter, we assume ∂tF ∼ sF ∼
γc,e ∼ |Ep| � δc,eF , the specific hierarchy of perturbation
terms in the above ansatz is justified by solving consistently
and successively the resulting equations in different orders of
the small parameter s. We introduce optional normalization
factors Nj to be specified below, �Bj describe corrections

to the free polariton mode profiles induced by the non-
linearity. In the lowest order O(s) the eigenvalue problem
for free polariton modes �xj = [xje,xjψ ]T of the wire is
obtained:[−(qx + k)2 + ∂2

y + δc + U (y) + ω �R(y)
�R(y) δe + ω

]
�x = L̂(k)�x = 0.

(5)

Solving this eigenvalue problem we obtain a discrete set
of modes and the corresponding frequencies ω = ωj (k)
[Fig. 1(b)]. It is convenient to normalize modes as:

N2
j =

∫
|�xj |2dy =

∫
(|xje|2 + |xjψ |2)dy. (6)

In the next order (s3) the following set of equations is obtained:∑
j

{
i

1

Nj

∂tFj �xj + L̂(k) �Bj + i
1

Nj

[
γcxje

γexjψ

]
Fj

}
e−iωj (k)t = �R

�R =
[

iδ(k)Epeiqyy−i�t∑
lmn

∫∫
dk1dk2

{
xlψx∗

mψxnψ

NlNmNn
Fl(k1)F ∗

m(k2)Fn(k3)e−iωl t+iωmt−iωnt
}]

, (7)

k3 = k − k1 + k2.

where in the r.h.s. δ(k) stands for Dirac delta function,
ωl = ωl(k1), ωm = ωm(k2), ωn = ωn(k3). Projecting these
equations onto �xj , using the self-adjoint properties of the
operator L̂(k), and performing inverse Fourier transform, we
finally obtain the modal equations for amplitudes Qj (x,t) =
Fj (k,t)e−iωj (k)t+i�t :

i∂tQj + (� − ωj0 + iγ0)Qj + iωj1∂xQj + ωj2

2
∂2
xQj

=
∑
lmn

�lmn,jQlQ
∗
mQn + ihj , (8)

where ωjl = dlωk/dkl is the Taylor expansion coefficients of
the dispersion functions ωj (k), assuming relatively narrow-
band excitations only terms up to ωj2 are retained [see dashed
curves in Fig. 1(b)], and the following set of parameters is
introduced:

hj = 1

Nj

∫
Epeiqyyx∗

je(y)dy, (9)

γj = 1

N2
j

∫
[γc|xje|2 + γe|xjψ |2]dy, (10)

�lmn,j = 1

NjNlNmNn

∫
xlψx∗

mψxnψx∗
jψdy. (11)

The physical meaning of the above parameters is as follows: hj

is the pump projection onto j th eigenmode; γj are normalized
dissipation parameters, and �lmn,j are the intermodal nonlinear
coupling coefficients.

Below we shall focus on the case when the pump inclination
is aligned with the orientation of the wire, i.e., α = 0. In this
case, only symmetric eigenmodes (i.e., j = 0,2,4, . . . ) will be

excited by the homogeneous pump (see Appendices A and B).
Choosing parameters of the model as in Ref. [36], we calculate
dispersion and profiles of the linear modes [Figs. 1(b) and 1(c)]
and hence obtain numerical values of all the parameters in the
modal Eqs. (8), given in Appendix B.

To check the validity of our approach, in Fig. 2 the mul-
tistability of the homogeneous solution is illustrated for two
different frequencies �: below and above the eigenfrequency
ω20 (Appendix B). The stationary homogeneous solution of

FIG. 2. Bi- and multistability of the homogeneous solution for
γ = 0.01, � = −0.1 (left column) and � = 0 (right column), cf.
Figs. 2(b) and 2(c) in Ref. [36]. Solution in terms of Q0 and Q2 is
shown in the top row, and the corresponding conversion in terms of the
full 	 field is illustrated in the bottom row (	-norm, N = ∫ |	|2dy).
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Eqs. (8) was computed by setting all derivatives in x coordinate
to zero and considering only two lowest modes Q0 and Q2 (see
top row in Fig. 2). It was then converted to the full E and 	

fields according to Eq. (4) and compared against stationary
solutions of the full model in Eqs. (1) and (2). Transition from
bi- to multistable behavior upon variation of the detuning �

is observed as in Figs. 2(b) and 2(c) in Ref. [36]. Discrepancy
between the reduced and the full model is noticeable at
high amplitudes, where inclusion of higher order modes
(Q4,Q6, . . . ) is necessary. Also, in this regime nonlinear
corrections to the modal amplitudes (self-defocusing) become
noticeable, and therefore calculations of �Bj (y) and the account
of higher-order terms in the perturbation expansion may be
required.

We perform next stability analysis of the multistability
curves, obtained for the stationary homogeneous nonlinear
solution (see Appendix C) for two pump detunings � = −0.1
and � = 0 and a realistic dissipation parameter γ = 0.04. This
step is necessary as it provides background for analysis of the
soliton solutions, which we shall compute in the following
section.

III. COUPLED SOLITON FAMILIES WITH NONZERO
PUMP AND DISSIPATION

In this section we calculate the coupled soliton branches as
a function of the pump amplitude for a dissipation parameter
γ = 0.04 and detunings � = −0.1 and � = 0. We solve
self-consistently Eqs. (8) for the (Q0,Q2) coupled soliton
in a moving with the soliton reference frame, introducing
additional unknown parameter: the soliton velocity u. Two
types of stable and unstable solitons are found, which we will
refer to as type 1 and 2 (soliton branch stability investigated
below).

The stable soliton type 1 branch is found from the final
evolved profiles of the time-dependent equations [Eqs. (1)
and (2)], solved by Fourier split-step method (see Ref. [36]),
taken as initial guess for the Newton-Raphson method. The
unstable type 2 soliton branch is obtained numerically from the
coupled (Q0,Q2) stationary equations setting initially Q2 = 0
with nonzero pump terms, h0,h2. Both type 1 and 2 soliton
branches are shown in Fig. 3(a) for zero detuning, � = 0,
superimposed on the homogeneous solution multistability
curves. Type 1 Q0 and Q2 soliton branches are displayed
by thick red/blue lines, respectively. In what follows we shall
show that the solitons along these branches are stable. The
corresponding soliton type 2 branches are denoted by solid
red/blue lines. The transition between the unstable and stable
branches is clearly visible by the kink in the curve. We note that
there is also a gap between these two types of soliton branches,
a discussion of which we will postpone to Sec. IV C.

The soliton profiles for the Q0 and Q2 components along
the branches are shown in Figs. 3(b)–3(g) for different pump
amplitudes, sweeping the curve from the left edge of the stable
type 1 soliton branch up to the right edge of the unstable (type
2) branch. We note that the stable solitons (type 1) sit on a stable
background of the homogeneous solution (see black portions
of the curves in Fig. 3(a)) and the soliton profile remains
unchanged as in Fig. 3(b) along the stable branch. By contrast,
the unstable soliton type 2 sits on a modulationally unstable
homogeneous solution background and this soliton profile
significantly changes when sweeping the unstable branch from
the left edge [Fig. 3(c)] to the right edge [Fig. 3(g)] where
higher-amplitude oscillations appear in the soliton tail.

The soliton branches for the stable (type 1) and unstable
solitons (type 2) merge for � = −0.1 and γ0 = 0.04 and
are plotted in Fig. 4. The solitons are very close to stable
at the left edge of the soliton branch and become more
unstable towards the right edge, where the background is
modulationally unstable. This is confirmed by our stability
analysis of the soliton branches below.

We should note that the Q2 soliton component of the
stable soliton in Fig. 3(b) at � = 0,γ0 = 0.04 intersects the
Q0 one, thereby contributing to the specific spatial dynamics
of the reconstructed 2D soliton shown in Figs. 9(a)–9(c),
namely the Q0 component dominates the soliton core, while
the Q2 component dominates the tail behavior, leading to
the characteristic split double-lobe tail in transverse to the
propagation direction. By contrast, in the case � = −0.1,γ0 =
0.04, the Q2 component contributes to the soliton core but
hardly has any influence on the soliton tail, thus leading to the
single-lobe 2D spatial profile of the soliton tail, observed in
Figs. 10(a)–10(c).

We perform stability analysis of the soliton solutions in a
moving with the soliton frame. Introducing a new variable,
η = ξ − ut , the Q0 and Q2 components of the coupled soliton
can be written as:

Q0(η) = A0(ξ − ut) = A0(η)

Q2(η) = A2(ξ − ut) = A2(η). (12)

Adding small perturbations to the soliton profiles Eqs. (12),
according to:

Q0(η) = A0(η) + εf (η)e(λ−iδ)t + ε∗
b(η)e(λ+iδ)t

Q2(η) = A2(η) + pf (η)e(λ−iδ)t + p∗
b(η)e(λ+iδ)t (13)

and introducing linear operators: L̂j = � − ωj0 + iγ0 +
i(vj − u)∂ξ + dj

2 ∂2
ξ for j = 0,2, and v0 = 0, we obtain the

following eigenvalue problem:

(δ + iλ)�x =

⎡
⎢⎢⎢⎢⎣

−L̂0 + 2(�00|A0|2 + �20|A2|2) �00A
2
0 2�20A0A

∗
2 2�20A0A2

−�00(A∗
0)2 L̂∗

0 − 2(�00|A0|2 + �20|A2|2) −2�20A
∗
0A

∗
2 −2�20A

∗
0A2

2�02A
∗
0A2 2�02A0A2 −L̂2 + 2(�22|A2|2 + �02|A0|2) �22A

2
2

−2�02A
∗
0A

∗
2 −2�02A0A

∗
2 −�22(A∗

2)2 L̂∗
2 − 2(�22|A2|2 + �02|A0|2)

⎤
⎥⎥⎥⎥⎦�x,

(14)
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FIG. 3. (a) Coupled stable (type 1) and unstable (type 2) soliton branches, superimposed on the multistability curves of the stationary
nonlinear coupled (Q0,Q2) modes vs Ep (homogeneous solution stability indicated) at � = 0 and γ0 = 0.04; note that the stable soliton
branches sit on a stable background (black curve), while the unstable soliton branches sit on a modulationally unstable background (green
curve). Soliton branches corresponding to Q0, Q2, and Q4 soliton components, inferred from the inverse transform [Eq. (4)] of the full-model
2D solitons, computed by a dynamical (split-step) model from [Eqs. (1) and (2)], are shown with open circles connected by magenta line;
(b) Stable type 1 |Q0| and |Q2|-soliton profiles in the middle of the stable soliton branch at Ep = 0.0715; this soliton profile remains unchanged
from the left stable soliton branch edge at Ep = 0.06886 to the right edge at Ep = 0.07366. Unstable type2 profiles at the (c) left edge of
unstable soliton branch at Ep = 0.07781; (d) right edge before kink at Ep = 0.08157; (e) left edge after kink at Ep = 0.08190; (f) at Ep = 0.09;
(g) right edge of unstable soliton branch at Ep = 0.1038.

The evolution of the full eigenvalue spectrum with the pump
amplitude Ep computed from the sparse matrix in Eq. (14) for
the soliton branch at � = 0,γ0 = 0.04 is shown in Fig. 5. The
solitons are stable, as all eigenvalues have negative imaginary
part (λ < 0) up to a pump amplitude of Ep = 0.073665,
corresponding to the right edge of the stable type 1 soliton
branch [see Figs. 3(a)–3(c)]. Above this pump amplitude the
soliton branch type 2 is unstable (since eigenvalue imaginary
part, λ > 0 for at least one eigenvalue).

The full eigenvalue spectrum computed from the sparse
matrix in Eq. (14) for the soliton branch at � = −0.1,

γ0 = 0.04, for a range of pump amplitudes, starting from
the left edge of the soliton branch (at Ep = 0.039882) and
sweeping the branch up to Ep = 0.066993 is shown in Fig. 6.
The solitons are slightly unstable towards the left edge of
the soliton branch, since at least one of the eigenvalues is

positive, although very close to zero, and remain slightly
unstable towards the right edge.

IV. COMPARISON WITH THE FULL MODEL

In this section we compare our reduced 1D model with the
full 2D model [36]. We solve the time-dependent full-model
Eqs. (1) and (2) by Fourier split-step technique, taking as
initial guess the lower bistability branch homogenous solution
for pump amplitude Ep = 0.0672, applying a seed pulse
with amplitude Es = 0.34114 and sweeping the whole soliton
branch. The resulting evolved 3D soliton profiles are displayed
in Fig. 7 at the left (Ep = 0.0672) and right (Ep = 0.0762)
edge of the upper and lower soliton branches. We should note
that our dynamical simulation predicts two types of solitons
as the pump amplitude is increased, namely a single-hump
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FIG. 4. (a) Coupled stable/unstable soliton branches vs Ep , superimposed on the homogeneous stationary solution multistability curves
(stability indicated) at � = −0.1 and γ0 = 0.04. (b) Stable/unstable type1 soliton profiles at the left edge of the soliton branch at Ep = 0.03988;
(c) at Ep = 0.045 at the edge of the homogeneous solution stable region (black curve); (d) at Ep = 0.0535. (e) Stable/unstable type1 profiles
at the right edge of the soliton branch at Ep = 0.06699.

soliton, shown in Figs. 7(a) and 7(b) at Ep = 0.0672, persisting
up to a pump amplitude of Ep = 0.0692, at which point the
soliton peak splits up. The splitting between the two soliton
peaks becomes larger and larger with increasing the pump
amplitude, eventually resulting in a well defined double-hump
soliton [Figs. 7(c) and 7(d)].

The single/double-hump soliton branches are obtained
from the time-dependent solution from the maximum through
the soliton core and a slice through the soliton tail of the
integrated power, P	 = ∫∫ |	(x,y)|2dxdy, shown in Fig. 8.
The transition between the single- and double-hump solitons
is clearly seen from the stepwise soliton branches curves,
shown in magenta. The single-hump soliton persists up to
the first maximum in the soliton branch curve, above which a
double-hump soliton forms.

A. Reconstruction of the full model 2D soliton from stable
type 1 soliton Q0 and Q2 profiles

To assess the extent to which our reduced model captures
the 2D soliton dynamics, we reconstruct the 2D soliton from
the obtained 1D coupled (Q0,Q2) soliton profiles, using
Eqs. (4) and plot it in Fig. 9.

We compare the reconstructed 2D solitons at � = 0,γ0 =
0.04 for the E field and 	 fields with the full-model
solutions, shown in Figs. 9(a)–9(d). Both solitons exhibit the
characteristic two-fold split tail which can be considered as a
signature of the zero-detuning case (cf. Fig. 4 of Ref. [36]). We
note that the full-model soliton [Figs. 9(c) and 9(d)] is more
strongly localized in a transverse direction (y axis) compared
to the reconstructed one, obtained from the reduced model
[Figs. 9(a) and 9(b)]. This is expected as our reduced model
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FIG. 5. Full eigenvalue spectrum of the soliton branch [Fig. 3(a)]
� = 0,γ0 = 0.04: (a) at Ep = 0.068865; (b) at Ep = 0.0712: the
solitons are stable for these pump amplitudes [λ = Im(eig) < 0].
Unstable solitons (at least one λ > 0): (c) at the right edge of type1
stable soliton branch at Ep = 0.073665; (d) at Ep = 0.07781 (left
edge of unstable soliton branch); (e) at Ep = 0.08157: right edge
before kink; (f) at Ep = 0.08190 after kink; (g) Ep = 0.09 middle of
unstable soliton branch; (h) at Ep = 0.1038: right edge of unstable
soliton branch.

assumes an unchanged transverse mode along the y direction.
The unstable soliton (type 2) profiles are shown for comparison
in Figs. 9(e) and 9(f). The reconstructed and full-model 2D
solitons for � = −0.1 and γ0 = 0.04 are displayed in Fig. 10.
Comparison between the reconstructed, Figs. 10(a) and 10(b),
and the full-model 2D solitons, Figs. 10(c) and 10(d), at the
left soliton branch edge reveals a similar type of solitons with
a simpler shape and a single-lobe tail. Similar to the previous
case considered, the full-model solitons exhibit stronger local-
ization in a transverse direction to the propagation, showing
again the limitations of our reduced model. The reconstructed
soliton profiles at the right edge of the soliton branch in
Figs. 10(e) and 10(f) are quite similar to the full-model ones,
Figs. 10(g) and 10(h), both exhibiting tail oscillations and a
stronger transverse localization in the case of the full-model
solitons.

B. Projection of full-model solutions

In the previous section we compared the reconstructed 2D
soliton profiles from our reduced model with the full-model
2D dynamical solution. To complete our comparison both
ways, we compare the projections of the final full-model
dynamically evolved profile, as computed from Eqs. (1) and (2)
onto mode 0,2,4, using the inverse transformation [Eqs. (4)]
thereby reconstructing Q0, Q2, and Q4 soliton components.
The reconstructed components for � = 0,γ = 0.04 are shown
in Fig. 11 for pump amplitudes Ep = 0.0672,0.0732.

Note that all soliton components at a pump amplitude Ep =
0.0672 exhibit a single peak and thus correspond to a single-
hump soliton [cf. Figs. 7(a) and 7(b)]. By contrast, the soliton
components at Ep = 0.0732 exhibit double peaks, as expected
for double-hump solitons [cf. Figs. 7(c) and 7(d)]. Note that
the Q4 soliton component is small compared to Q2, which
justifies our modal expansion method.

The reconstructed soliton branches for � = 0,γ0 = 0.04,
computed as max|Qj |,j = 0,2,4 from the full model, using
the inverse transformation [Eqs. (4)], are shown in Fig. 3(a)
with connected (by a magenta line) open circles, superimposed
on the homogeneous solution background of the reduced
model and the soliton branches, inferred from the reduced
model. A comparison between the soliton branches obtained
by our reduced model and the ones obtained by projection of
the fully evolved 2D soliton from the dynamical model shows
remarkable agreement between the Q2 components both in
amplitude and domain of soliton existence (excluding the
points corresponding to double-hump solitons on the soliton
projection branch). The Q0 components match in domains
of soliton existence but differ in amplitude. We attribute
this difference to transverse localization effects absent in the
reduced model.

C. Domains of soliton existence

Finally we perform a comparison between the domain of
stable type 1 soliton existence for the zero-detuning case
(� = 0,γ0 = 0.04) with the soliton branch computed by a 2D
Newton-Raphson method (cf. shaded area in Fig. 2(c) [36]).
Both soliton branches are superimposed on the homogeneous
solutions and the full-model multistability curve (black dash-
dotted line) in Fig. 12. The 2D Newton method-inferred soliton
branch is computed as a max|E| and is shown in cyan. The
full-model 2D Newton-inferred soliton branch and our reduced
model branches are in excellent agreement, thus confirming the
soliton existence domain computed in Ref. [36].

The open circle points in the gap between the stable (type 1)
and unstable (type 2) solitons are computed by solving the
time-dependent equations for the coupled (Q0,Q2) soliton
[Eqs. (A1) and (A3)]. We should note that although the
dynamical model converges to these solutions, we were unable
to connect them by Newton method to either the unstable or
stable soliton branches. As these solutions happen to be in a
range of pump amplitudes where the multihumped solitons
have been predicted by the full model, we attribute these
solutions to multihump solitons. This bifurcation behavior
deserves further investigation but will be the subject of a
further study. Our reduced model reproduces remarkably well
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FIG. 6. Full eigenvalue spectrum for the soliton branch [Fig. 4(a)] at � = −0.1,γ0 = 0.04 at the: (a) left edge Ep = 0.039882; (b) right
edge of the homogeneous stable solution background Ep = 0.043384; (c) at Ep = 0.05; (d) right edge of modulationally unstable background
region Ep = 0.058951; (e) right edge of soliton branch Ep = 0.066993; the solitons are slightly unstable for all pump amplitudes (λ ≈ 0 > 0).

the soliton existence domain, computed from the full model
by 2D Newton method [36].

V. CONCLUSION

We have developed a 1D reduced model, based on modal ex-
pansion of our full 2D mean-field model polariton solutions in
a microcavity wire, which allows us to analyze the intermodal
interactions and introduce externally controllable parameters.
We demonstrated that by considering just two coupled modes

FIG. 7. Snapshot at t = 80ps of a (a),(b) single-hump soliton
for Ep = 0.0672, Es = 0.34114; (c),(d) double-hump soliton for
Ep = 0.0762, Es = 0.34114 at � = 0.

(fundamental and the second-order microcavity wire modes),
we can correctly reproduce the onset of spatial multistability
upon variation of pump detuning. Furthermore, we show that
a simplified 1D coupled-mode model is sufficient to reproduce
the stable soliton existence domain of the full model and thus
provide guidance for experiments.

Our simplified 1D approach has limitations, as the expan-
sion in linear modes is currently truncated to the second-
order term, and to achieve a more rigorous description of
the mode reshaping and nonlinear self-defocusing effects in
the transverse direction, formally taken into account by the
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FIG. 8. Soliton branch inferred from dynamical computation of
Eqs. (1) and (2) superimposed on the coupled multistability curves
of the reduced model and the full model (black dash-dotted curve)
at � = 0,γ0 = 0.04: single-hump solitons persist up to the first
maximum, above which double-hump solitons are formed.
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FIG. 9. 3D plot of the reconstructed 2D soliton at � = 0,γ0 =
0.04 (see Fig. 3): (a) |E|; (b) |	| from type 1 stable soliton (Q0,Q2)
profiles at Ep = 0.0715; (c),(d) full-model soliton solutions [Eqs. (1)
and (2)] at Ep = 0.0715; (e),(f) reconstructed |E| and |	| 3D plots
from the unstable type 2 soliton at Ep = 0.08572.

correction terms �Bj in the perturbation expansion, they need
to be calculated in the next order of the perturbation theory.

This simplified model can be used as a framework for anal-
ysis of the complex spatio-temporal dynamics of multimode
polariton solitons in microcavity wires and of effects, such
as, e.g., nonmonotonous wire width dependence of the soliton
existence domains, which becomes entangled and cannot be
understood on the basis of the full mean-field model. Similar
to single-mode solitons, coupled-mode solitons could provide
a powerful concept for description of the complex nonlinear
polariton dynamics in confined microcavity structures. Under-
standing the complex dynamical nonlinear soliton formation
phenomena within the coupled-mode picture would be of great
importance for practical realization of the future integrated
polaritonic devices, based on structured microcavities, with
microcavity wires acting as basic functional components. We
note that in order to fully elucidate the nonlinear polariton
dynamics, further work is needed to investigate conditions of
formation and stability of multihump solitons in this confined
system which will be a subject of a future study.
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FIG. 10. 3D plot of the reconstructed 2D soliton at � = −0.1,
γ0 = 0.04 (a) |E|; (b) |	| from type 1/2 stable/unstable soliton
(Q0,Q2) profiles (see Fig. 4) at the (a) left edge of the soliton branch
Ep = 0.03988. (c),(d) Full-model 2D soliton solutions [Eqs. (1) and
(2)] for at the left edge; (e, f) Reconstructed solitons at the right edge
of the soliton branch for Ep = 0.067; (g,h) Full-model 2D solitons at
the right edge of the soliton branch.

APPENDIX A: THREE COUPLED MODES

Consider three coupled modes (j = 0,1,2) and introduce
linear operators: L̂j = � − ωj0 + iγ0 + iωj1∂x + ωj2

2 ∂2
x . Ow-

ing to the mode symmetry there are only a few nonvanishing
nonlinear coefficients, �lmn,j and with the chosen normaliza-
tion, �jk = �kj . The full system can be written as:

i∂tQ0 + L̂0Q0 = ih0 + (�00|Q0|2 + 2�10|Q1|2
+ 2�20|Q2|2)Q0 + �002,0

(
2|Q0|2Q2

+Q2
0Q

∗
2

) + �112,0
(
2|Q1|2Q2 + Q2

1Q
∗
2

)
+�222,0|Q2|2Q2 (A1)

i∂tQ1 + L̂1Q1 = ih1 + (�11|Q1|2 + 2�01|Q0|2
+ 2�21|Q2|2)Q1 (A2)
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FIG. 11. Reconstructed Q0, Q2, and Q4 soliton components from final evolved full-model (E,	) solutions at � = 0,γ0 = 0.04, using
inverse transform [Eq. (4)]: upper row—Ep = 0.0672, corresponding to a single-hump soliton; lower row—Ep = 0.0732, corresponding to a
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i∂tQ2 + L̂2Q2 = ih2 + (�22|Q2|2 + 2�02|Q0|2
+ 2�12|Q1|2)Q2 + �220,2

(
2|Q2|2Q0

+Q2
2Q

∗
0

) + �110,2
(
2|Q1|2Q0

+Q2
1Q

∗
0

) + �000,2|Q0|2Q0. (A3)

Rescaling the x coordinate and transforming into
moving frame: ξ = 1√|ω02| (x − ω01t), the linear operators
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FIG. 12. Soliton branches of type 1 stable and type 2 unstable
solitons at � = 0,γ0 = 0.04 superimposed on the coupled multista-
bility (Q0,Q2) curves of the reduced model and the multistability
curve (P	 = ∫ |	|2dy vs Ep) full model (black dash-dotted curve).
The domain of stable soliton existence is indicated by a rectangle. The
soliton branch (max|E|) computed by 2D Newton-Raphson method
for the full model is shown for comparison. The points correspond to
soliton solutions that cannot be connected to the stable branch, since
they represent multihump soliton solutions.

become:

L̂0 = � − ω00 + iγ0 + d0

2
∂2
ξ , (A4)

L̂1 = � − ω10 + iγ0 + iv1∂ξ + d1

2
∂2
ξ , (A5)

L̂2 = � − ω20 + iγ0 + iv2∂ξ + d2

2
∂2
ξ , (A6)

where

vj = ωj1 − ω01√|ω02|
, (A7)

dj = ωj2

|ω02| (d0 = ±1), (A8)

where vj is the relative group velocity of the j th mode with
respect to the fundamental mode velocity.

APPENDIX B: PARAMETER SET FOR THE
MICROCAVITY WIRE

We choose all parameters as in Ref. [36]. In Fig. 1(b)
dispersions of the energetically lowest-lying three lower
polariton branches are plotted, along with their parabolic fits,
giving:

ω00 = −0.2583, ω01 = 0.3311, ω02 = −0.3129, (B1)

ω10 = −0.1731, ω11 = 0.2134, ω12 = −0.1693, (B2)

ω20 = −0.0922, ω21 = 0.1172, ω22 = −0.0647, (B3)
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FIG. 13. Stability analysis of the homogeneous solution for
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modulationally unstable branches, respectively.

and the higher-order dispersion coefficients:

v1 = −0.2103, v2 = −0.3823, (B4)

d0 = −1, d1 = −0.5409, d2 = −0.2067. (B5)

The corresponding modes are displayed in Fig. 1(c).
Some nonlinear coefficients (for two coupled modes)
are listed below:

�00 = 0.2111, �11 = 0.2312, �22 = 0.2443, (B6)

�01 = �10 = 0.1481, (B7)

�02 = �20 = 0.1543, (B8)

�12 = �21 = 0.1568 (B9)

�000,2 = �002,0 = 0.0750, �222,0 = �220,2 = 0.0054,

(B10)

�112,0 = �110,2 = −0.0764, (B11)

The pump coefficients are (for qy = 0):

h0 = Ep · 0.7709, (B12)

h1 = 0, (B13)

h2 = Ep · (−0.2208). (B14)

APPENDIX C: STABILITY ANALYSIS OF THE
STATIONARY HOMOGENEOUS SOLUTION

We perform stability analysis of the stationary homo-
geneous nonlinear solution, adding small perturbations to
the modal profiles: Q0 = A + εf eiqxe(λ−iδ)t + ε∗

b e
−iqxe(λ+iδ)t ,

Q2 = B + pf eiqxe(λ−iδ)t + p∗
be

−iqxe(λ+iδ)t with q,δ,λ all real.
Introducing linear operators, L̂0,2 without spatial derivatives,
and �x = [εf ,εb,pf ,pb]T , the resulting eigenvalue problem
reads:

(δ + iλ)�x =

⎡
⎢⎢⎢⎢⎣

−L̂0 �00A
2 2�20AB∗ 2�20AB

−�00(A∗)2 L̂∗
0 −2�20A

∗B∗ −2�20A
∗B

2�02A
∗B 2�02AB −L̂2 + v2q + 2(�22|B|2 + �02|A|2) �22B

2

−2�02A
∗B∗ −2�02AB∗ −�22(B∗)2 L̂∗

2 + v2q − 2(�22|B|2 + �02|A|2)

⎤
⎥⎥⎥⎥⎦�x, (C1)

The eigenvalues and eigenvectors are found numerically
and the stable (λ < 0), unstable(λ(q = 0) > 0), and modula-
tionally unstable (λ > 0 only for some q �= 0) branches of the

multistability curves for Q0 and Q2 nonlinear homogeneous
solutions are plotted against pump amplitude Ep for � =
0,−0.1 and γ0 = 0.04 in Fig. 13.
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Kwong, A. Lücke, M. Abbarchi, E. Baudin, E. Galopin, J. Bloch,
Aristide Lemaitre, P. T. Leung, Ph. Roussignol, R. Binder, J.
Tignon, and S. Schumacher, Scientific Reports 3, 1 (2013).

[13] N. H. Kwong, R. Takayama, I. Rumyantsev, M. J. Kuwata-
Gonokami, and R. Binder, Phys. Rev. B 64, 045316 (2001).

245432-12

https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2010.130
https://doi.org/10.1038/nphoton.2010.130
https://doi.org/10.1038/nphoton.2010.130
https://doi.org/10.1038/nphoton.2010.130
https://doi.org/10.1103/PhysRevLett.101.016402
https://doi.org/10.1103/PhysRevLett.101.016402
https://doi.org/10.1103/PhysRevLett.101.016402
https://doi.org/10.1103/PhysRevLett.101.016402
https://doi.org/10.1038/nphoton.2010.79
https://doi.org/10.1038/nphoton.2010.79
https://doi.org/10.1038/nphoton.2010.79
https://doi.org/10.1038/nphoton.2010.79
https://doi.org/10.1103/PhysRevLett.84.1547
https://doi.org/10.1103/PhysRevLett.84.1547
https://doi.org/10.1103/PhysRevLett.84.1547
https://doi.org/10.1103/PhysRevLett.84.1547
https://doi.org/10.1103/PhysRevLett.85.3680
https://doi.org/10.1103/PhysRevLett.85.3680
https://doi.org/10.1103/PhysRevLett.85.3680
https://doi.org/10.1103/PhysRevLett.85.3680
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1038/nphoton.2011.267
https://doi.org/10.1038/nphoton.2011.267
https://doi.org/10.1038/nphoton.2011.267
https://doi.org/10.1038/nphoton.2011.267
https://doi.org/10.1126/science.1202307
https://doi.org/10.1126/science.1202307
https://doi.org/10.1126/science.1202307
https://doi.org/10.1126/science.1202307
https://doi.org/10.1038/nature07640
https://doi.org/10.1038/nature07640
https://doi.org/10.1038/nature07640
https://doi.org/10.1038/nature07640
https://doi.org/10.1038/srep03016
https://doi.org/10.1038/srep03016
https://doi.org/10.1038/srep03016
https://doi.org/10.1038/srep03016
https://doi.org/10.1103/PhysRevB.64.045316
https://doi.org/10.1103/PhysRevB.64.045316
https://doi.org/10.1103/PhysRevB.64.045316
https://doi.org/10.1103/PhysRevB.64.045316


COUPLED SPATIAL MULTIMODE SOLITONS IN . . . PHYSICAL REVIEW B 94, 245432 (2016)
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[27] R. Cerna, Y. Léger, T. K. Paraı̈so, M. Wouters, F. Morier-
Genoud, M. T. Portella-Oberli, and B. Deveaud, Nat. Commun.
4, 2008 (2013).

[28] S. S. Gavrilov, A. V. Sekretenko, N. A. Gippius, C. Schneider,
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