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Electronic and optical properties of two-dimensional InSe from a DFT-parametrized
tight-binding model
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We present a tight-binding (TB) model and k · p theory for electrons in monolayer and few-layer InSe. The
model is constructed from a basis of all s and p valence orbitals on both indium and selenium atoms, with
tight-binding parameters obtained from fitting to independently computed density functional theory (DFT) band
structures for mono- and bilayer InSe. For the valence and conduction band edges of few-layer InSe, which
appear to be in the vicinity of the � point, we calculate the absorption coefficient for the principal optical
transitions as a function of the number of layers, N . We find a strong dependence on N of the principal optical
transition energies, selection rules, and optical oscillation strengths, in agreement with recent observations [D. A.
Bandurin et al., Nat. Nanotechnol. (2016)]. Also, we find that the conduction band electrons are relatively light
(m ∝ 0.14–0.18me), in contrast to an almost flat, and slightly inverted, dispersion of valence band holes near the
� point, which is found for up to N ∝ 6.
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I. INTRODUCTION

Two-dimensional (2D) crystals are atomically thin films
of van der Waals materials that are stable when exfoliated
from the three-dimensional crystal due to the weak nature
of the interaction holding the individual layers together [1].
Examples of such materials include graphite [2], boron
nitride [3], and transition metal dichalcogenides [4], which
have shown that properties of monolayer and bilayer crystals
may strongly differ from the bulk properties of these layered
compounds. Many of the transition metal dichalcogenides have
been shown to possess optical properties that make them
well suited for use in photodetectors and other optical or
optoelectronic applications [5–14].

Another chalcogenide currently emerging as a high po-
tential material for use on optical applications is the layered
hexagonal metal chalcogenide InSe, atomically thin films of
which are possible to fabricate [15–20]. While in its bulk form
InSe [21–35] is a direct gap semiconductor [36], its electronic
structure undergoes significant changes upon exfoliation to
few-layer or monolayer thickness, with particularly interesting
optical properties observed in recent experiments [37,38].
Density functional theory (DFT) calculations for single layer
crystals of InSe [39,40] predict a large increase in the band gap
as compared to bulk crystals, with the valence band maximum
slightly shifted from the � point. Despite being a van der
Waals layered material, bulk InSe has a light effective mass
for electrons in the conduction and valence band across the
layers. Therefore, it is expected that the band gap [17,39,41]
and related physical properties of few-layer InSe will exhibit
a strong dependence on the number of layers.

In this work we develop a tight-binding (TB) model of
atomically thin InSe, tracing the dependence of electronic
and optical properties on the number of layers (N ) in the
film. We use density functional theory (DFT) to parametrize
the model and apply a scissor correction to compensate for
the underestimation of the band gap. Indeed, we find that as
compared to the majority of other layered materials with van
der Waals coupling between consecutive layers, which have the
out-of-plane electron mass heavier than the in-plane mass, in
InSe this relation is reversed leading to a strong N dependence

of the band gap. Also, the stacking of consecutive layers in
few-layer γ -InSe similar to A-B-C stacking in graphite breaks
the mirror-plane symmetry of monolayer InSe, which should
be expected to affect optical selection rules and SO coupling
in few-layer InSe.

We use the TB model developed here to predict the band
structure of few-layer InSe, and we develop a k · p model to
predict the optical properties, with the matrix elements of the
momentum operator obtained from the TB model. We provide
estimates for the band edge optical absorption coefficient as
a function of the number of layers. The paper is structured as
follows.

In Sec. II we discuss the crystal structure of InSe. In
Sec. III we present the model of monolayer InSe and in
Sec. IV we expand it to bilayer InSe. In Sec. V we apply
the model to few-layer InSe. In Sec. VI we present a four-band
k · p theory model, and we calculate the momentum matrix
elements and the band edge optical absorption in few-layer
InSe, which enables us to interpret the recent experimental
results in Ref. [37]. The k · p theory in Sec. VI also describes
spin-orbit coupling terms in mono- and few-layer InSe.

II. CRYSTAL STRUCTURE AND SYMMETRY

The crystalline structure of monolayer InSe considered in
this study takes the form of hexagonal III-VI chalcogenides in
M2X2 stoichiometry, where M is a metal atom of group III and
X is a chalcogen atom of group VI. The structure is illustrated
in Figs. 1(a)–1(c). A unit cell of the monolayer consists of four
ions—one metal and one chalcogen in each of two sublayers.

The monolayer crystal has point-group symmetry D3h =
C3v ⊗ σh (see Fig. 2) which includes z → −z mirror symmetry
(M1, or σh reflection). This symmetry operation effectively
swaps the sublayers. From a top-down view, the crystal
exhibits a honeycomb structure in the xy plane, where A

sites are occupied by metal ions and B sites by chalcogen
ions, possessing rotational symmetry centered at each atomic
position (R3, or C3 rotation) and mirror symmetry (M2, or σv

reflection) in the yz plane (and equivalent planes generated by
R3). The Bravais lattice is given by

a1,2 = a

2
x̂ ±

√
3a

2
ŷ, Ri = l1ia1 + l2ia2, (1)
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FIG. 1. Schematic of InSe illustrating a top view in the xy plane (a) and a side view in the xz plane (b) of the monolayer structure, indicating
inequivalent hoppings included in the tight binding model, top (c) and side (d) views of the γ -stacked bilayer, and a side view of the trilayer
crystal structure (e) with included interlayer TB hoppings indicated. Shaded region is the unit cell, with * indicating the chosen position of the
unit cell origin. The In atoms are marked as M and Se atoms as X in the figure. The lattice parameters of the monolayer crystal according to
the local density approximation [39] are a = 3.953 Å, dMM = 2.741 Å, and dXX = 5.298 Å.

where l1i and l2i are integers, and the full crystal structure is
given by

RM1i = Ri − a

4

[
x̂ + ŷ√

3

]
+ dMM

2
ẑ,

RM2i = Ri − a

4

[
x̂ + ŷ√

3

]
− dMM

2
ẑ,

RX1i = Ri + a

4

[
x̂ + ŷ√

3

]
+ dXX

2
ẑ,

RX2i = Ri + a

4

[
x̂ + ŷ√

3

]
− dXX

2
ẑ, (2)

where M1(2)i/X1(2)i is a In/Se atom in the top (bottom)
sublayer. The structure of γ -InSe is shown in Fig. 1(e). The

monolayers are stacked such that chalcogen atoms in the top
layer are directly above the metal atoms in the layer below,
while the chalcogen atoms in the bottom layer are not directly
below the metal atoms in the layer above. The vector between
a chalcogen atom and the metal atom directly below it is

−
[
az − dXX + dMM

2

]
ẑ, (3)

while the vectors between a chalcogen atom and the nearest
chalcogen atoms in the layer below are

−
[
az − dXX + dMM

2

]
ẑ + ri , (4)

where ri (i = 1,2,3) are the vectors between nearest-
neighboring M-X pairs in the top sublayer of a monolayer.
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FIG. 2. Comparison between DFT and TB band structures of
monolayer InSe. The TB band structure fitted to the scissor corrected
DFT data (DFT-SC) is plotted with solid lines (TB-SC), the TB
model fitted to the uncorrected DFT bands is plotted with dashed
lines, and the DFT bands are plotted with dotted lines. Red lines
are z → −z even bands, blue lines odd bands. Zero of energy set at
the bottom of the conduction band. The left hand axis shows DFT
energies after scissor correction of 0.99 eV (see text), the right hand
axis the raw DFT energies. The lowest conduction band (c) and
the highest three valence bands (v, v1, v2) are symmetry assigned
according to their symmetry at the � point, as determined by group
theory. The character table for the irreducible representations of the
point group D3h = C3v ⊗ σh, with the irreps labeled by the names
of the representations of point group C3v with a + or − superscript
denoting the character of the σh reflection, is shown in the inset. The
TB fit to the scissor-corrected band structure is also shown (solid
lines). Vertical lines marked A and B denote the principal optical
transitions; of these, transition A is forbidden by symmetry.

az = 8.32 Å is the distance along z between the central xy

plane of each layer. The structure parameters for monolayer
InSe are given in the caption of Fig. 1.

It is important to note here that, due to the stacking,
the point symmetry of the material is reduced from that of
the monolayer. Bulk and few-layer γ -InSe exhibit only C3v

symmetry, while in the monolayer we have D3h symmetry.
The main difference between the two cases is that the M1

symmetry of the monolayer is broken by the stacking when
we have more than one layer; this has important consequences
for the optical matrix element, which is discussed below. In the
bulk adjacent monolayers are related by 31 and 32 screw axes
along z. The space group symmetry for the bulk crystal is R3m.

III. TB MODEL FOR MONOLAYER InSe

A. Hamiltonian

To describe InSe in a TB model, we construct our basis from
the s and p orbitals of In (group III) and Se (group VI) atoms,
and consider all possible hoppings between these orbitals up to
second-nearest neighbor interactions. The Hamiltonian takes
the form

H =
∑
f

(H0f + Hff + Hff ′), (5)

where the sum over f = 1,2 runs over the sublayers in the
model, and f ′ = 2(1) when f = 1(2). Here, H0f contains
terms arising from the on-site energies of the orbitals, while
Hff and Hff ′ describe the hopping interactions within and
between the sublayers, respectively, detailed below. Motivated
by the dominant orbital contributions in DFT data for bands
with energies near the Fermi level, we start from an atomic
orbital basis including s and p orbitals in the valence shells of
M and X atoms. H0f takes the form

H0f =
∑

i

[
εMsm

†
f ismf is +

∑
α

εpαm
†
f ipαmf ipα

+ εXsx
†
f isxf is +

∑
α

εpαx
†
f ipαxf ipα

]
, (6)

where the sum in i goes over all unit cells in the crystal, while
α = x,y,z. Parameters εMs and εXs are on-site energies for
the s orbitals of metal and chalcogen ions, respectively, while
εMpα and εXpα are on-site energies for the relevant p orbitals.
m

(†)
f is is the annihilation (creation) operator for an electron in

orbital s on ion Mf in unit cell i. m
(†)
f ipα is an annihilation

(creation) operator for a pα orbital.
Hff contains the hopping terms arising from intrasublayer

interactions, and is formed of the contributions

Hff = H
(1)
ff + H

(2M)
ff + H

(2X)
ff + H

(3)
ff , (7)

where H
(1)
ff includes nearest-neighbor hoppings for M-X pairs

(labeled T (1) in Fig. 1), while H
(2M)
ff and H

(2X)
ff include

hoppings for nearest pairs of like ions (M-M and X-X)
(labeled T (2M) and T (2X)), and H

(3)
ff includes hoppings between

next-nearest M-X pairs (labeled T (3)). The contributions are

H
(1)
ff =

∑
〈Mf i,Xfj 〉

[
T (1)

ss x
†
fjsmf is − T

(1)
Ms−Xp

∑
α

R
Mf iXfj

α x
†
fjpαmf is + T

(1)
Mp−Xs

∑
α

R
Mf iXfj

α x
†
fjsmf ipα

+
∑
α,β

([
δαβT (1)

π − (
T (1)

π + T (1)
σ

)
R

Mf iXfj

α R
Mf iXfj

β

]
(x†

fjpβmf ipα)
)]

+ H.c., (8)

H
(2M)
ff =

∑
〈Mf i,Mfj 〉

[
T (2M)

ss m
†
fjsmf is − T (2M)

sp

∑
α

R
Mf iMfj

α m
†
fjpαmf is

+
∑
α,β

([
δαβT (2M)

π − (
T (2M)

π + T (2M)
σ

)
R

Mf iMfj

α R
Mf iMfj

β

]
(m†

fjpβmf ipα)
)]

+ H.c., (9)
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H
(2X)
ff =

∑
〈Xf i ,Xfj 〉

[
T (2X)

ss x
†
fjsxf is − T (2X)

sp

∑
α

R
Xf iXfj

α x
†
fjpαxf is

+
∑
α,β

([
δαβT (2X)

π − (
T (2X)

π + T (2X)
σ

)
R

Xf iXfj

α R
Xf iXfj

β

]
(x†

fjpβxf ipα)
)]

+ H.c., (10)

H
(3)
ff =

∑
〈Mf i,Xfj ′ 〉

[
T (3)

ss x
†
fj ′smf is − T

(3)
Ms−Xp

∑
α

R
Mf iXfj ′
α x

†
fj ′pαmf is + T

(3)
Mp−Xs

∑
α

R
Mf iXfj ′
α x

†
fj ′smf ipα

+
∑
α,β

([
δαβT (3)

π − (
T (3)

π + T (3)
σ

)
R

Mf iXfj ′
α R

Mf iXfj ′
β

]
(x†

fj ′pβmf ipα)
)]

+ H.c., (11)

where the sum over 〈Mf i,Xfj 〉 is over nearest-neighboring
M-X pairs within a sublayer, and 〈Mf i,Mfj 〉, 〈Xf i,Xfj 〉, and
〈Mf i,Xfj ′ 〉 are over nearest M-M , X-X, and next-nearest
M-X pairs, respectively. In considering the hoppings between
the various s and p orbitals we have made the two-center
approximation, as set out by Slater and Koster [42]. T (1)

ss is the
hopping integral for nearest-neighboring s orbitals, T

(1)
Ms−Xp

and T
(1)
Mp−Xs take into account s − p hopping, while T (1)

π is
the component of p − p hopping where the p orbitals are
parallel to each other and perpendicular to the vector between
the ions (hopping vector) and T (1)

σ is the hopping between the
components of the p orbitals lying along the hopping vector.

R
Mf iXfj

α takes account of the component of a p orbital along
the hopping vector, and thus has the form

R
Mf iXfj

α = RXfj − RMfi∣∣RXfj − RMfi

∣∣ · α̂, (12)

where α̂ is a unit vector along α.
The intersublayer hopping is written as

Hff ′ = H
(1)
ff ′ + H

(2)
ff ′ + H

(3)
ff ′ , (13)

where

H
(1)
ff ′ =

∑
i

[
T ′(1)

ss m
†
f ′ismf is − T ′(1)

sp

∑
α

R
Mf iMf ′ i
α m

†
f ipαmf ′is

+
∑
α,β

([
δαβT ′(1)

π − (
T ′(1)

π + T ′(1)
σ

)
R

Mf iMf ′ i
α R

Mf iMf ′ i
β

]
(m†

f ′ipβmf ipα)
)]

, (14)

H
(2)
ff ′ =

∑
〈Mf i,Xf ′j 〉

[
T ′(2)

ss x
†
f ′jsmf is − T

′(2)
Ms−Xp

∑
α

R
Mf iXf ′j
α x

†
2jpαm1is + T

′(2)
Mp−Xs

∑
α

R
Mf iXf ′j
α x

†
f ′jsmf ipα

+
∑
α,β

([
δαβT ′(2)

π − (
T ′(2)

π + T ′(2)
σ

)
R

Mf iXf ′j
α R

Mf iXf ′j
β

]
(x†

f ′jpβmf ipα)
)]

+ H.c., (15)

H
(3)
ff ′ =

∑
〈Mf i,Mf ′j 〉

[
T ′(3)

ss m
†
f ′jsmf is − T ′(3)

sp

∑
α

R
Mf iMf ′j
α m

†
fjpαmf ′is

+
∑
α,β

([
δαβT ′(3)

π − (
T ′(3)

π + T ′(3)
σ

)
R

Mf iMf ′j
α R

Mf iMf ′j
β

]
(m†

f ′jpβmfjpα)
)]

. (16)

B. DFT band structures of monolayer and bulk InSe
and parametrization of monolayer TB model

The DFT data to which we fit and compare the TB
model of InSe in this section are obtained using the LDA
exchange-correlation functional as set out in Ref. [39] for
In2X2 materials. In these calculations the VASP code [43] is

used to describe the materials in a plane-wave basis. The cutoff
energy for the plane-wave basis is 600 eV and the vertical
separation between repeated images of the monolayer is set to
20 Å to ensure that any interactions between them would be
negligible. The Brillouin zone is sampled by a 12 × 12 k-point
grid.
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As semilocal density functional theory underestimates the
band gap, we apply the “scissor” correction δEg to the DFT
energy gaps, as employed before in the studies of other
semiconductors [44–49], as follows. A calculation with the
LDA returns the band gap for bulk InSe as 0.41 eV as
compared to the bulk experimental value of 1.40 eV at low
temperature [31,36] (1.25 eV at room temperature [16]).
Hence we subtract δE0 K

g ≈ 0.99 eV from the energies of
all valence band states while keeping the conduction band
energies unchanged for bulk, few-layer, and monolayer InSe.
For optics, this scissor correction is equivalent to adding δE0 K

g

to the energies of all interband transitions (labeled A and B in
Fig. 2), which we identify upon analyzing wave functions in the
bands of monolayer and few-layer InSe (at room temperature,
we use δE300 K

g ≈ 0.84 eV).
In the following we fit the TB model to the scissor

corrected DFT band structure, and call this scissor corrected
tight-binding (TB-SC). We do this by applying a constrained
least squares minimization procedure to the difference between
the TB and the scissor corrected DFT band energies. While the
procedure is in principle straightforward, in practice one must
take care, in particular with the choice of bands to use for the
fitting procedure. For comparison, we also perform a fit to the
original DFT data to obtain a parametrization without scissor
correction (TB).

On diagonalization the model yields 16 bands—8 even
(symmetric) and 8 odd (antisymmetric) under z → −z. As
one progresses further in energy away from the conduction
band edge and valence band edge the assumption that s and
p orbital contributions dominate begins to break down, with
significant d orbital contributions at energies far away from the
band edges. In addition, the DFT calculation is less accurate
in the higher energy unoccupied bands. We therefore fit the
model to 7 DFT bands—the 5 highest energy valence bands
(3 even, 2 odd) and the 2 lowest energy conduction bands
(1 even, 1 odd), using bands 3–6 of the 8 even model bands,
and bands 3–5 of the odd model bands. As our primary purpose
is a good quantitative fit to the valence and conduction band
edges, we give extra weights to these points during the fitting
procedure. The fit is carried out over a grid of 141 points in k
space covering the irreducible portion of the Brillouin zone.

Table I presents the parameters obtained in the fit for InSe
with scissor correction taken into account (TB-SC) and without
it (TB) for sake of completeness. Figure 2 shows the TB
band structure (TB-SC) and the DFT data (DFT-SC) to which
the fit was applied for InSe; the TB band structure without
scissor correction (TB) is also plotted in comparison to the
raw DFT data (DFT). The model gives a good reproduction
of the DFT bands, both with and without scissor correction.
Note that slight differences can be found between the shape of
the fitted bands when comparing the fit to the raw DFT data
and the scissor corrected bands, and the parameter sets differ
accordingly.

Alongside the energies predicted by our model Hamilto-
nian, it is useful to check the orbital decomposition, found
in the normalized eigenvectors, against that given by the DFT
results. We define Cnk(o) as the coefficient of the eigenfunction
of band n, orbital o, at wave vector k. Figure 3 shows the results
of such a comparison for InSe, between the modulus square
of the overlap integral between the DFT wave function and

TABLE I. Fitted parameters (eV) for the TB model of InSe based
on DFT data with (TB-SC) and without (TB) scissor correction, as
shown in Fig. 2.

TB-SC TB

εMs
–7.174 –7.595

εMpx
= εMpy

–2.302 –3.027
εMpz

1.248 0.903
εXs

–14.935 –15.188
εXpx

= εXpy
–7.792 –8.045

εXpz
–7.362 –7.615

T (1)
ss 0.168 0.331

T
(1)
Ms−Xp 2.873 2.599

T
(1)
Mp−Xs –2.144 –2.263

T (1)
π 1.041 0.977

T (1)
σ 1.691 1.342

T (2M)
ss –0.200 –0.248

T (2M)
sp –0.137 –0.113

T (2M)
π –0.433 –0.561

T (2M)
σ –1.034 –1.130

T (2X)
ss –1.345 –1.451

T (2X)
sp –0.800 –0.843

T (2X)
π –0.148 –0.110

T (2X)
σ –0.554 –0.613

T (3)
ss 0.821 0.793

T
(3)
Ms−Xp 0.156 0.179

T
(3)
Mp−Xs –0.294 –0.323

T (3)
π 0.003 –0.015

T (3)
σ –0.455 –0.477

T ′(1)
ss –0.780 –0.518

T ′(1)
sp –4.964 –4.644

T ′(1)
π –0.681 –0.769

T ′(1)
σ –4.028 –4.052

T ′(2)
ss 0.574 0.472

T
′(2)
Ms−Xp –0.651 –0.544

T
′(2)
Mp−Xs –0.148 –0.138

T ′(2)
π 0.100 0.082

T ′(2)
σ 0.343 0.373

T ′(3)
ss –0.238 –0.187

T ′(3)
sp –0.048 –0.065

T ′(3)
π –0.020 –0.052

T ′(3)
σ –0.151 –0.168

the spherical harmonics centered on each atom, normalized
against the total of s and p orbitals, and the equivalent |Cnk(o)|2
as calculated in the TB model. Larger markers indicate a
more dominant contribution. Table II gives the numerical
contributions for the conduction band [c (z → −z odd)], the
valence band [v (z → −z even)], and the next two (twice
degenerate) bands just below the valence band at �. We obtain
a reasonable qualitative agreement between the model and
DFT results.

C. Spin-orbit coupling

Figure 4 shows the LDA band structure of the monolayer
with spin-orbit coupling taken into account. The splitting is
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FIG. 3. Orbital decomposition for fitted bands for InSe from both DFT data, and fitted model with (TB-SC) and without (TB) scissor
correction. Marker size is proportional to normalized contribution.

small, particularly so in the region of the � point; we therefore
neglect it in the TB model. In the k · p theory (see Sec. VI), we
include spin-orbit coupling to quantify how small it is near the
� point, and to show how it is expected to behave at a larger
number of layers.

IV. BILAYER InSe: INTERLAYER HOPPING
PARAMETRIZED USING DFT

We now extend the TB model to describe coupling between
consecutive layers in N -layer InSe. For this, we consider a
bilayer and include hops in the z direction, XX, XM , and

TABLE II. Relative spherical harmonic character of the plane-wave wave function (modulus square of the overlap integral between the
DFT wave function and the spherical harmonics centered on each atom) on the valence s and p orbitals of In and Se atoms in monolayer InSe
at the � point, in the conduction band (c), the valence band (v), and the two twice degenerate bands just below the valence band (v1 and v2),
as labeled in Fig. 2. The equivalent contribution found in the scissor corrected TB model is given in square brackets. The �-point symmetry
classification of the bands is noted in brackets. Atoms are listed in order of increasing z coordinate. Band energies (in eV) are provided relative
to the conduction band edge, where EDFT is the band energy from DFT and EDFT-SC = EDFT − δE0 K

g is the value obtained after applying scissor
correction. The energies corresponding to �ωA and �ωB are marked in bold.

c (A−
1 ) v (A+

1 ) v1 (E−) v2 (E+)

EDFT (eV) 0 –1.80 –2.05 –2.13
EDFT-SC (eV) –2.79 –3.04 –3.12
Se1 0.09[0.00]s 0.00[0.01]s 0.22[0.24]px(y) 0.21[0.24]px(y)

0.17[0.22]pz 0.35[0.36]pz

In1 0.23[0.16]s 0.03[0.10]s 0.03[0.01]px(y) 0.04[0.01]px(y)

0.01[0.12]pz 0.12[0.02]pz

In2 0.23[0.16]s 0.03[0.10]s 0.03[0.01]px(y) 0.04[0.01]px(y)

0.01[0.12]pz 0.12[0.02]pz

Se2 0.09[0.00]s 0.00[0.01]s 0.22[0.24]px(y) 0.21[0.24]px(y)

0.17[0.22]pz 0.35[0.36]pz
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MX as depicted in Fig. 1(d). The Hamiltonian can be written
as

H = H1 + H2 + H1,2, (17)

where H1 and H2 describe the individual monolayers com-
prising the bilayer structure, and H1,2 describes the interaction
between them and can be written as

H1,2 = HX1,M2 + HM1,X2 + HX1,X2 , (18)

where each term corresponds to a category of hopping inter-
actions as labeled in Fig. 1(d). The vertical M-X contribution

is

HX1,M2 =
∑

i

[
t (XM)
ss m

†
(2)1isx(1)2is + t

(XM)
Xs−Mp

m
†
(2)1ipz

x(1)2is

−t
(XM)
Xp−Ms

m
†
(2)1isx(1)2ipz

+ t (XM)
π

∑
α=x,y

m
†
(2)1ipα

x(1)2ipα

− t (XM)
σ m

†
(2)1ipz

x(1)2ipz

]
+ H.c. (19)

The creation and annihilation operators now have additional
indices for layers and sublayers, e.g., x

(†)
(n)2is annihilates

(creates) an electron on layer n (n = 1,2), atom X, in sublayer
2, in orbital s. The sum over i runs over all unit cells in
the crystal. We denote interlayer hopping parameters with a
lowercase t . For the other M-X interlayer interaction we have

HM1,X2 =
∑
〈i,j〉

[
t (MX)
ss x

†
(2)1jsm(1)2is +

∑
α

R
M(1)2iX(2)1j

α

(
t

(MX)
Mp−Xsx

†
(2)1jsm(1)2ipα

− t
(MX)
Ms−Xpx

†
(2)1jpα

m(1)2is

)

+
∑
α,β

(
δαβt (MX)

π − (
t (MX)
σ + t (MX)

π

)
R

M(1)2iX(2)1j

α R
M(1)2iX(2)1j

β

)
x
†
(2)1jpβ

m(1)2ipα

]
+ H.c., (20)

while X-X hoppings are included in the form

HX1,X2 =
∑
〈i,j〉

[
t (XX)
ss x

†
(2)1jsx(1)2is +

∑
α

R
X(1)2iX(2)1j

α t (XX)
sp

(
x
†
(2)1jsx(1)2ipα

− x
†
(2)1jpα

x(1)2is

)

+
∑
α,β

(
δαβt (XX)

π − (
t (XX)
σ + t (XX)

π

)
R

X(1)2iX(2)1j

α R
X(1)2iX(2)1j

β

)
x
†
(2)1jpβ

x(1)2ipα

]
+ H.c., (21)

where the sums over 〈i,j 〉 are over nearest-neighboring X-X
pairs and next-nearest-neighboring M-X pairs in adjacent sub-
layers. The interlayer interactions which are added to the model
increase the number of parameters by 14. When expressed in
matrix form in a k-space basis, the bilayer model gives a 32 ×
32 matrix, which we diagonalize to obtain a set of 32 bands.

-3

-2

-1

 0

 1

Γ K M Γ

E
ne

rg
y 

(e
V

)

LDA SOC

FIG. 4. LDA band structure of 1L-InSe with spin-orbit coupling
taken into account.

To obtain the parameters, we fit the TB band structure
to the DFT band structure of bilayer InSe obtained within
the local density approximation. In the DFT calculation the
monolayer geometry was kept fixed and the interlayer distance
set to 8.32 Å, which corresponds to the experimentally
known separation in γ -InSe [16]. We search for the ideal
set of interlayer hopping parameters to achieve the best least
squares fit between the two band structures while keeping
the interlayer hopping parameters obtained in the monolayer
model unchanged. In the monolayer we fitted the model to
DFT data for 7 bands near the Fermi level. In the bilayer these
bands split into subbands forming 14 bands in total, all of
which are taken into account in the fitting procedure. As in
the monolayer, we fit to the scissor-corrected DFT data, since
the dependence of the optical transition matrix elements on N

is significantly affected by the size of the band gap—this is
explored in detail in Appendix C.

The results of the fitting are presented alongside the DFT
data for bilayer γ -InSe in Fig. 5, with the interlayer TB
parameters given in Table III. We highlight the 8 bands
derived from the monolayer bands c, v, v1, and v2; we
label these c′, c, v, v1, v

′
1, v2, v

′, and v′
2. The zero of energy

is set at the bottom of the conduction band. We provide
the orbital decomposition of the �-point wave functions
in Table IV.
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FIG. 5. Band structures from DFT (dotted lines) and TB (solid
lines with scissor correction and dashed lines without it) for bilayer
γ -InSe. Zero of energy is set to the bottom of the conduction band.
The left hand axis shows the scissor corrected DFT energies, the right
hand the original energies. The inset shows a magnified view of the
�-point region in the valence band.

V. TB MODEL FOR FEW-LAYER InSe:
2D BANDS AND GAPS

Applying our TB model to few-layer InSe requires the
generalization of the bilayer model as follows. As in the

TABLE III. Interlayer hopping parameters (eV) for scissor-
corrected γ -InSe as defined in the Hamiltonian [Eq. (18)].

t (XX)
ss t (XX)

sp t (XX)
π t (XX)

σ

−0.647 −0.626 −0.137 −0.830

t (MX)
ss t

(MX)
Xs−Mpz

t
(MX)
Xpz−Ms

t (MX)
π t (MX)

σ

−0.397 0.112 −0.734 0.193 0.011

t (XM)
ss t

(XM)
Xs−Mpz

t
(XM)
Xpz−Ms

t (XM)
π t (XM)

σ

−0.238 0.042 −0.233 −0.398 0.450

bilayer, we consider the interactions between the nearest-
neighboring X-X pairs and nearest and next-nearest M-X pairs
on adjacent monolayers. This gives us a Hamiltonian of the
form

H =
N∑

n=1

Hn +
N−1∑
n=1

Hn,n+1, (22)

where N is the total number of layers, Hn is the monolayer
Hamiltonian on layer n as set out above, and Hn,n+1 takes into
account interlayer interactions between adjacent layers n and
n + 1. It has the form

Hn,n+1 = HXn,Mn+1 + HMn,Xn+1 + HXn,Xn+1 . (23)

The vertical M-X contribution is

HXn,Mn+1 =
∑

i

[
t (XM)
ss m

†
(n+1)1isx(n)2is + t

(XM)
Xs−Mp

m
†
(n+1)1ipz

x(n)2is − t
(XM)
Xp−Ms

m
†
(n+1)1isx(n)2ipz

+ t (XM)
π

∑
α=x,y

m
†
(n+1)1ipα

x(n)2ipα
− t (XM)

σ m
†
(n+1)1ipz

x(n)2ipz

]
+ H.c. (24)

For the other M-X interlayer interaction we have

HMn,Xn+1 =
∑
〈i,j〉

[
t (MX)
ss x

†
(n+1)1jsm(n)2is +

∑
α

R
M(n)2iX(n+1)1j

α

(
t

(MX)
Mp−Xsx

†
(n+1)1jsm(n)2ipα

− t
(MX)
Ms−Xpx

†
(n+1)1jpα

m(n)2is

)

+
∑
α,β

(
δαβt (MX)

π − (
t (MX)
σ + t (MX)

π

)
R

M(n)2iX(n+1)1j

α R
M(n)2iX(n+1)1j

β

)
x
†
(n+1)1jpβ

m(n)2ipα

]
+ H.c., (25)

while X-X hoppings are included in the form

HXn,Xn+1 =
∑
〈i,j〉

[
t (XX)
ss x

†
(n+1)1jsx(n)2is +

∑
α

R
X(n)2iX(n+1)1j

α t (XX)
sp

(
x
†
(n+1)1jsx(n)2ipα

− x
†
(n+1)1jpα

x(n)2is

)

+
∑
α,β

(
δαβt (XX)

π − (
t (XX)
σ + t (XX)

π

)
R

X(n)2iX(n+1)1j

α R
X(n)2iX(n+1)1j

β

)
x
†
(n+1)1jpβ

x(n)2ipα

]
+ H.c., (26)

where the sums over 〈i,j 〉 are over nearest-neighboring X-X
pairs and next-nearest-neighboring M-X pairs in adjacent
sublayers. When expressed in matrix form in a k-space basis,
the N -layer model gives a 16N × 16N matrix, which we
diagonalize to obtain a set of 16N bands. The matrix elements
are given in the Appendixes.

For the parametrization of the model we retain the hopping
parameters from the bilayer model, corresponding to the
approximation that the TB parameters will be the same for all
values of N . Figure 6 shows the results of this extrapolation
of the TB model to N = 3, 4, and 5.
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TABLE IV. Relative weights on the valence s and p orbitals of In and Se atoms in two-layer InSe at the � point, for the bands labeled in
Fig. 5. The equivalent contribution found in the scissor corrected TB model is given in square brackets. Atoms are listed from bottom to top of
2L crystal. Band energies are provided relative to the lowest conduction band edge (c). EDFT is the �-point energy value obtained using DFT
and EDFT-SC = EDFT − δE0 K

g is the value obtained after subtracting the scissor correction. The bands v1, v
′
1, v2, and v′

2 are double degenerate
at the � point. The energies corresponding to �ωA and �ωB are marked in bold.

c′ c v v1 v′
1 v2 v′ v′

2

EDFT (eV) 0.69 0.00 –1.21 –1.81 –1.88 –1.91 –2.00 –2.03
EDFT-SC (eV) –2.20 –2.80 –2.87 –2.90 –2.99 –3.02
Se1 0.06[0.00]s 0.05[0.00]s 0.01[0.01]s 0.06[0.07]px(y) 0.20[0.06]px(y) 0.15[0.36]px(y) 0.00[0.01]s 0.01[0.00]px(y)

0.03[0.07]pz 0.11[0.15]pz 0.18[0.23]pz 0.16[0.14]pz

In1 0.10[0.05]s 0.12[0.11]s 0.03[0.07]s 0.01[0.00]px(y) 0.04[0.01]px(y) 0.03[0.00]px(y) 0.00[0.03]s 0.00[0.00]px(y)

0.06[0.05]pz 0.00[0.07]pz 0.06[0.01]pz 0.07[0.02]pz

In2 0.06[0.09]s 0.12[0.07]s 0.00[0.03]s 0.03[0.01]px(y) 0.00[0.00]px(y) 0.01[0.00]px(y) 0.05[0.08]s 0.03[0.01]px(y)

0.00[0.07]pz 0.02[0.05]pz 0.07[0.02]pz 0.06[0.01]pz

Se2 0.01[0.00]s 0.07[0.00]s 0.01[0.01]s 0.17[0.22]px(y) 0.01[0.01]px(y) 0.05[0.04]px(y) 0.02[0.01]s 0.19[0.21]px(y)

0.16[0.17]pz 0.03[0.07]pz 0.14[0.15]pz 0.15[0.19]pz

Se3 0.01[0.00]s 0.06[0.00]s 0.01[0.01]s 0.16[0.19]px(y) 0.02[0.01]px(y) 0.04[0.03]px(y) 0.02[0.01]s 0.20[0.25]px(y)

0.16[0.18]pz 0.04[0.07]pz 0.14[0.15]pz 0.15[0.19]pz

In3 0.06[0.07]s 0.11[0.08]s 0.00[0.02]s 0.03[0.00]px(y) 0.00[0.00]px(y) 0.01[0.00]px(y) 0.05[0.10]s 0.04[0.01]px(y)

0.01[0.03]pz 0.02[0.07]pz 0.08[0.02]pz 0.06[0.01]pz

In4 0.11[0.07]s 0.11[0.09]s 0.04[0.07]s 0.01[0.00]px(y) 0.03[0.00]px(y) 0.04[0.00]px(y) 0.00[0.04]s 0.00[0.00]px(y)

0.07[0.08]pz 0.00[0.05]pz 0.06[0.00]pz 0.07[0.02]pz

Se4 0.07[0.00]s 0.05[0.00]s 0.01[0.00]s 0.04[0.01]px(y) 0.19[0.40]px(y) 0.17[0.06]px(y) 0.00[0.01]s 0.02[0.02]px(y)

0.04[0.07]pz 0.10[0.14]pz 0.19[0.22]pz 0.16[0.15]pz

The bottom right panel of Fig. 6 shows the vertical band
gaps at � according to the TB model at varying number of
layers. If the band structure of bulk γ -InSe is available along

kz, one can extract the effective masses along the kz axis in
the valence and conduction band, m∗

vz and m∗
cz, respectively,

and use these to apply the kz size-quantization gap model to

FIG. 6. TB band structures for N = 3, 4, and 5 layer γ -InSe. Zero of energy is set to the bottom of the conduction band. The bottom right
panel shows the dependence of the vertical gap at the � point relative to the bulk material on the number of layers in N -layer InSe, compared
with a fit to the modified kz size-quantization gap model, Eq. (27).
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approximate the expected gap for an N -layer structure, Eg(N ).
This approximation strictly speaking only works for N � 1,
but can be easily extended to few-layer materials using the
following asymptotic formula:

Eg(N ) = Eg(∞) + �
2

2m∗
r

[
π

az

1

(N + N0)

]2

, (27)

with m∗
r = m∗

czm
∗
vz

m∗
cz+m∗

vz
= 0.032me; N0 = 2.28, obtained from

fitting to vertical gaps from the TB model. The parameter
N0 is present to allow the model to retain its validity at a
small number of layers, in which case the traditional effective
mass model would need to be used with a general boundary
condition, ∂zψ = αψ , to take into account that the wave
function is pushed to the surface of the few-layer slabs, as
we see in the wave functions calculated using the TB model.
The behavior described by Eq. (27) is shown by a solid line in
the right-hand lower panel in Fig. 6.

VI. FOUR-BAND k · p THEORY FOR N-LAYER InSe
AND INTERBAND OPTICAL TRANSITIONS

In the following we present a simple k · p model for the
c, v, v1, and v2 bands in Fig. 2. In monolayer InSe these bands
can be assigned the irreducible representations of point group
D3h as seen in Fig. 2. The 4-band k · p Hamiltonian can be
written as

H =

⎛
⎜⎜⎜⎝

Hc
�αN e

cme
k · A + Ezdz

�βN e

cme
A 0

�αN e

cme
k · A + Ezdz Hv 0 0

�βNe

cme
A 0 Hv1 0

0 0 0 Hv2

⎞
⎟⎟⎟⎠,

(28)

where the diagonal components are the single band k · p
Hamiltonians for the bands c, v, v1, and v2 as discussed
below, while the off-diagonal components correspond to the
interaction between the electrons and photons required to
describe optical transitions between the bands c and v, as well
as between the bands c and v1. The one-band k · p description
of the valence and conduction band is a straightforward
polynomial expansion described below, while for bands v1

and v2 a suitable two-component Hamiltonian needs to be
constructed that describes both branches in each band.

The bottom of the conduction band in 1L-InSe is quadratic
in shape and can be described by the Hamiltonian

Hc = �
2k2/2mc + γcszk

3 cos(3φ) + κc(N )(k × s)lz, (29)

where k is the electron wave vector measured from the � point,
mc is the effective mass at the conduction band minimum
(listed in the caption of Fig. 7) and the second term in the
Hamiltonian describes the spin-orbit splitting in the vicinity
of the � point, and sz = ±1/2. The magnitude of the coupling

constant is γc = 1.49(1) eV Å
3

as found by fitting the energy
splitting between the two spin components in the conduction
band up to wave vectors less than 0.06 1/Å. The spin-orbit
splitting according to the local density approximation is
presented in Fig. 4. The lack of a splitting along the �-M
line is in agreement with the trigonal symmetry exhibited by
the second term in the k · p Hamiltonian in Eq. (29). The last

term in Eq. (29) appears in NL-InSe only for N > 1 and is
present due to the breaking of the mirror-plane symmetry. The
coefficient κc is expected to depend on the number of layers.

The N highest valence bands in NL-InSe are “sombrero-
shaped” [39]. The highest valence band can be fitted around the
� point with an eighth order polynomial function as follows:

Hv(k,φ) = Ev + E2k
2 + E4k

4

+E6k
6 + E8k

8 + E′
6k

6 cos(6φ)

+ γvszk
3 cos(3φ) + κv(N )(k × s)lz, (30)

where the E′
6 coefficient describes the hexagonal anisotropy.

The fitted parameters are summarized in Table V. Note that the
valence band takes the shape of an inverted sombrero which
has been demonstrated to lead to a Lifshitz transition upon
hole doping in the monolayer [39]. The sombrero shape and
the associated Lifshitz transition persists with increasing N but
slowly vanishes as we approach the bulk limit. Accordingly,
the critical carrier density required to achieve the transition
decreases with increasing N , as shown in Table V.

The last two terms in Eq. (30) describe the spin-orbit
splitting similar to Eq. (29). The magnitude of γv according to
a fit to the spin-orbit splitting in 1L-InSe for wave vectors less

than 0.06 1/Å is γv = 3.11(5) eV Å
3
. Note that the polynomial

fit is valid in a 4–5 times larger range than the fit for the
spin-orbit splitting.

The bands v1 and v2 are double degenerate at the � point
and can each be described by a two-component k · p model as
described by the Hamiltonian

Hv1(2) = Ev1(2) + k2

2m
+ k2

x − k2
y

2m′ σx + 2kxky

2m′ σy, (31)

where σx(y) are the Pauli matrices. This Hamiltonian trans-
forms according to the E irrep of the symmetry group C3v (see
Fig. 2). Equation (31) can be fitted to the DFT band structure to
obtain the effective masses. In the band v1 we obtain m = 0.31
and m′ = 0.45, and in the band v2 we obtain m = 0.30 and
m′ = 0.45 in units of me.

In Fig. 7(a) we show the energies of the A and B optical
transitions at the � point (energies |Ev| and Ev1, respectively),
where we apply the low-temperature scissor correction to the
transition energies as discussed in Sec. III B. On the right
hand side we show the same data with T = 300 K scissor
corrections for reference to room temperature measurements.
The scissor corrected transition energies are summarized in
the caption of Fig. 7.

To describe the coupling of the principal interband transi-
tion, A, between the conduction (c) and valence (v) bands to
an in-plane vector potential A carried by an incoming photon,
A · P, we rely on the following formula for the interband
momentum operator P [50]:

Pcv(k) = 〈c| P |v〉 = me

�
〈c| ∇kH |v〉

= me

�

∑
o,o′

C∗
ck(o)Cvk(o′)∇kHo,o′ (k), (32)

where the sum over o,o′ runs over the orbitals in the
model, Cc(v)k(o) is the coefficient of the eigenfunction of the
conduction (valence) band, orbital o, at k,Ho,o′ = 〈o| H |o′〉,
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FIG. 7. Transition properties of band edge excitations. (a) Dependence of the energies of the principal transitions A and B on the number
of layers N in few-layer InSe according to DFT, with scissor corrections applied at T = 0 K (left hand axis) and T = 300 K (right hand axis),
in comparison to experimental data measured at T = 300 K taken from Ref. [37]. (b) TB matrix elements for the x and y components of the
interband momentum for the A line for N = 2, 3, 4, and 5 layer γ -InSe. (c) The dz matrix element and β, and (d) the absorption coefficient,
gA(θ ) for incoming light arriving at the angle θ = π/4 as a function of the number of layers N and gB at θ = π/2 for in-plane polarized light,
obtained using the scissor-corrected TB model.

and me is the free electron mass. We can therefore calculate
the interband momentum matrix element using the above TB
parametrization, with the matrix elements of the Hamiltonian
and the eigenfunctions of the valence and conduction bands
obtained directly from the TB model.

TABLE V. Parameters in Eq. (30) after fitting to the topmost
valence band in the band structures of 1L, 2L, and 3L–InSe, with
the zero of energy set to the valence band edge. The critical carrier
density required to achieve the Lifshitz transition in the valence band
is given as nLT .

1L 2L 3L

E0 (eV) − 0.078 − 0.069 − 0.056

E2 eV Å
2
) 2.915 4.767 5.318

E4 (eV Å
4
) − 38.057 − 106.817 − 163.540

E6 (eV Å
6
) 206.551 896.029 1894.272

E′
6 (eV Å

6
) 3.050 5.658 6.500

E8 (eV Å
8
) − 450.034 − 2982.703 − 8844.573

nLT (1013 cm−2) 7.3 3.6 1.8

The TB matrix elements, seen in Fig. 7(b), are linear at
small k and the slope of this linear regime increases with
an increasing number of layers. The latter observation is in
line with the result that the momentum matrix element in the
monolayer is zero. The finding that the matrix element is linear
near the � point allows the introduction of the dimensionless
parameter α through the relation Pcv � �αk, which is taken
into account in Eq. (28).

For coupling to the electric field associated with out-of-
plane polarized light, we can also calculate the out-of-plane
dipole matrix element dz = e 〈c| z |v〉 between the valence and
the conduction band. Since the crystal is finite in the z direction
we calculate the dipole matrix element directly as

dz(k) = e 〈c| z |v〉 (k) = e
∑

o

C∗
ck(o)Cvk(o)z(o), (33)

where the sum over o is over all orbitals in the unit cell,
Cc(v)k(o) is the coefficient of the conduction (valence) band
eigenfunction for orbital o at k, and z(o) is the z coordinate,
with respect to the mean plane of the crystal, of the atom on
which orbital o sits.

The optical absorption coefficient for band edge absorption
can be calculated from dz using Fermi’s golden rule. A
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TABLE VI. Below we list the DFT-calculated energy gap EDFT
A/B and transition energies �ω0 K

A/B and �ω300 K
A/B obtained using scissor correction

at low and room temperature, the conduction band effective mass (mc in units of the free electron mass), the parameters α and β for the A and
B transitions, and the values of dz, for N = 1,2,3.

N EDFT
A/B (eV) �ω0 K

A/B (eV) �ω300 K
A/B (eV) mc (me) α β (�/Å) |dz| (e Å)

1 1.602/1.933 2.734/3.066 2.584/2.916 0.188 0.000 1.096 1.68
2 1.031/1.695 2.164/2.827 2.014/2.677 0.148 0.082 1.055 2.87
3 0.796/1.601 1.929/2.734 1.779/2.584 0.132 0.132 1.119 3.72

perturbation of Ezdz where Ez is the electric field of the
incoming photon, the rate of energy absorption in a material
of dipole moment dz is

�W = �ω
2π

�
gSE

2
z d

2
z

∑
p

δ(εc(p) − εv(p) − �ω), (34)

where �ω is the photon energy, gS = 2, and εc(p) and εv(p)
are the band edge dispersions in the conduction and the
valence band, respectively, as determined by k · p theory. The
absorption coefficient g(θ ) as a function of the angle θ between
the incoming photon and the surface can be calculated simply
by dividing �W by the absorbed energy, which is the flux of
the Poynting vector over the visible area of the unit cell,

Wtot = A sin(θ )
c

4π
E2

z

1

cos(θ )
, (35)

where A is the unit cell area. Evaluating this expression yields
for the absorption at �

gA(θ ) = 8π
e2

�c
|dz/e|2 �ωmc

�2
cot(θ ), (36)

where mc is the conduction band effective mass.
For coupling of the transition between bands c and v1, B,

with in-plane polarized light, A · P, we evaluate P as

Pcv1 = me

�

∑
o,o′

C∗
ck(o)Cv1k(o′)∇kHo,o′ (k), (37)

from which we find how the transition B absorbs in-plane
polarized light, at �,

gB = 8π
e2

�c
β2 mc

�ωm2
e

, (38)

where β = |Pcv(1)| has finite values at �, listed in the caption
to Fig. 7 for N = 1,2,3. In Fig. 7(d) we show the dependence
of gA(θ = π/4) and gB on the number of layers N ; while
gA exhibits a strong dependence on N, gB is almost constant.
(See Table VI.)

VII. CONCLUSIONS

We have developed a TB model to describe monolayer and
few-layer indium selenide which takes into account all s and
p orbitals of constituent atoms. We have used first principles
density functional theory to parametrize the model. We have
found that (i) inclusion of s and p orbitals and hoppings to
second-nearest neighbors is sufficient to describe the energies
of the bands near the band edge, (ii) the interband optical
matrix element obtained from our model exhibits a linear k

dependence in agreement with DFT calculations, and (iii) the
matrix element vanishes in the monolayer due to symmetry.

We used the model to find the optical absorption coefficient
in few-layer InSe: of the two principal optical transitions
the absorption coefficient of the lower energy transition
(A line), corresponding to band edge absorption between the
conduction and the valence band, slowly increases with the
number of layers, while the absorption for the higher energy
transition (B line) saturates quickly to ≈10%.

Also, we find that the conduction band electrons are
relatively light (m ∝ 0.14–0.18me), in contrast to an almost
flat dispersion of valence band holes near the � point,
which is found for up to N ∝ 6. The latter property of the
valence band suggests that this material may experience
a phase transition due to many-body effects into either a
ferromagnetic state as suggested for the similar material
GaSe [51], or into a Peierls-type charge density wave due to
a strong electron-phonon coupling [52].

The other members of the family of hexagonal III-VI
semiconductors, such as GaSe [53], have a similar crystal
structure in the monolayer, and the TB model in Sec. III could
be extended to cover these materials. However, few-layer GaSe
has a different consecutive layer arrangement; hence this will
be covered in a future work [54].
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APPENDIX A: MONOLAYER HAMILTONIAN
MATRIX ELEMENTS

1. Mirror plane symmetry

In a basis containing all s and p valence orbitals the
Hamiltonian will be a 16×16 matrix. We can reduce the system
to two 8×8 matrices by making use of the M1 symmetry
of the crystal structure, which will require that the wave
function be even or odd with respect to exchange of the two
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sublayers. We therefore construct a new basis from even and
odd combinations of our orbitals:

m
(±)
is

† = 1√
2
(m†

1is ± m
†
2is),

x
(±)
is

† = 1√
2
(x†

1is ± x
†
2is),

m
(±)
ipα

† = 1√
2
(m†

1ipα ± m
†
2ipα),

x
(±)
ipα

† = 1√
2
(x†

1ipα ± x
†
2ipα),

m
(±)
ipz

† = 1√
2
(m†

1ipz ∓ m
†
2ipz),

x
(±)
ipz

† = 1√
2
(x†

1ipz ∓ x
†
2ipz), (A1)

where α = x,y, and pz orbitals have an extra (−) sign on the
bottom sublayer contribution as the direction of pz is reversed
under M1. A matrix constructed in the above basis will be
block-diagonal, as mixing between even and odd states would
break M1 symmetry.

2. Representation

To calculate our Hamiltonian we express it in a k-space
basis, constructing a matrix with elements Hab = akHb

†
k,

where a
(†)
k and b

(†)
k are the annihilation (creation) operators

for the orbitals in our basis at wave vector k in the Brillouin
zone. The operators a

(†)
k can be expressed with the real space

annihilation (creation) operators a
(†)
i as

ak = 1√
Nlatt

∑
i

eik·Riai, (A2)

where Ri is the position of the real space orbital ai and Nlatt is
the number of lattice sites.

Relying on the symmetry adapted basis, we represent our
Hamiltonian as two 8×8 matrices in the k-space basis with
elements of the form

H
(±)
ab = a

(±)
k Hb

(±)†
k . (A3)

Now substituting in the original forms of the even and odd
basis, we get for two orbitals where neither are pz

H
(±)
ab = 1

2 [a1k ± a2k]H [b†1k ± b
†
2k]

= 1
2 [a1kHb

†
1k + a2kHb

†
2k ± a1kHb

†
2k ± a2kHb

†
1k].

(A4)

As the system and the Hamiltonian are even under M1 we
can observe that

a1kHb
†
1k = a2kHb

†
2k,

a1kHb
†
2k = a2kHb

†
1k, (A5)

and hence

H
(±)
ab = a1kHb

†
1k ± a2kHb

†
1k. (A6)

In the case where orbital a is pz we have

H
(±)
ab = a1kHb

†
1k ∓ a2kHb

†
1k. (A7)

We therefore need only consider H0, H11, and H12 in the
calculation of our Hamiltonian matrix. We can then diago-
nalize the even and odd parts of the Hamiltonian separately,
obtaining a set of 8 bands for each. The matrices have the form

H (±) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H
(±)
Ms,Ms

H
(±)
Ms,Mpx

H
(±)
Ms,Mpy

H
(±)
Ms,Mpz

H
(±)
Ms,Xs

H
(±)
Ms,Xpx

H
(±)
Ms,Xpy

H
(±)
Ms,Xpz

H
(±)∗
Ms,Mpx

H
(±)
Mpx,Mpx

H
(±)
Mpx,Mpy

H
(±)
Mpx,Mpz

H
(±)
Mpx,Xs

H
(±)
Mpx,Xpx

H
(±)
Mpx,Xpy

H
(±)
Mpx,Xpz

H
(±)∗
Ms,Mpy

H
(±)∗
Mpx,Mpy

H
(±)
Mpy,Mpy

H
(±)
Mpy,Mpz

H
(±)
Mpy,Xs

H
(±)
Mpy,Xpx

H
(±)
Mpy,Xpy

H
(±)
Mpy,Xpz

H
(±)∗
Ms,Mpz

H
(±)∗
Mpx,Mpz

H
(±)∗
Mpy,Mpz

H
(±)
Mpz,Mpz

H
(±)
Mpz,Xs

H
(±)
Mpz,Xpx

H
(±)
Mpz,Xpy

H
(±)
Mpz,Xpz

H
(±)∗
Ms,Xs

H
(±)∗
Mpx,Xs

H
(±)∗
Mpy,Xs

H
(±)∗
Mpz,Xs

H
(±)
Xs,Xs

H
(±)
Xs,Xpx

H
(±)
Xs,Xpy

H
(±)
Xs,Xpz

H
(±)∗
Ms,Xpx

H
(±)∗
Mpx,Xpx

H
(±)∗
Mpy,Xpx

H
(±)∗
Mpz,Xpx

H
(±)∗
Xs,Xpx

H
(±)
Xpx,Xpx

H
(±)
Xpx,Xpy

H
(±)
Xpx,Xpz

H
(±)∗
Ms,Xpy

H
(±)∗
Mpx,Xpy

H
(±)∗
Mpy,Xpy

H
(±)∗
Mpz,Xpy

H
(±)∗
Xs,Xpy

H
(±)∗
Xpx,Xpy

H
(±)
Xpy,Xpy

H
(±)
Xpy,Xpz

H
(±)∗
Ms,Xpz

H
(±)∗
Mpx,Xpz

H
(±)∗
Mpy,Xpz

H
(±)∗
Mpz,Xpz

H
(±)∗
Xs,Xpz

H
(±)∗
Xpx,Xpz

H
(±)∗
Xpy,Xpz

H
(±)
Xpz,Xpz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A8)

The elements are calculated as set out above. For the calcu-
lation of the Bloch phase factors we can reduce the hopping
vectors to three sets, as the Brillouin zone is two-dimensional.
These are for M-X hoppings

r1 =
[

0
− a√

3

]
, r2 =

[− a
2

a

2
√

3

]
, r3 =

[
a
2
a

2
√

3

]
, (A9)

and for M-M and X-X hoppings between ions in the
same sublayer (k · x = 0 for M-M hopping between the two

sublayers, where the ions are directly above each other) there
are six such vectors

r4,7 = ±a1, r5,8 = ±a2, r6,9 = ±(a1 + a2). (A10)

For next-nearest M-X pairs (T (3)) we have

r10 =
[

0
2a√

3

]
, r11 =

[ −a

− a√
3

]
, r12 =

[
a

− a√
3

]
. (A11)
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The k dependence then appears in the model through combinations of the Bloch phase factors calculated using these vectors:

f1 = eik·r1 + eik·r2 + eik·r3 , f2 = eik·r2 − eik·r3 , f3 = eik·r2 + eik·r3 , f4 = 2eik·r1 − eik·r2 − eik·r3 ,

f5 = 4eik·r1 + eik·r2 + eik·r3 , f6 = 2[cos(k · r4) + cos(k · r5) + cos(k · r6)],

f7 = 2[cos(k · r4) + cos(k · r5) + 4 cos(k · r6)],

f8 = 2[cos(k · r4) + cos(k · r5)], f9 = 2[cos(k · r4) − cos(k · r5)],

f10 = 2i[sin(k · r4) + sin(k · r5) + 2 sin(k · r6)], f11 = 2i[sin(k · r4) − sin(k · r5)],

f12 = eik·r10 + eik·r11 + eik·r12 , f13 = eik·r11 − eik·r12 , f14 = eik·r11 + eik·r12 ,

f15 = 2eik·r10 − eik·r11 − eik·r12 , f16 = 4eik·r10 + eik·r11 + eik·r12 . (A12)

The symbols L1 and L2 are the magnitudes of the hopping vectors for M-X intra- and intersublayer hoppings, respectively, and
are given by

L1 =
√

a2

3
+ (dXX − dMM )2

4
, L2 =

√
a2

3
+ (dXX + dMM )2

4
, L3 =

√
a2 + d2

MM, L4 =
√

4a2

3
+ (dXX − dMM )2

4
. (A13)

The matrix elements are as follows.

a. Diagonal elements

H
(±)
Ms,Ms

= εMs ± T ′(1)
ss + f6

[
T (2M)

ss ± T ′(3)
ss

]
,

H
(±)
Mpx,Mpx

= εMpx
± T ′(1)

π + f6
[
T (2M)

π ± T ′(3)
π

] − f7

4

[
T (2M)

π + T (2M)
σ ± a2

L2
3

(
T ′(3)

π + T ′(3)
σ

)]
,

H
(±)
Mpy,Mpy

= εMpx
± T ′(1)

π + f6
[
T (2M)

π ± T ′(3)
π

] − 3f8

4

[
T (2M)

π + T (2M)
σ ± a2

L2
3

(
T ′(3)

π + T ′(3)
σ

)]
,

H
(±)
Mpz,Mpz

= εMpz
± T ′(1)

σ + f6

[
T (2M)

π ±
(

T ′(3)
π − d2

MM

L2
3

[
T ′(3)

π + T ′(3)
σ

])]
,

H
(±)
Xs,Xs

= εXs + f6T
(2X)
ss , H

(±)
Xpx,Xpx

= εXpx
+ f6T

(2X)
π − f7

4

(
T (2X)

π + T (2X)
σ

)
,

H
(±)
Xpy,Xpy

= εXpx
+ f6T

(2X)
π − 3f8

4

(
T (2X)

π + T (2X)
σ

)
, H

(±)
Xpz,Xpz

= εXpz
+ f6T

(2X)
π .

b. M-X off-diagonal elements

H
(±)
Ms,Xs

= f1
(
T (1)

ss ± T ′(2)
ss

) + f12T
(3)
ss ,

H
(±)
Ms,Xpx

= −f2a

2

[
T

(1)
Ms−Xp

L1
±

T
′(2)
Ms−Xp

L2

]
+ f13a

L4
T

(3)
Ms−Xp

,

H
(±)
Ms,Xpy

= f4a

2
√

3

[
T

(1)
Ms−Xp

L1
±

T
′(2)
Ms−Xp

L2

]
− f15a

L4

√
3
T

(3)
Ms−Xp

,

H
(±)
Ms,Xpz

= −f1

2

[
(dXX − dMM )T (1)

Ms−Xp

L1
±

(dXX + dMM )T ′(2)
Ms−Xp

L2

]
− f12(dXX − dMM )

2L4
T

(3)
Ms−Xp

,

H
(±)
Mpx,Xs

= f2a

2

[
T

(1)
Mp−Xs

L1
±

T
′(2)
Mp−Xs

L2

]
− f13a

L4
T

(3)
Mp−Xs

,

H
(±)
Mpy,Xs

= − f4a

2
√

3

[
T

(1)
Mp−Xs

L1
±

T
′(2)
Mp−Xs

L2

]
+ f15a

L4

√
3
T

(3)
Mp−Xs

,
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H
(±)
Mpz,Xs

= f1

2

[
(dXX − dMM )T (1)

Mp−Xs

L1
∓

(dXX + dMM )T ′(2)
Mp−Xs

L2

]
+ f12(dXX − dMM )

2L4
T

(3)
Mp−Xs

,

H
(±)
Mpx,Xpx

= f1
(
T (1)

π ± T ′(2)
π

) − f3a
2

4

[
T (1)

π + T (1)
σ

L2
1

± T ′(2)
π + T ′(2)

σ

L2
2

]
+ f12T

(3)
π −

[
f14a

2

L2
4

(
T (3)

π + T (3)
σ

)]
,

H
(±)
Mpy,Xpy

= f1
(
T (1)

π ± T ′(2)
π

) − f5a
2

12

[
T (1)

π + T (1)
σ

L2
1

± T ′(2)
π + T ′(2)

σ

L2
2

]
+ f12T

(3)
π −

[
f16a

2

L2
4

(
T (3)

π + T (3)
σ

)]
,

H
(±)
Mpz,Xpz

= f1

[
T (1)

π ∓ T ′(2)
π −

(
dXX − dMM

2L1

)2(
T (1)

π + T (1)
σ

) ±
(

dXX + dMM

2L2

)2(
T ′(2)

π + T ′(2)
σ

)]

+ f12

[
T (3)

π −
(

dXX − dMM

2L4

)2(
T (3)

π + T (3)
σ

)]
,

H
(±)
Mpx,Xpy

= HMpy,Xpx
= −f2a

2

4
√

3

[
T (1)

π + T (1)
σ

L2
1

± T ′(2)
π + T ′(2)

σ

L2
2

]
− f13a

2

L2
4

√
3

(
T (3)

π + T (3)
σ

)
,

H
(±)
Mpx,Xpz

= −f2a

4

[
(dXX − dMM )

(
T (1)

π + T (1)
σ

)
L2

1

± (dXX + dMM )
(
T ′(2)

π + T ′(2)
σ

)
L2

2

]
+ f13a(dXX − dMM )

2L2
4

(
T (3)

π + T (3)
σ

)
,

HMpz,Xpx
= −f2a

4

[
(dXX − dMM )

(
T (1)

π + T (1)
σ

)
L2

1

∓ (dXX + dMM )
(
T ′(2)

π + T ′(2)
σ

)
L2

2

]
+ f13a(dXX − dMM )

2L2
4

(
T (3)

π + T (3)
σ

)
,

H
(±)
Mpy,Xpz

= f4a

4
√

3

[
(dXX − dMM )

(
T (1)

π + T (1)
σ

)
L2

1

± (dXX + dMM )
(
T ′(2)

π + T ′(2)
σ

)
L2

2

]
− f15a(dXX − dMM )

2
√

3L2
4

(
T (3)

π + T (3)
σ

)
,

HMpz,Xpy
= f4a

4
√

3

[
(dXX − dMM )

(
T (1)

π + T (1)
σ

)
L2

1

∓ (dXX + dMM )
(
T ′(2)

π + T ′(2)
σ

)
L2

2

]
− f15a(dXX − dMM )

2
√

3L2
4

(
T (3)

π + T (3)
σ

)
.

c. M-M, X-X off-diagonal elements

H
(±)
Ms,Mpx

= −f10

2

[
T (2M)

sp ± a

L3
T (3)

sp

]
,

H
(±)
Ms,Mpy

= −f11

√
3

2

[
T (2M)

sp ± a

L3
T (3)

sp

]
,

H
(±)
Ms,Mpz

= ∓
[
T ′(1M)

sp + f6
dMM

L3
T (3)

sp

]
,

H
(±)
Mpx,Mpy

= −f9

√
3

4

[
T (2M)

π + T (2M)
σ ± (

T (3)
π + T (3)

σ

)]
,

H
(±)
Mpx,Mpz

= ∓f10dMMa

2L2
3

[
T (3)

π + T (3)
σ

]
,

H
(±)
Mpy,Mpz

= ∓f9dMMa

2L2
3

[
T (3)

π + T (3)
σ

]
,

H
(±)
Xs,Xpx

= −f10

2
T (2X)

sp ,

H
(±)
Xs,Xpy

= −f11

√
3

2
T (2X)

sp ,

H
(±)
Xpx,Xpy

= −f9

√
3

4

(
T (2X)

π + T (2X)
σ

)
,

H
(±)
Xs,Xpz

= H
(±)
Xpx,Xpz

= H
(±)
Xpy,Xpz

= 0.

APPENDIX B: INTERLAYER HAMILTONIAN
MATRIX ELEMENTS

The Hamiltonian for bilayer γ -InSe is expressed in the form

H =
[
H1L Hc

H
†
c H1L

]
, (B1)

where H1L is the 16 × 16 monolayer Hamiltonian, expressed
in the original atomic basis (M1,M2, X1, X2, as opposed to
the even/odd basis used above), and Hc includes the interlayer
interactions. We write Hc as

Hc =

⎡
⎢⎣

0 0 0 0
0 0 HM(1)2,X(2)1 0
0 0 0 0

HX(1)2,M(2)1 0 HX(1)2,X(2)1 0

⎤
⎥⎦, (B2)

where HX(1)2,M(2)1 represents the vertical M-X interactions, and
has the form

HX(1)2,M(2)1 =

⎡
⎢⎣

Xs,Ms 0 0 Xs,Mpz

0 0 0 0
0 0 0 0

Xpz
,Ms 0 0 Xpz

,Mpz

⎤
⎥⎦. (B3)

The elements themselves are

Xs,Ms = t (XM)
ss , (B4)

Xs,Mpz
= t

(XM)
Xs−Mpz

, (B5)
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Xpz
,Ms = −t

(XM)
Xpz −Ms

, (B6)

Xpx
,Mpx

= Xpy
,Mpy

= t (XM)
π , (B7)

Xpz
,Mpz

= −t (XM)
σ . (B8)

HX(1)2,X(2)1 represents the X-X interactions, with

HX(1)2,X(2)1 =

⎡
⎢⎢⎣

Xs,Xs Xs,Xpx
Xs,Xpy

Xs,Xpz

Xpx
,Xs Xpx

,Xpx
Xpx

,Xpy
Xpx

,Xpz

Xpy
,Xs Xpy

,Xpx
Xpy

,Xpy
Xpy

,Xpz

Xpz
,Xs Xpz

,Xpx
Xpz

,Xpy
Xpz

,Xpz

⎤
⎥⎥⎦.

(B9)

In the expressions for the elements, Lc is the length of the
interlayer X-X hop, and is given by

Lc =
√

a2

3
+ (az − dXX)2. (B10)

The elements are

Xs,Xs = f1t
(XX)
ss , Xs,Xpx

= −f2
a

2Lc

t (XX)
sp ,

Xs,Xpy
= f4

a

2
√

3Lc

t (XX)
sp , Xs,Xpz

= f1
az − dXX

2Lc

t (XX)
sp ,

Xpx
,Xs = −Xs,Xpx

, Xpy
,Xs = −Xs,Xpy

,

Xpz
,Xs = −Xs,Xpz

,

Xpx
,Xpx

= f1t
(XX)
π − f3

[
a

2Lc

]2(
t (XX)
π + t (XX)

σ

)
,

Xpy
,Xpy

= f1t
(XX)
π − f5

[
a

2
√

3Lc

]2(
t (XX)
π + t (XX)

σ

)
,

Xpz
,Xpz

= f1

[
t (XX)
π −

[
az − dXX

Lc

]2(
t (XX)
π + t (XX)

σ

)]
,

Xpx
,Xpy

= − f2√
3

[
a

2Lc

]2(
t (XX)
π + t (XX)

σ

)
,

Xpx
,Xpz

= f2
a(az − dXX)

(2Lc)2

(
t (XX)
π + t (XX)

σ

)
,

Xpy
,Xpz

= − f4√
3

a(az − dXX)

(2Lc)2

(
t (XX)
π + t (XX)

σ

)
,

Xpy
,Xpx

= Xpx
,Xpy

, Xpz
,Xpx

= Xpx
,Xpz

,

Xpz
,Xpy

= Xpy
,Xpz

. (B11)

In the case of the nonvertical M-X hops we have

HM(1)2,X(2)1 =

⎡
⎢⎢⎢⎣

Ms,Xs Ms,Xpx
Ms,Xpy

Ms,Xpz

Mpx
,Xs Mpx

,Xpx
Mpx

,Xpy
Mpx

,Xpz

Mpy
,Xs Mpy

,Xpx
Mpy

,Xpy
Mpy

,Xpz

Mpz
,Xs Mpz

,Xpx
Mpz

,Xpy
Mpz

,Xpz

⎤
⎥⎥⎥⎦,

(B12)

with matrix elements

Ms,Xs = f ∗
1 t (MX)

ss , Ms,Xpx
= f ∗

2
a

2LM

t
(MX)
Ms−Xp,

Ms,Xpy
= −f ∗

4
a

2
√

3LM

t
(MX)
Ms−Xp,

Ms,Xpz
= f ∗

1

az − 1
2 (dXX + dMM )

2LM

t
(MX)
Ms−Xp,

Mpx
,Xs = −f ∗

2
a

2LM

t
(MX)
Mp−Xs,

Mpy
,Xs = f ∗

4
a

2
√

3LM

t
(MX)
Mp−Xs,

Mpz
,Xs = −f ∗

1

az − 1
2 (dXX + dMM )

2LM

t
(MX)
Mp−Xs,

Mpx
,Xpx

= f1t
(MX)
π − f ∗

3

[
a

2LM

]2(
t (MX)
π + t (MX)

σ

)
,

Mpy
,Xpy

= f1t
(MX)
π − f ∗

5

[
a

2
√

3LM

]2(
t (MX)
π + t (MX)

σ

)
,

Mpz
,Xpz

= f ∗
1 t (MX)

π

− f ∗
1

(
az − 1

2 (dXX + dMM )
)2

L2
M

(
t (MX)
π + t (MX)

σ

)
,

Mpx
,Xpy

= − f ∗
2√
3

[
a

2LM

]2(
t (MX)
π + t (MX)

σ

)
,

Mpx
,Xpz

= −f ∗
2

a
(
az − 1

2 (dXX + dMM )
)

(2LM )2

(
t (MX)
π + t (MX)

σ

)
,

Mpy
,Xpz

= f ∗
4√
3

a
(
az − 1

2 (dXX + dMM )
)

(2LM )2

(
t (MX)
π + t (MX)

σ

)
,

Mpy
,Xpx

= Mpx
,Xpy

, Mpz
,Xpx

= Mpx
,Xpz

,

Mpz
,Xpy

= Mpy
,Xpz

, (B13)

where the length of the hop LM is given by

LM =
√

a2

3
+

(
az − 1

2
(dXX + dMM )

)2

. (B14)

For greater numbers of layers we build up the matrix such
that H1L is on the diagonal blocks, with adjacent diagonal
blocks connected by Hc and H

†
c .

APPENDIX C: COMPARISON BETWEEN SCISSOR
CORRECTED TB, UNCORRECTED TB, AND DFT

OPTICAL MATRIX ELEMENTS

For comparison, we also obtain the matrix elements from
density functional theory and from a TB model without scissor
correction. In a DFT calculation utilizing a plane-wave basis,
the momentum matrix element is straightforward to calculate
as

Pcv(v1) =
∑

j

C ′∗
c,j · C ′

v(v1),j · Gj, (C1)

where C ′
c,j , C ′

v(v1),j , and Gj are the plane-wave coefficients
and the reciprocal lattice vectors taken into account in the
plane-wave basis set, respectively. dz is calculated in DFT by
real space integration on a sufficiently fine grid. The intralayer
TB parameters for the uncorrected model are given in Table I
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TABLE VII. Interlayer hopping parameters (eV) for γ -InSe,
without scissor correction, as defined in the Hamiltonian [Eq. (18)].

t (XX)
ss t (XX)

sp t (XX)
π t (XX)

σ

−0.731 −0.461 −0.119 −0.761

t (MX)
ss t

(MX)
Xs−Mpz

t
(MX)
Xpz−Ms

t (MX)
π t (MX)

σ

−0.152 0.072 −0.504 0.198 0.015

t (XM)
ss t

(XM)
Xs−Mpz

t
(XM)
Xpz−Ms

t (XM)
π t (XM)

σ

−0.332 0.042 −0.208 −0.393 0.347

in the main text, while the interlayer parameters are given in
Table VII.

In the main text we apply a scissor correction to the DFT
band structure in order to account for the underestimation of
the band gap. It should be noted that the scissor correction
is necessary for another reason as well. The TB model, when
fitted to DFT band structures without scissor correction, agrees
well with the DFT results for dz at small N see Fig. 9(a).
However, the extrapolation to large N is considerably larger,
and the saturation much slower, than that for the TB model
calculated with scissor correction. Likewise, the coefficient
of the linear regime (see Figs. 8 and 10) is also larger if
the scissor correction is omitted. In essence, uncorrected
DFT overestimates dz matrix elements, whereas the scissor
correction leads to a significant reduction in dz, and in turn a
reduced absorption.

The origin of the reduction in dz when applying the scissor
correction lies in the effect the scissor correction has on the
TB wave functions for N > 1. Figure 11(a) shows the modulus
square of the chalcogen pz TB wave function coefficients as
a function of the sublayer index in 19-layer InSe. The wave
function reduces towards the edge of the slab but a clear finite
value remains at the very edge, due to a substantial oscillation
in the coefficients, which gives a substantial contribution to
dz. Figure 11(b) shows the same wave function coefficients
after scissor correction. Note that the relative weight of
the coefficient at the edge has now decreased, as has the
aforementioned oscillation, which leads to an overall smaller
dz and a faster saturation with increasing N .

FIG. 8. Comparison between the TB and DFT matrix elements
for the x components of the interband momentum for N = 2, 3, 4,
and 5 layer γ -InSe.

FIG. 9. Comparison between the scissor corrected and uncor-
rected TB results for the dz matrix element (a) and the band edge
absorption (b).

The physics behind the reduction of the wave function at
the edge is the relative reduction of the interlayer interaction
as compared to the intralayer interaction, which is a direct
consequence of the scissor correction. By increasing the
gap without changing the bandwidth caused by interlayer
hopping, the intralayer hopping becomes stronger while the
interlayer hopping remains at the same magnitude. This can
be understood within a chain model, which we discuss below.

The core message here is that the scissor correction has
an effect on the wave functions and in turn on the optical
properties of InSe slabs, and should be taken into account
when modeling few-layer InSe.

APPENDIX D: CHAIN MODEL
FOR FEW-LAYER InSe AT �

The simplest way to describe a layered semiconductor is by
approximating each layer with a dimer, each atom hosting a
single basis orbital x1 and x2. In this case, the monolayer can be
described by a single hopping integral t and the Hamiltonian
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FIG. 10. Comparison between the scissor corrected and uncor-
rected TB results for the α parameter.

FIG. 11. Distribution of the Xpz TB wave function coefficients
along the slab in 19-layer InSe, without (a) and with (b) scissor
correction.

FIG. 12. Distribution of the wave function coefficients along the
slab in 19-layer InSe according to the chain model, with hopping
ratios t ′/t = 0.8 (a) and t ′/t = 0.4 (b).

will be

H = t
∑

i

x
†
2ix1i + H.c., (D1)

where x
(†)
2i annihilates (creates) an electron on sublayer 2, site

i. Expressed in matrix form the Hamiltonian is

H =
[

0 t

t 0

]
. (D2)

The Hamiltonian of a few-layer structure is

H =
∑

i

⎡
⎣t

∑
(n)

(x†
(n)2ix(n)1i) + t ′

N−1∑
(n)=1,2

(x†
(n)2ix(n+1)1i)

⎤
⎦ + H.c.,

(D3)

where (n) is the layer index, and the interlayer interaction is
described by the hop t ′. As an example, the matrix form of a
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bilayer can be written as

H =

⎡
⎢⎣

0 t 0 0
t 0 t ′ 0
0 t ′ 0 t

0 0 t 0

⎤
⎥⎦, (D4)

which has the following eigenvalues:

1
2 (t ′ +

√
4t2 + t ′2), 1

2 (−t ′ +
√

4t2 + t ′2),

1
2 (t ′ −

√
4t2 + t ′2), 1

2 (−t ′ −
√

4t2 + t ′2). (D5)

In this chain model, the ratio t ′/t characterizes the strength
of the interlayer interaction with respect to the intralayer
coupling. Let us now assume that we can describe few-layer
InSe with such a model, with some values for the two
hopping parameters obtained from DFT calculations. When
we implement a scissor correction, we leave the interlayer hop
t ′ unchanged, while we increase the magnitude of t since, in the
monolayer, the band gap from this model is simply 2t . Hence
a scissor correction translates to a decrease in the ratio t ′/t .

This finding allows us to demonstrate the qualitative effect
of the scissor correction. Figure 12 shows the modulus square
of the coefficients Cv/c of the chain model wave functions
in the valence and conduction band. Panel (a) corresponds to
t ′/t = 0.8, while panel (b) to t ′/t = 0.4. The visible reduction

FIG. 13. dz matrix element of few-layer InSe according to the
chain model, with hopping ratios t ′/t = 0.8 and t ′/t = 0.4.

of the wave function along the edges upon decreasing t ′/t

is in agreement with the effects of the scissor correction
on the full model (see Fig. 11). Similarly, if we now plot
the dz matrix element from the chain model (Fig. 13) we
find that the matrix element undergoes significant reduction
when we decrease t ′/t , just like it happened in the full
model when we implemented the scissor correction there
[see Fig. 10(a)].
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