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In this paper we develop a microscopic analysis of the light scattering on a periodic two-level atomic array
coupled to an optical nanofiber. We extend the scattering matrix approach for two-level system interaction with
nanofiber fundamental guided mode HE11, which allows us to model the scattering spectra. We support these
results by considering the dispersion of the polaritonic states formed by the superposition of the fundamental
mode of light HE11 and the atomic chain states. To illustrate our approach we start by considering a simple
model of light scattering over an atomic array in free space. We discuss Bragg diffraction in the atomic array and
show that the scattering spectrum is defined by the nonsymmetric coupling of a two-level system with nanofiber
and vacuum modes. The proposed method allows consideration of two-level system interactions with a full
account of dipole-dipole interactions via both near fields and long-range interaction owing to nanofiber mode
coupling.
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I. INTRODUCTION

Controlling interactions of quantum emitters with optical
nanostructures at the single-photon level is a key tool for the
realization of quantum technologies [1,2]. Most experimental
efforts focus on the reversible mapping of quantum states
between light and matter and the implementation of quantum
networking protocols using this interaction [3,4]. In this
context localization of photonic modes at the nanoscale object
opens a feasible route for on-chip quantum communica-
tion [5,6] and allows implementation of quantum networking
protocols [7,8]. At the same time the evanescent character of
the electromagnetic field manifested near a nano-object reveals
fundamentally new features of light-matter interactions [9,10].
It is supported by the recent experimental progress in coupling
single quantum sources to surface plasmon polaritons [11]
and to photonic crystal waveguide modes [12], as well as
by the results in neutral atoms trapped in the vicinity of an
optical nanofiber [13–15]. The latter system is a versatile
platform for achieving efficient light-atom coupling due to the
collective nature of atomic interaction with an evanescent field
of the single-photon mode [16]. This provides an exceptional
opportunity to develop new approaches to the study of optical
interactions of quantum many-body systems at the nanoscale
level.

From this perspective the interaction between a two-
level system and the evanescent field of the photonic mode
yields to the formation of mixed polaritonic states with a
modified dispersion relation [17,18]. Strong modification of
dispersion is observed in a system of coupled plasmonic
or dielectric resonators [19–22], which manifest themselves
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as classically coupled dipole-dipole particles. Nevertheless,
considering the cold-atomic system trapped in the vicin-
ity of an optical nanofiber the origin of the polaritonic
states and their dispersion is significantly overlooked. The
existing theoretical approaches are based on reflection and
transmission spectroscopy of an incident fiber mode [23].
Theoretical predictions [24,25], and experimental verifica-
tion [14] have shown that the spectral distribution of atomic
fluorescence is strongly affected by the presence of the
nanofiber. This has been experimentally examined [26,27]
by detecting Bragg diffraction in the atomic chain. Despite
its universality and technical convenience this approach does
not clarify the exact picture of atom-atom interaction in
the presence of a nanofiber, as it omits the exact details
of dipole-dipole coupling. This paper aims to eliminate
this gap by considering the eigenstates of the atomic array
coupled to the nanofiber modes, which manifest themselves
as polaritonic states. We apply the T -matrix method to
study the scattering of the nanofiber mode over the con-
structed polaritonic states. Contrary to the reflectance and
transmittance spectroscopy approach, this method can be
universally extended to an arbitrary dense atomic array. In
order to expose the full picture of the atom-photon interaction,
we start our consideration with single-photon scattering at
the atomic chain in vacuum and identifying the polaritonic
states.

The paper is organized as follows: in Sec. II we describe
in detail the theoretical approach to the considered problem in
the case of an atomic chain in vacuum and in the vicinity of a
nanofiber; in Sec. III we discuss the calculated scattering cross
sections and interpret them using a polaritonic band diagram;
and in Sec. IV we extend the approach to the case of the
nanofiber and observe strong backscattering into the nanofiber
mode when the Bragg condition is satisfied.
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FIG. 1. Light scattering on the 1D array of two-level atoms with
period �z. (a) A single photon with the polarization vector parallel
to the dipole moment of the atomic transition scatters and propagates
along the atomic chain axis. (b) The scattering of a quasicircularly
polarized single photon from the fundamental guided mode HE11 on
the array of atoms trapped in the vicinity of the optical nanofiber. All
atoms are positioned at the same distance �ρ from the fiber surface.
Inset: Dispersion of a photon in vacuum (solid red line), dielectric
with n = 2.1 (dashed blue line), and HE11 mode dispersion (solid
purple line).

II. THEORETICAL APPROACH

We consider light scattering on a one-dimensional (1D)
array of N two-level atoms with period �z and compare this
process for two systems: (i) the atomic chain in vacuum [see
Fig. 1(a)] and (ii) the atomic chain in the vicinity of an optical
silica nanofiber (n = 2.1) [see Fig. 1(b)]. In the first case we
consider single-photon scattering with a wave vector directed
along the atomic chain, and in the presence of a nanofiber
we consider the propagation of a guided light field in the
fundamental mode HE11 [Fig. 1(b)]. All atoms are placed
at the same distance �ρ = 0.3λ0 from the fiber surface with
radius ρc = 0.25λ0, which is a typical value for such systems
realized experimentally [15,28]. Here λ0 is the wavelength of
the atomic transition.

A. Interaction of a single photon with an atomic chain in
a vacuum

In microscopic quantum theory the light scattering process
can be described using the standard T -matrix formalism [29].
The total Hamiltonian Ĥ describing the interaction between
propagating light and the atomic chain can be expanded as the
sum of the nonperturbed part Ĥ0 and the interaction term V̂

such that Ĥ = Ĥ0 + V̂ , where

Ĥ0 =
∑

n

�ω0σ̂
+
n σ̂−

n +
∑

μ

�ωkâ
†
μâμ,

V̂ = −
∑

n

d̂nÊ(rn). (1)

Here the interaction part of the Hamiltonian V̂ is considered
in the dipole approximation, where d̂n is the transition dipole
moment operator of the nth atom, σ̂+

n = |en〉〈gn| and σ̂−
n =

|gn〉〈en| are raising and lowering atomic operators, â†
μ (âμ)

are the bosonic creation (annihilation) operators, the index μ

describes a particular field mode μ = (k,s), where k is the
wave vector, s = 1,2 denotes two orthogonal polarizations,
and Ê(rn) is the total microscopic electric-field operator, which
can be written as

Ê(r) =
∑

μ

√
2π�ωk

V
(ieμâμeikr + H.c.), (2)

where V is the quantization volume and eμ is the unit
polarization vector.

The T matrix then can be written in the form [29]

T̂ = V̂ + V̂ Ĝ(E + i0)V̂ , (3)

where Ĝ(z) = (z − Ĥ )−1 is the resolvent operator of the
total Hamiltonian. In accordance with the rotating-wave
approximation the matrix elements of the T̂ operator can be
found as a projection onto the Hilbert subspace of the vacuum
state for the field subsystem and the single excited state for the
atomic subsystem,

P̂ Ĝ(E)P̂ = P̂
1

E − Ĥ0 − �̂(E)
P̂ , (4)

where we have defined the projector operator as follows:

P̂ =
N∑

n=1

|g1, . . . ,en, . . . ,gN ; {0μ}〉〈{0μ}; g1, . . . ,en, . . . ,gN |.

(5)

In Eq. (4) we introduced the level-shift operator �̂ [29].
The form of this operator can be found as perturbative series
in powers of V̂ .

At the lowest order of the perturbation theory the operator
�̂ can be described by two contributions corresponding to
single-particle and the double-particle interactions [30]. The
single-particle contribution leads to the Lamb shift and the
finite lifetime of the atomic excited state, while the double-
particle contribution is responsible for the excitation transfer
between atoms.

Here we work in the resonant approximation, which allows
consideration of the scattering of a photon with a carrier
frequency ω close to the atomic transition frequancy ω0. In this
approximation �̂(E) is assumed to be a slowly varying func-
tion of the argument so that �̂(E) ≈ �̂(E0). The single- and
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double-particle contributions can be written as

�(nn)(E0) = �

(
�L − i

γ0

2

)
,

�(mn)(E0) = −d∗
m

[
eikR

R

((
1 + ikR − 1

k2R2

)
I

+ R ⊗ R
R2

· 3 − 3ikR − k2R2

k2R2

)]
dn, (6)

where �L is the Lamb shift, γ0 is the spontaneous emission
rate, k = ω/c is the wave number of a vacuum photon, R =
|rm − rn| is the distance between atom m and atom n, I is the
unit dyad, and ⊗ stands for the outer product.

Once the operator matrix �̂ is computed we can construct
the denominator in (4) and, by inverting it, obtain the matrix
for the projected resolvent and the T matrix. We are interested
in the scattering of the photon back into the same field mode,
which is an elastic scattering channel, corresponding to the
diagonal matrix element of the T matrix Tii(E).

In the case of a vacuum, this matrix element is connected
to the total scattering cross section according to the optical
theorem [30,31]: σtot(E) ∼ ImTii(E). In the presence of a
nanofiber this exact formula for the total scattering cross
section is not applicable. We introduce the quantity, which
shows the enhancement of the scattered energy in a chain of N

atoms, compared to the maximal energy scattered on a single
atom,

σN (E) = Im T
(N)
ii (E)

Im T
(1)
ii (Eres)

, (7)

where ImT
(1)
ii (Eres) corresponds to a resonant value of the T

matrix for a single photon scattering off a single atom.

B. Interaction of a guided light with an atomic chain in the
presence of a nanofiber

However, to correctly take into account the optical fiber we
need to modify the approach discussed in Sec. II A, and we do
this in two steps. First, we need to modify the “outer” operators
V̂ in Eq. (3), which are responsible for the absorption of the
incoming guided photon and emission of the photon back into
the same field mode. To describe the field subsystem at this
step we use the quantization scheme proposed in [32], where
the quantized electric field of the guided mode of the nanofiber
can be written as

Ê(r) =
∑

μ

Eμ(r)âμ + H.c., (8)

where Eμ is the electric field of the guided mode μ:

Eμ(r) = i

√
2π�ωμ

L
Ẽμ(ρ,φ)eifβμz+imφ. (9)

Here βμ is the propagation constant, Ẽμ(ρ,φ) is the amplitude
of the electric field, L is the quantization length, the index
μ = (βl,f,m) describes a particular guided mode, and f and
m define the direction of propagation (+1/ − 1) and the mode
angular momentum (+1/ − 1), respectively. The electric field
is periodic in the z direction and the periodicity condition can
be written as βlL = 2πl, where l is a positive integer number.

The electric-field amplitude is normalized according to
∫ 2π

0

∫ ∞

0
|Ẽμ(ρ,φ)|2dφρdρ = 1. (10)

At the next step, we need to calculate the matrix elements
of the operator �̂ in the presence of a nanofiber. To account
for the excitation transfer between atoms through the radiation
of vacuum modes and modes of the nanofiber, we need to
introduce the proper quantum-electrodynamical description of
the electromagnetic field, which was developed by Welsch
et al. in Ref. [33]. Using this formalism we can modify
Hamiltonian (1) to describe our system as

Ĥ0 =
∑

n

�ω0σ̂
+
n σ̂−

n +
∫

dr′
∫ ∞

0
dω′

�ω′f̂†(r′,ω′)f̂(r′,ω′),

V̂ = −
∑

n

d̂nÊ(rn), (11)

where ω0 is the atomic transition frequency, Ê(rn) is the total
electric field, and f̂(r′ω′) and f̂†(r′,ω′) are the bosonic vector
local-field operators, which obey the following commutation
relations:

[f̂i(r′,ω′),f̂ †
k (r,ω)] = δikδ(r′ − r)δ(ω′ − ω),

[f̂i(r′,ω′),f̂k(r,ω)] = 0. (12)

The positive-frequency part of the total electric field has the
form

Ê+(r) = i
√

4�

∫
dr′

∫ ∞

0
dω′ ω

′2

c2

√
εI (r′,ω′)

× G(r,r′,ω′)f̂(r′,ω′), (13)

where εI (r′,ω′) is the imaginary part of the dielectric per-
mittivity of the media and G(r,r′,ω′) is the classical Green’s
tensor of the electric field. In the presence of the optical fiber
the Green’s tensor can be expanded into

G(r,r′,ω) = G0(r,r′,ω) + Gs(r,r′,ω), (14)

where G0 is the vacuum Green’s tensor and Gs is the Green’s
tensor corresponding to the light scattering from the fiber.
The scattering term of the Green’s tensor can be expanded
into the vector wave functions (WVFs), and the details of
these calculations are given in the Appendix. At the lowest
nonvanishing order the matrix elements of the level-shift
operator in this case can be written as

〈f |�̂(E)|i〉 =
∑

|α〉,|β〉
〈f |V̂ |α〉〈α| 1

E − Ĥ0 + iη
|β〉〈β|V̂ |i〉,

(15)

where |i〉 and |f 〉 are the initial and final states of the system,
respectively, |α〉 and |β〉 are the two possible intermediate
states with a single elementary excitation for the field subsys-
tem, and both atoms are in either the excited or the ground
state:

|en,em〉 × f̂†(r′,ω′)|{0}〉,
|gn,gm〉 × f̂†(r′,ω′)|{0}〉. (16)
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The derivation of these matrix elements of the level-shift
operator can be found elsewhere [34,35] and here we provide
only the final expression:

〈f |�̂(E)|i〉 = −4π
ω2

0

c2
d∗

mG(rm,rn,ω0)dn. (17)

We should note that in the case of a single-particle contri-
bution, where |i〉 = |f 〉 and, thus, rn = rm, the homogeneous
part of the Green’s function has a singularity in the real
part Re[G0(rn,rn,ω0)] → ∞ which corresponds to the infinite
Lamb shift due to the interaction with the vacuum modes.
This term is renormalized and can be thought of as already
incorporated into the definition of the transition frequency of
atomic dipoles ω0. However, Re[Gs(rn,rn,ω0)] is finite and it
leads to the presence of a Lamb shift due to the interaction of
the excited atom with the fiber modes.

Now using (17) we can find the matrix �(E), the T -matrix
elements, and, consequently, the normalized scattering losses
σN (E). In this case when calculating the denominator of Eq. (7)
the atom is placed at the same distance �ρ from the fiber
surface as atoms in our periodic chain. Also, we note that Eres

now differs from �ω0 because of the Lamb shift.

III. RESULTS: ATOMIC CHAIN IN A VACUUM

We consider photon scattering in an atomic chain in vacuum
in the geometry shown in Fig. 1(a). In this case we assume that
the dipole moments of the atoms are aligned parallel to photon
polarization.

We have applied the T -matrix approach to plot the spectra of
the scattering cross section for different interatomic distances.
The scattering intensity is shown in Fig. 2. One can note
that it changes in a nonmonotonous way as the distance

FIG. 2. Normalized total scattering cross section’s dependence
on photon frequency detuning �ω = ω − ω0 for different periods of
chain �z in vacuum. The dipole transition is oriented parallel to the
field polarization d||E. The number of atoms is N = 100.

between the atoms varies. The most pronounced changes are
observed when the period is approximately mλ0/2, where m

is an integer. For instance, changing the interatomic distance
from �z = 0.49λ0 to �z = 0.55λ0 results in a decrease in
the intensity and a widening of the peak. A similar but much
weaker effect is observed when the distance is changed from
0.95λ0 to 1.05λ0. This behavior is related to the opening of the
diffraction channels each time the Bragg condition is satisfied.
On the other hand, this process can be easily understood by
analyzing the eigenstates of the atomic system, which manifest
themselves in polaritonic states.

A. Polaritonic states in an atomic chain

Polaritonic states can be constructed by defining the
eigenstates of the level-shift operator, which is, in our
approximation, the operator of dipole-dipole atomic coupling.
In the limit of resonant excitation the eigenproblem can be
formulated as follows:

�(ω0)v = Ev. (18)

Here �(ω0) is the matrix representation of the level-shift
operator. The solution of this equation gives us N complex
eigenvalues Ei = �ωi and column eigenvectors vi , which are
the energies and eigenstates of the system described in the
basis of states with a single atomic excitation. We utilize
the solution of a finite eigensystem to plot the dispersion
curve for an infinite chain [19,36]. A problem of this type
was also considered for one- and two-dimensional structures
with excitons in [37], but formulated in a self-consistent way,
where the energy dependence of �(ω) is kept. In our case,
we calculate �(ω) at frequency ω0, which is a simplification
giving adequate results [4,36].

For this we correlate the eigenvector with the corresponding
wave number kz enumerating the eigenstates in accordance
with the number of nodes l in the profile of the eigenmode vi.
Then we can assign the corresponding wave number kz to each
mode according to

k(l)
z

K
= (l + 1)

2N
, (19)

where K = 2π/�z is the reciprocal lattice vector of a periodic
chain and l = 0,1,2, . . . is the mode number. For l = 0 relation
(19) gives λl = 2Nd, so there is a single antinode in the profile
of this fundamental mode, while for l = N − 1 we have λl =
2d, and therefore, the neighboring atoms are exactly out of
phase for this mode.

This procedure allows us to plot both the real and the
imaginary parts of the eigenfrequencies of our system as
functions of kz, where the real part accounts for the dispersion
of normal modes and the imaginary part describes radiative
losses or the inverse lifetimes of the eigenstates.

In order to support the scattering cross-section spectra
shown in Fig. 2 we illustrate the light interaction with the
atomic chain by plotting the dispersion curves for transversal
(d ⊥ ez) polaritonic states (see Fig. 3). We consider subd-
iffractional (K > 2k0) [Fig. 3(a)] and diffractional (K < 2k0)
[Fig. 4(b)] regimes, where the first Bragg condition is satisfied.
The light line, which is vertical on the scale of the polaritonic
bandwidth as γ0 
 ω0, divides the states into radiative and
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FIG. 3. Real (green curve) and imaginary (red curve) parts of
the eigenfrequencies of the transversal polaritonic states with d ⊥
ez versus the corresponding kz values for (a) the sub-diffractional
case K > 2k0 (�z = 0.3λ0) and (b) the diffractional case K < 2k0

(�z = 0.75λ0). The dispersions of the vacuum photon modes (light
line) are shown by dashed horizontal lines. Regions of radiative and
nonradiative states are marked.

nonradiative ones. In the vicinity of point kz = k0 the atomic
states undergo hybridization with vacuum photon modes. For
the diffractional case [see Fig. 3(b)], all the eigenmodes
become radiative as they appear above the light line. However,
one should note that hybridization features are preserved but
are shifted from the light line for quantity K , as the wave vector
kz is a quasivector of the polaritonic state and is conserved up
to a reciprocal vector. Moreover, states near the band edges
(kz > K − k0) become more radiative than states in the band
center, as they have two channels of radiation: they can emit (i)
a photon with k

ph
z = k∗

z and (ii) a photon with k
ph
z = k∗

z − K .
The dispersion of the longitudinal modes (d ‖ ez), similarly

to the transversal modes, can also be divided into radiative
and nonradiative regions (see Fig. 4). However, hybridization
with the vacuum modes in the vicinity of the light line is not
observed due to polarization mismatch: the vacuum modes
have transversal polarization and the polaritonic excitations
are longitudinal.

FIG. 4. Real (green curve) and imaginary (red curve) parts of
the eigenfrequencies of the longitudinal polaritonic states with d ‖ ez

versus the corresponding kz values for (a) the subdiffractional case
K > 2k0 (�z = 0.3λ0) and (b) the diffractional case K < 2k0 (�z =
0.75λ0). The dispersions of the vacuum photon modes (light line) are
shown by dashed horizontal lines.

B. Bragg diffraction

The plotted dispersion curves clarify the character of the
cross-section spectra shown in Fig. 2, in particular, the opening
of the first Bragg diffraction channel when the period changes
from �z = 0.49λ0 to �z = 0.51λ0. The kz component of the
incident photon equals k0 according to Fig. 1(a), and for the
subdiffractional regime the scattering occurs on states near
the light line kz ≈ k0 [see Fig. 5(b)]. In the subdiffractional
regime, when k0 � K/2 these states have low losses, which
generates a narrow cross-section spectrum shape [see solid
line in Fig. 5(a)]. After switching to the diffractional regime
k0 � K/2 the incident photon scatters off states with kz =
k0 − K (umklapp process) as shown in Fig. 5(c). Due to the
high radiative losses connected to free-space diffraction the
cross-section spectrum is wide [see dashed line in Fig. 5(a)].

IV. RESULTS: ATOMIC CHAIN IN THE VICINITY OF AN
OPTICAL NANOFIBER

The presence of an optical nanofiber changes the character
of atomic interaction and allows long-range dipole-dipole
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FIG. 5. Illustration of the diffraction channel opening in the
photon scattering on a two-level atomic array in vacuum. (a)
Scattering cross sections for two chain periods: K � 2k0 (�z =
0.49λ0) (solid red line) and K � 2k0 (�z = 0.51λ0) (dashed blue
line). (b, c) Dispersion curves (green) and inverse lifetimes (red
curves) of these states in the region close to the situations shown
in (a). The number of atoms is N = 100.

coupling between atoms not only via the vacuum, but also
through the guided mode. To study this effect and its influence
on the scattering of the guided mode over an atomic chain, we
have applied the T -matrix method. In contrast to the commonly
used transfer matrix method, where the interaction of the
guiding mode with each atom is treated individually [26,38],
here we consider the scattering on collective polaritonic states
taking account of the full atomic dipole-dipole interaction and
splitting their energy levels. For this we start by building
the eigenstate picture of the atomic system with an optical
nanofiber.

A. Dispersion of polaritonic states

The polaritonic dispersion relation in the presence of
an optical nanofiber can be found from the eigenstates of
the system, (18), but with the corrected level-shift operator,
which includes interaction with the nanofiber by means of
the scattering Green’s function in Eq. (14). The real and
imaginary parts of eigenfrequencies versus the corresponding
kz values are plotted in Fig. 6 for transverse d ‖ eρ modes. The
parameters of the nanofiber are chosen in such a way that it
supports only one fundamental mode HE11 at the frequency
of the atomic transition ω0. The fiber mode dispersion curve
is shown by the dash-dotted line in Fig. 6, in addition to
the vacuum photon line, shown by the dashed line. In the
subdiffractional regime K > 2k0 the nanofiber interaction
channel gives an anticrossing-like feature in the polaritonic
dispersion in the vicinity of kz = k

f

0 , where k
f

0 denotes the
wave vector of the wave guiding photon having frequency
ω0. The nanofiber modifies the nonradiative atomic states
and forms nanofiber coupled polaritonic states [see Fig. 6(a)].
These states are situated close to radiative states as the wave
vector of the fundamental guided mode is close to the wave
vector of the vacuum photon |k0 − k

f

0 | 
 k0 (see Fig. 1). The
peak in the spectrum of the imaginary frequency at kz = k

f

0
is related to the leakage of the state through the fiber mode.
For the diffractional regime K < 2k0 [see Fig. 6(b)], all states

FIG. 6. Real (green curve) and imaginary (red curve) parts of
the eigenfrequencies of the transversal polaritonic states with d ‖ eρ

versus the corresponding kz values for (a) the subdiffractional
case K > 2k0 (�z = 0.3λ0) and (b) the diffractional case K < 2k0

(�z = 0.75λ0). The dispersion of vacuum photon modes (light line)
are shown by dashed black lines. The dispersion of the nanofiber
fundamental mode HE11 is shown by the dash-dotted purple line.
Regions of radiative, nonradiative, and strong coupling to the
nanofiber mode states are shown. The number of atoms is N = 100,
the nanofiber radius is ρc = λ0/4, and the distance from the fiber
surface is �ρ = 0.3λ0.

become radiative and there is resonant anticrossing coupling
to the guided mode of the fiber at ±k

f

0 ∓ K along with the
vacuum mode coupling at ±k0 ∓ K .

The field of the fundamental fiber mode HE11 has all three
components of the electric field, thus, in general all of them
contribute to the dipole-dipole interaction. For completeness
of consideration we have plotted the other two polarizations
of the dipole moments of the atomic transition: the azimuthal
transversal (d ‖ eϕ) and longitudinal (d ‖ ez) polarizations are
shown in Fig. 7. The dispersion of azimuthal modes is similar
to that of radial modes but has a weaker interaction with the
fiber mode due to the weaker amplitude of the azimuthal
component of the electrical field in the fiber mode. The
longitudinal modes fully resemble the longitudinal modes in
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FIG. 7. Real (green curve) and imaginary (red curve) parts of the
eigenfrequencies of transversal polaritonic states with d ‖ eϕ (a, b)
and longitudinal states with d ‖ ez (c, d) versus the corresponding
kz values. (a, c) Subdiffractional case K > 2k0 (�z = 0.3λ0); (b, d)
diffractional case K < 2k0 (�z = 0.75λ0). Parameters and notation
are the same as in Fig. 6.

FIG. 8. Normalized scattering loss spectra of a two-level atomic
chain consisting of N = 200 atoms in the vicinity of the nanofiber
for different periods �z: (a) 0.3λ0, (b) 0.5λf , (c) 0.6λ0, (d) 0.75λ0,
(e) λf , and (f) 1.05λ0. The nanofiber radius is ρc = λ0/4, and the
distance from the fiber surface is �ρ = 0.3λ0.

vacuum, with the fiber mode interaction being weaker than for
the transversal modes. However, there is no coupling of atoms
with the vacuum field due to polarization mismatch, but atoms
are interacting with the fiber mode [see Figs. 7(c) and 7(d)],
as the HE11 mode is not fully transversal and has a nonzero z

component of the electric field, which makes its contribution
to the interaction constant.

B. Fiber-mode scattering

We have analyzed the scattering of the fundamental fiber
mode HE11 by the atomic chain in subdiffractional and
diffractional regimes as shown in Fig. 8. We consider all
atoms having only the dρ component of dipole transition
matrix elements, which corresponds to Fig. 6. The presence
of the nanofiber makes the system effectively 1D, which
leads to significant changes in the normalized scattering
loss spectra compared to the vacuum case. We plot the
normalized scattering loss, (7), spectrum, which corresponds
to the probability of a single photon’s escaping from the guided
mode after interaction with the atomic chain.

One can see in Fig. 8 that for the subdiffractional regime
the spectrum is modulated by sharp resonances in the vicinity
of the atomic resonant frequency ω0. These resonances
correspond to scattering on states with kz ≈ kf having low
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FIG. 9. (a) Real and (b) imaginary parts of eigenfrequencies for
the transverse collective modes (d||eρ) versus kz for a chain with
period �z = 0.75λ0 and a varying number of atoms N . The nanofiber
radius is ρc = λ0/4, and the distance from the fiber surface is
�ρ = 0.3λ0.

losses, though these states are below the light line so they
have a finite radiational lifetime due to the finite length of the
chain [see Fig. 6(a)]. When the Bragg condition �z = 0.5λf

is satisfied the spectrum becomes purely Lorentzian, which
is defined by the existing highly radiative state of the atomic
system, and the main channel is backscattering into the guided
mode, propagating in the direction opposite the incident.

The scattering process for K < 2k0 goes through the
umklapp process, as shown in Fig. 6(b) by the dashed purple
arrow, and corresponds to a vacuum diffraction with a specific
kz. The scattering spectrum acquires a constant region in its
central part, with the oscillatory features at the edges as shown
in Fig. 8. A further increase in the chain period results in
an almost-periodic change in the normalized scattering loss
spectra, and, in particular, when �z = λf (K = kf ) we have
a Bragg condition of the second order and backscattering into
the guided mode with kz = −kf .

C. Collective coupling of eigenmodes

As pointed out before, the presence of a nanofiber leads
to long-range coupling through the guided mode, and with
increasing period �z the features of dispersions and radiation
losses near the fiber-mode line are preserved (Figs. 6 and 7).
The long-range coupling makes the observed effects purely
collective, which results in an increased coupling strength
between the collective mode and the guided mode with an
increasing number of two-level systems. In particular, the
amplitudes of radiation losses peak, related to the imaginary
part of the eigenfrequencies, and the splitting of the collective
state energy, related to the real part of eigenfrequencies, are
shown in Fig. 9 for different numbers of atoms in the chain. One
can see that the resonant features becomes more pronounced
for larger total numbers of emitters N .

V. DISCUSSION

The normalized scattering loss spectra plotted in Fig. 8
have two qualitatively distinct profiles: (i) a Lorentzian shape
profile if the condition of the fiber Bragg diffraction is satisfied
[see Figs. 8(b) and 8(e)] and (ii) a profile with a notch in the
middle of the spectrum [see Figs. 8(a), 8(c), 8(d), and 8(f)].
The Bragg diffraction is associated with the scattering on the
highly radiative state which appears at the edge of the band,

similarly to the case shown in Fig. 5. The incident photon is
scattered by the radially oriented dipole moment back into the
guided mode of the nanofiber. However, for the other periods
the photon is diffracted in the cone with a fixed angle, defined
by the condition kz = kf − K as shown schematically in the
right column in Fig. 8.

We associate the change in the spectrum shape with the
switching of the diffraction from symmetric (in the case of
diffraction into the fiber mode) to asymmetric (diffraction
into the vacuum modes) scattering. Asymmetry in photon
emission by an excited atom in the vicinity of a nanofiber
has been actively discussed recently [38–40]. In particular, it
was shown [38] that an atom with transversal and longitudinal
components of the dipole moment has asymmetry in forward
and backward spontaneous emission rate into the nanofiber
mode. This results in asymmetry of the single-atom reflectance
of the wave-guding mode propagating in the forward or
backward direction, also known as the spin-locking effect [10].
On account of this, in the case of an asymmetric emission rate
the Bragg reflection is suppressed and a notched reflectance
spectrum [38] is observed. The asymmetry in the case shown
in Figs. 8(a), 8(c), 8(d), and 8(f) can be explained by the

FIG. 10. Normalized scattering loss spectra of the atomic chain
consisting of N = 200 atoms with radially polarized (dashed line)
and σ+ polarized dipole moments (solid red line) in the regime of
(a) the first (�z = 0.5λf ) and (b) the second (�z = λf ) fiber Bragg
diffraction. Parameters are the same as in Fig. 8.
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asymmetry in the emission rate of the collective polaritonic
states into the vacuum and fiber mode. When the scattering
goes back into the fiber mode exactly at the Bragg resonance
the symmetry is conserved, but at the vacuum diffraction this
symmetry breaks. To support this statement we compared
scattering of the incident photon on atoms with (i) a radial
component of the dipole moment d0 and (ii) a σ+ polarized
dipole having both a radial dρ and a z component dz. In
the latter case the two components have π/2 phase shift
but the absolute dipole moment equals |dρ − idz|/

√
2 = d0.

Contrary to the radially polarized atom the σ+ atom has thea
strong asymmetry in coupling with the forward- and backward-
propagating fiber mode [41]. We have made the calculation for
the fiber backscattering regime, where the symmetry should
be conserved for the linearly polarized atom but not for the
circularly polarized atom. In Fig. 10 the normalized scattering
loss spectra are shown for the case of the first and second
fiber Bragg resonance in the case of radially polarized atoms
(dashed line) and in the case of σ+ atoms. We see pronounced
switching from the Lorentzian spectral shape to a notched
shape. For the first fiber Bragg condition �z = 0.5λf [see
Fig. 10(a)], one can see sharp peaks in the center of the band
due to scattering by the long-lived collective atomic states. In
the case of the second Bragg resonance [see Fig. 10(b)] the
sharp peaks are smeared out as all the polaritonic states are
above the light cone and, thus, have high losses.

VI. CONCLUSIONS

In this work we have considered a single photon scattering
on an ordered finite chain of two-level atoms embedded in a
vacuum or trapped in the vicinity of a single-mode dielectric
nanofiber. We have developed the scattering matrix technique
and analyzed the normalized scattering loss spectrum of a
single photon in the presence of a nanofiber. This approach
allows us to incorporate the atomic dipole-dipole interactions
both via vacuum near fields and via long-range coupling
through the guided mode. To support the results of our
simulations we have constructed the polaritonic states of the
interacting atomic array both in vacuum and close to the
nanofiber, which has not been done before for the type of
quantum system considered. The obtained dispersion curves
for the polaritonic states allowed us to interpret the results of
the normalized scattering loss calculations and demonstrated
the effects of atomic array coupling with a single guided
mode of the nanofiber. Finally, we have shown that the photon
scattering over an atomic chain in the presence of a nanofiber
is influenced by the effects of spin-locking coupling of atoms
with nanofiber and vacuum modes. The proposed approach,
which combines construction of the polaritonic eigenstates of
the atomic system with the quantum scattering theory, can
be effectively applied to modeling experiments on the light
interaction with quantum systems at the nanoscale level.
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APPENDIX: GREEN’S TENSOR

In order to obtain the �mn matrix elements we need to
construct the Green’s tensor of the system, which can be found
from[

−ω2

c2
ε(r,ω) + ∇ × ∇×

]
G(r,r′,ω) = Iδ(r − r′), (A1)

where ε(r,ω) is the complex dielectric function and I is the
unit dyad. In our case we consider a dielectric cylindrical wave
guide of radius ρc and dielectric permittivity ε being constant
inside the cylinder. To find the solution we apply the scattering
superposition method [35,42], which allows us to expand the
Green’s tensor into homogeneous and inhomogeneous terms:

G(r,r′,ω) = G0(r,r′,ω) + Gs(r,r′,ω). (A2)

As soon as we consider atomic dipoles in the vicinity of
the wave guide, so that r and r′ are outside the cylinder, the
homogeneous term is always present and describes the field
generated directly by the source placed at point r′ at field point
r. This term can be obtained analytically from the Green tensor
written in Cartesian coordinates using the transformation from
Cartesian to cylindrical coordinates S(φ)GCart

0 (r,r′,ω)ST (φ),
where GCart

0 has an analytic expression [43] and is given by

GCart
0 (r,r′,ω) =

(
I + 1

k2
∇ ⊗ ∇

)
G0(r,r′,ω), (A3)

where G0(r,r′,ω) is the Green’s function of the scalar
Helmholtz equation.

The scattering term can be calculated via the integral
representation of the homogeneous part. To obtain this rep-
resentation we apply the method of VWF explained in detail
in Refs. [44] and [45]; here we cover only the basic ideas and
provide the final expressions. To find the solution of the vector
Helmholtz equation, (A1), we introduce the scalar Helmholtz
equation and the solution of this equation in the cylindrical
coordinates,

∇2φ(k,r) + k2φ(k,r) = 0,

φn(kz,r) = Jn(kρρ)einθ+ikzz, (A4)

where Jn(x) is the Bessel function of the first kind, r =
(ρ,θ,z) are the cylindrical coordinates, and kρ and kz are the
projections of the wave vector k. The solution of the vector
Helmholtz equation may be written in terms of the vector wave
functions

Mn(kz,r) = ∇ × [φn(kz,r)ez],

Nn(kz,r) = 1

k
∇ × Mn(kz,r), (A5)

where ez is the so-called pilot vector, the unit vector pointing
in the z direction. These WVFs M and N correspond to TE/TM
modes of the field.

One can show [44] that the homogeneous part of the
Green’s function can be expanded in terms of these vector
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wave functions as

Gh(r,r′,ω) = −eρeρ

k2
0

δ(r − r′)

+ i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
0ρ

Fn(kz,r,r′), (A6)

and the Fn(kz,r,s) function is given by

M(1)
n (kz,r)Mn(kz,r′) + N(1)

n (kz,r)Nn(kz,r′),

Mn(kz,r)M
(1)
n (kz,r′) + Nn(kz,r)N

(1)
n (kz,r′).

Here the first line holds for ρr > ρr ′ and the second one for
ρr < ρr ′ ; k0 = ω/c, k0ρ =

√
k2

0 − k2
z , and the superscript (1)

in vector wave functions denotes that the Bessel function of the
first kind, Jn(kρρ), should be replaced with the Hankel function
of the first kind, H (1)

n (kρρ). Here we provide the explicit form
of the WVF:

Mn(kz,r) =

⎛
⎜⎝

in
ρ
Jn(k0ρρ)

−k0ρ(Jn(k0ρρ))′

0

⎞
⎟⎠einθ+ikzz,

Nn(kz,r) =

⎛
⎜⎜⎝

ikzk0ρ

k
(Jn(k0ρρ))′

− nkz

ρk
Jn(k0ρρ)

k2
0ρ

k
Jn(k0ρρ)

⎞
⎟⎟⎠einθ+ikzz,

Mn(kz,r′) =

⎛
⎜⎝

− in
ρ ′ Jn(k0ρρ

′)

−k0ρ(Jn(k0ρρ
′))′

0

⎞
⎟⎠

T

e−inθ ′−ikzz
′
,

Nn(kz,r′) =

⎛
⎜⎜⎝

− ikzk0ρ

k
(Jn(k0ρρ

′))′

− nkz

ρ ′k Jn(k0ρρ
′)

k2
0ρ

k
Jn(k0ρρ

′)

⎞
⎟⎟⎠

T

e−inθ ′−ikzz
′
,

where Jn(kρρ)′ indicates the derivative with respect to the
dimensionless argument.

Now having the integral representation of the homogeneous
term of the Green’s function, we can construct the scattering
term in a similar fashion. Let us denote the medium outside the
dielectric cylinder 1 and the medium inside 2. The particular
form of the Green’s tensor depends on the position of the
source point r′: whether it is inside or outside the cylinder.

Since the atoms are placed outside the nanofiber, both source
and receiver should be outside the cylinder, and in the latter we
consider only the second case. Thus, the total Green’s tensor
can be written as

G11(r,r′,ω) = G11
h (r,r′,ω) + G11

s (r,r′,ω),

G21(r,r′,ω) = G21
s (r,r′,ω),

where the two superscripts denote the positions of the receiver
and the source point, respectively, and the two scattering parts
of the Green’s tensor have the following form:

G11
s (r,r′,ω) = i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
ρ1

F11(1)
M;n,1(kz,r)M

(1)
n,1(kz,r′)

+ F11(1)
N;n,1(kz,r)N

(1)
n,1(kz,r′),

F11(1)
M;n,1(kz,r) = R11

MMM(1)
n,1(kz,r) + R11

NMN(1)
n,1(kz,r),

F11(1)
N;n,1(kz,r) = R11

MNM(1)
n,1(kz,r) + R11

NNN(1)
n,1(kz,r),

G21
s (r,r′,ω) = i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
ρ1

F21
M;n,2(kz,r)M

(1)
n,1(kz,r′)

+ F21
N;n,1(kz,r)N

(1)
n,1(kz,r′),

F21
M;n,2(kz,r) = R21

MMMn,2(kz,r) + R21
NMNn,2(kz,r),

F21
N;n,2(kz,r) = R21

MNMn,2(kz,r) + R21
NNNn,2(kz,r).

Here the scattering Fresnel coefficients R
ij

AB are introduced and
the second subscript in the VWFs denotes that k and kρ should
be replaced with their values inside the corresponding media
ki = εi(r,ω)k0, kρi =

√
k2
i − k2

z . We should note that unlike
the case of the homogeneous term, here we have products of
M and N, which is due to the fact that the normal modes in
our case have a hybrid nature.

The form of the Fresnel coefficients mentioned above can
be found by imposing the boundary conditions on the Green’s
tensor at the surface of the cylinder:

eρ × [G11(r,r′,ω) − G21(r,r′,ω)]|ρr=ρc
= 0,

eρ × ∇r × [G11(r,r′,ω) − G21(r,r′,ω)]|ρr=ρc
= 0.

Solving for this, we can find the Fresnel coefficients R
ij

AB

and, finally, construct the scattering part of the Green’s tensor
Gs(r,r′,ω).
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