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Zero-field splitting of the Kondo resonance and quantum criticality in triple quantum dots
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We consider a triple-quantum-dot (TQD) system composed by an interacting quantum dot connected to two
effectively noninteracting dots, which in turn are both connected in parallel to metallic leads. As we show, this
system can be mapped onto a single-impurity Anderson model with a nontrivial density of states. The TQD’s
transport properties are investigated under a continuous tuning of the noninteracting dots’ energy levels, employing
the numerical renormalization group technique. Interference between single and many-particle resonances splits
the Kondo peak, fulfilling a generalized Friedel sum rule. In addition, a particular configuration in which one
of the noninteracting dots is held out of resonance with the leads allows us to access a pseudogap regime
where a Kosterlitz-Thouless-type quantum-phase transition (QPT) occurs, separating the Kondo and non-Kondo
behavior. Within this same configuration, the TQD exhibits traces of the Fano-Kondo effect, which is in turn
strongly affected by the QPT. Signatures of all these phenomena are neatly displayed by the calculated linear
conductance.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) constitute an exciting
playground to test strongly-correlated phenomena, due to
their high tunability through external voltages. Specifically
they offer a unique environment to study one of the most
fundamental many-body interactions: the Kondo effect [1,2].
This phenomenon has been widely investigated in QD systems,
both experimentally [3–8] and theoretically [9–12]. As a result
of the Kondo effect, a sharp peak known as the Abrikosov-Suhl
resonance [13] (ASR) develops in the local density of states at
the Fermi level. This “Kondo peak” enhances the conductance
of the QD system when the electronic transport is limited
by Coulomb blockade. It has been recently demonstrated that
the source of the well-known 0.7 anomaly in quantum point
contacts is of Kondo nature [14].

The Kondo effect in semiconductor artificial environments
has been taken further to study more complex systems. For
example, the destructive interference between single and
many-particle resonances, known as the Fano-Kondo effect,
has been investigated in side-coupled quantum dots connected
to different nanostructures. These include connections to
quantum wires [15–17], quantum rings [18–20], or to more
quantum dots [21–24]. The rather complicated conductance
features observed in these works emphasize the importance
of the nontrivial interplay between coherence and many-body
interactions.

Other interesting Kondo-related physics manifest in nanos-
tructures with multiple quantum dots. For example, dou-
ble [25–27] and triple [28,29] quantum dots are known to
exhibit a quantum phase transition (QPT) separating strong-
coupling and local-moment phases. In addition, the large num-
ber of geometrical configurations in triple quantum dot systems
(TQD) permits the investigation of phenomena such as local
frustration [30,31], ferromagnetic Kondo interactions [32], and
SU(4) behavior [33].

Even more, the combination of interacting and effectively
noninteracting dots in TQD allows the study of, e.g., the
Kondo-Dicke effect [34], in which the ASR resonance is

suppressed [35]. There are other physical phenomena that
may strongly alter the structure of the ASR. For example,
a magnetic impurity inside a quantum corral [36] exhibits a
splitting of its Kondo peak, depending upon the size of the
enclosed section [37]. Aside from confinement, the splitting
of the ASR can also be accomplished by applying an in-plane
magnetic field to the Kondo system, for which the Zeeman
energy is comparable to the Kondo temperature [38]. This
can be understood in the context of the Anderson model,
as a result of the spin splitting of the impurity’s energy
level [39]. A similar behavior occurs in the absence of
external fields if the leads attached to a QD are ferromagnetic
with parallel alignment between source and drain [40]. An
analog conclusion was reached in an experimental study of a
single adatom coupled to a magnetic cluster, using the STM
microscope [41]. Another different way to split the ASR in
QDs is by applying a voltage bias. Here the splitting occurs
due to the fact that the ASR is pinned to the Fermi level
of each lead [42]. It has been noticed also that in a small
QD exchange coupled to a magnetic impurity, the anisotropic
exchange interaction between them gives rise to a structured
ASR with more than two peaks [43].

A zero-field splitting of the Kondo peak may arise as
well in T-shaped double quantum dots (DQD) [25,44]. For
this to happen, the QD connected to the leads must be
essentially a resonant noninteracting level, while the “side
dot” is set within the Kondo regime. Although the splitting
of the ASR can be interpreted here as a result of interfer-
ence between single-particle and Kondo resonances [45], a
more subtle explanation points towards a manifestation of
the Friedel sum rule [46]. In general, this implies that the
zero-temperature impurity’s spectral function A11(ω,T = 0)
evaluated at the Fermi level must satisfy the condition:
A11(0,0) = sin2(π〈n1〉/2 + φ)/[π�(0)] [25,44], where φ is
a phase shift due to a structured hybridization function �(ω)
and 〈n1〉 is the average of the impurity’s number operator.
In the aforementioned side-dot system, 1/[π�(0)] provides
an upper bound for the spectral function. In situations where
�(ω) causes A11(ω) to lie above this boundary at either side of
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the Fermi level, the ASR develops a dip in order to fulfill the
Friedel sum rule and consequently displays a splitting [47].
However, the splitting of the ASR, due primarily to changes
in the phase shift φ, is still yet to be explored in detail.

In this paper, we use the numerical renormalization group
method to study the transport properties of a TQD that displays
traces of the ASR zero-field splitting as described above
but attributable to a fine tuning of the phase shift φ. The
device under investigation consists of two QDs, considered
as effectively noninteracting, connected in parallel to metallic
leads. A third interacting dot (well within the Kondo regime)
is only connected to the former dots. We focus the paper
on the study of two different configurations. In the first,
the on-site level of one of the two noninteracting dots is
fixed at the Fermi energy. Calculations predict a splitting of
the interacting-dot Kondo peak by an appropriate tuning of
the remaining noninteracting dot energy level. In a second
configuration, one of the noninteracting dots is held out of
resonance with the leads. Under this scenario, the conductance
exhibits a Fano-like shape, which is strongly modified by a
quantum phase transition due to a pseudogap regime in the
density of states of the effective one-impurity model.

The remainder of the paper is organized as follows: In
Sec. II we describe the Hamiltonian of the TQD and present ba-
sic equations. Section III is devoted to exploring the conditions
under which the interacting dot’s spectral function displays
a splitting at the Fermi level, as well as its identification
through conductance measurements. In Sec. IV we show how
the system can access a quantum phase transition, set by
a pseudogap in the effective density of states. Concluding
remarks appear in Sec. V.

II. HAMILTONIAN AND BASIC EQUATIONS

We consider an equilibrium system represented schemat-
ically in Fig. 1(a) and modeled by a generalized Anderson
Hamiltonian

H = Hleads + Hdots + Hmix. (1)

The first term,

Hleads =
∑
α,k,σ

εαkc
†
αkσ cαkσ , (2)

represents the left (L) and right (R) metallic leads. The
operator cαkσ annihilates an electron at lead α of wave vector
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FIG. 1. (a) Schematic of the parallel triple quantum dot setup.
Dots 2 and 3 are considered effectively noninteracting single particle
levels, while dot 1 is deeply in the Kondo regime. (b) Illustrative
representation of the effective density of states �(ω) in the one
impurity model.

k, with spin z component σ (=↑ , ↓) and energy εαk;

Hdots =
3∑

i=1

εini + U1n1↑n1↓ +
3∑

i=2,σ

ti(d
†
1,σ di,σ + H.c.) (3)

describes the energetics of the dots in terms of their occupan-
cies niσ = d

†
iσ diσ and ni = ni↑ + ni↓, where diσ annihilates an

electron of spin z component σ in the level εi of the respective
dot that lies closest to the common Fermi energy of the two
leads (taken to be εF = 0). The parameter ti represents the dot
1-dot i (i > 1) coupling, and U1 characterizes the Coulomb
strength at dot 1. On the other hand, dots 2 and 3 are assumed
to be single-particle levels, i.e., U2 = U3 = 0. One way to
physically interpret this is to consider dots 2 and 3 as being
close to a Coulomb blockade peak with single-resonance-like
behavior. Finally,

Hmix =
3∑

i=2,α,k,σ

Vα,i(d
†
iσ cαkσ + H.c.) (4)

accounts for electron tunneling between dots and leads.
For simplicity, we take real dot-lead couplings ViL = ViR ≡
Vi/

√
2, such that the dots interact only with one effective

band formed by an even-parity combination of L and R states.
We assume a constant density of states ρ = 1/(2D) with half
bandwidth D, so that the dot-lead tunneling is measured via
the hybridization widths �i = πρV 2

i .
The standard equations of motion ω〈〈dm; d†

n〉〉ω −
〈[dm,d

†
n]〉 = 〈〈[dm,H ]; d†

n〉〉ω = −〈〈dm; [d†
n,H ]〉〉ω for the

retarded Green’s function 〈〈dm; d†
n〉〉 =

−i
∫ ∞

0 dteiωt 〈{dm(t), d†
n(0)}〉 ≡ Gmn(ω) allow us to

estimate (see Appendix) the dot-1 Green function as
G11(ω) = [1 + U�(ω)]G(0)

11 (ω). Here, G
(0)
11 (ω) corresponds

to the noninteracting function in the presence of the other
two dots, �(ω) is an extra contribution to G

(0)
11 due to the

electron-electron interactions, and ω is the energy measured
from the chemical potential. In the wide-band limit (D 	 |ω|),
the noninteracting dot-1 Green function can be written as
[G(0)

11 (ω)]−1 = ω1 − 
(ω) + i�(ω), where we have defined
ωi = ω − εi and

�(ω) = λ(ω)(ω2t3
√

�3 + ω3t2
√

�2)2, (5)


(ω) = λ(ω)
[
ω2ω3

(
ω3t

2
2 + ω2t

2
3

)
+ (ω2�3 + ω3�2)(t2

√
�3 − t3

√
�2)2] (6)

with λ(ω) = 1/[(ω2ω3)2 + (ω2�3 + ω3�2)2]. The coupling of
dot 1 to the leads can be extracted from the Green function
G11(ω). For our model, this information is fully contained in
the functions 
(ω), which only shifts the single particle energy
ε1, and more importantly on �(ω). This provides a mapping of
the Hamiltonian (1) onto the single-impurity Anderson model,
in which the impurity is coupled to an electronic band via an
effective hybridization function �(ω). Therefore, it is possible
to numerically treat the problem as a single-impurity model.

Figure 1(b) provides an illustrative version of �(ω).
This effective density of states has two Lorentzian shapes,
centered near ε2 and ε3, respectively. The width and height
of each Lorentzian is proportional to the parameters ti and
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�i . However, it must be pointed out that the function �(ω)
goes beyond the simple sum of two Lorentzian functions.
For any ε2 
= ε3, this effective density of states vanishes
at ω = (ε3

√
�2t2 + ε2

√
�3t3)/(

√
�2t2 + √

�3t3). If this value
coincides with the Fermi energy, �(ω) displays features of a
pseudogapped host [48,49]. In this regime, the strong-coupling
fixed point is inaccessible under particle-hole symmetry, but
the system exhibits quantum criticality as a function of the
interacting-dot energy level [25]. This is an important result of
our work, and it is explored further in this paper.

At low bias, electron transmission though the TQD can
be described by a Landauer-like formula [50], giving a linear
conductance

g(T ) = g0

∫
dω

−∂f (ω,T )

∂ω
[−ImT (ω,T )], (7)

where g0 = 2e2/h is the maximum of conductance, f (ω,T ) =
[exp(ω/T ) + 1]−1 is the Fermi-Dirac distribution at tem-
perature T , and T (ω,T ) = ∑

m,n

√
�m�nGmn(ω,T ) is the

transmission function. For our particular system, all the
Green’s functions Gmn can be expressed in terms of G11(ω,T )
via the equation of motion technique (see Appendix), resulting
in

− ImT (ω) = [
2ω2

2ω
2
3λ(ω) − 1

]
π�(ω)A11(ω,T )

+ 2ω2ω3(ω3�2 + ω2�3)λ(ω)�(ω)G′
11(ω,T )

+ 1 − ω2
2ω

2
3λ(ω). (8)

Here, A11(ω,T ) = −π−1 Im G11(ω,T ) is the dot-1 spectral
density. The real part of the Green function G′

11(ω,T ) =
ReG11(ω,T ) can be computed by making a Hilbert transform
of A11(ω). At zero temperature, Eq. (7) reduces to g/g0 =
−ImT (0), allowing us to obtain analytical expressions for the
electrical conductance.

The Fermi energy properties of the spectral density are
governed by a Fermi-liquid relation known as the Friedel
sum rule (FSR). In systems featuring a nontrivially structured
density of states, the spectral function must satisfy [44]

π�(0)A11(0,0) = sin2(π 〈ni〉/2 + φ), (9)

where the phase φ is given by

φ = Im
∫ 0

−∞

∂�0
11(ω,T = 0)

∂ω
G11(ω,T = 0)dω (10)

being �0
11(ω,T = 0) = 
(ω) − i�(ω) the noninteracting im-

purity self-energy. As we will show, the phase φ plays a crucial
role in the transport properties of the TQD system.

The study of the effective single-impurity model has
been carried out using the numerical renormalization group
method [51]. To this aim, we have employed a discretization
parameter 
NRG = 2.5, retaining at least 1000 states after
each iteration. In the remainder of the paper, dot 1 is held at the
Coulomb blockade regime, with U1 = 0.4D and ε1 = −U/2.
Without loss of generalization, we have fixed the values of the
hybridization strength to �2 = �3 = 0.02D and t2 = 0.02D

as well. We focus on the transport properties of the system,
as a function of the dots’ energy levels εi’s, which should be
experimentally tunable via plunger gate voltages.

III. SPLITTING OF THE ABRIKOSOV SUHL RESONANCE

Before starting the numerical analysis, it is instructive
to consider the properties of a fully symmetric TQD de-
vice, namely t2 = t3 = t , Vα,2 = Vα,3 = Vα and ε2 = ε3 = ε.
Taking even (e) and odd (o) combinations of dot levels 2 and
3, i.e., de,σ = (d2,σ + d3,σ )/

√
2 and do,σ = (d2,σ − d3,σ )/

√
2,

the Hamiltonian (1) becomes

Hdots + Hmix = ε1n1 + U1n1↓n1↑ + ε(ne + no)

+
√

2
∑

σ

(td†
1,σ de,σ + H.c)

+
√

2
∑
α,k,σ

(Vαd†
eσ cαkσ + H.c.), (11)

and Hleads remains unchanged. Therefore, only the e orbital
couples directly to both the leads and dot 1. In other
words, the Hamiltonian reduces to a T-shaped DQD device
with dot 1 as the “side dot.” For small values of t such
that TK � �, the interacting-quantum-dot spectral function
exhibits the usual Kondo peak structure, i.e., 〈n1〉 = 1, φ = 0
and π�(0)A11(0,0) = 1. We expect the same behavior for
ε2 
= ε3, if t is small enough.

On the other hand, when ε2 = 0, the zero-temperature
conductance is simply given by g/g0 = 1 − π�(0)A11(0,0),
and �(ω = 0,ε2 = 0) = t2

2 /�2 is independent of ε3 and t3.
For the symmetric scenario with small t depicted above, no
transport as a function of ε3 should occur when T vanishes.
Hence, in the presence of Kondo correlations, the ASR allows
an extra conduction path through dot 1 that gives rise to
destructive interference with dot 2, leading to zero transport
through the TQD.

The preceding discussion is now considered in Fig. 2. Here
we plotted g/g0 vs ε3 for different values of t3. We first focus
on the symmetric case t3 = t2 (black •) which as discussed
above, exhibits g/g0 = 0 independently of ε3. However, this
is no longer true for the asymmetric case t3 
= t2. As shown by
Fig. 2, increasing t3 above t2 opens up two windows of finite
conductance at each side of ε3 = 0. The range of ε3 values for
which the conductance is nonzero can be increased either by

FIG. 2. Zero-temperature conductance vs ε3 for ε2 = 0 and
several values of t3/D: 0.02 (black •), 0.03 (red ×), 0.04 (brown �),
0.05 (green �), 0.06 (blue �). For t3 = t2 (black •), g = 0 regardless
ε3. However, when t3 
= t2, a proper adjustment of ε3 leads to a finite
conductance, due to a splitting in the dot-1 ASR.
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FIG. 3. Zero-temperature spectral function for (a) ε3 = 0.005 and
(b) ε3 = 0.0008. Here t3 = 0.04D and the rest of the parameters are as
in Fig. 2. The insets in each panel are amplifications of the respective
spectral function near the Fermi energy. As shown in (b), the spectral
function nearly vanishes at ω = 0 even in the presence of the Kondo
effect, in order to fulfill a generalized Friedel sum rule.

increasing t3 above t2 (as shown by Fig. 2) or by decreasing t3
below t2 down to zero (not shown). The conductance curves
exhibit reflection symmetry at ε3 = 0, since at this point the
system is particle-hole symmetric. For this reason, g(ε3 =
0) = 0, regardless of the value of t3.

The finite conductance behavior for the asymmetric case
t3 
= t2 is one of the main results of this paper. As previously
discussed, the contributions to the nonzero conductance at
T = 0 must come from changes in the ASR such that
sin2(π 〈n1〉/2 + φ) 
= 1. To verify this, in Fig. 3 we have
plotted A11(ω,T = 0) for t3/D = 0.04 and different values
of ε3 such that g/g0 
= 0. In both cases, the spectral function
away from the Fermi level exhibits the usual Hubbard bands
near ω = ε1 and ω = ε1 + U . Also both panels show a large
peak in the vicinity of ω = 0 that can be identified as the ASR.
To better appreciate the behavior of the spectral density at the
Fermi level, we have included as insets an amplification of
A11(ω) for each case. In both figures, a splitting of the ASR
is clearly appreciated. More importantly, for the case depicted
in panel (b) (ε3 = 0.0008), the spectral function at the Fermi
level is almost zero. We emphasize that in the case at hand,
�(ω = 0) = t2

2 /�2 is a constant finite value. Therefore, the
vanishing of the spectral function at the Fermi level does not
come from 1/[π�(0)] providing an upper bound for A11(0)
but from π 〈n1〉/2 + φ being close to a multiple integer of π .

To corroborate that the Kondo correlations persist whenever
the ASR is splitted, in Fig. 4 we plotted the impurity’s con-
tribution to the susceptibility as a function of the temperature
T χimp(T ). This quantity is calculated in the standard fash-
ion [51,52] as T χimp(T ) = (〈S2

z 〉 − 〈Sz〉2) − (〈S2
z 〉 − 〈Sz〉2)0,

where Sz is the z component of the total system spin. The
symbol 〈...〉 denotes thermal average, and the subscript 0
refers to the situation when no impurities are present. In
this figure, t3 = 0.04D and the rest of the parameters are as
in Fig. 2. We have plotted T χimp for several values of ε3

T/D

T
χ

im
p

FIG. 4. Spin susceptibility as a function of temperature for
various ε3 (increasing in the direction of the arrow) in the range
[0.001,0.07]. Here t3 = 0.04D and the rest of the parameters are as
in Fig. 2. In all curves, T χimp vanishes with the temperature, congruent
with Kondo physics.

such that 0.001 � ε3/D � 0.07. It is evident that all curves
vanish with the temperature. Therefore the Kondo ground
state is reached, independently of ε3. On the other hand, the
curves exhibit a diamagnetic behavior [25,53–55] (χimp < 0)
for ε3/D � 0.004. It has been recently pointed out that such
a result, for a density of states finite at the Fermi level, is
a spurious outcome from the traditional NRG method [56]
and that the susceptibility curves should follow the universal
shape. This asseveration supports our claim that the ground
state exhibited by our TQD is indeed a Kondo singlet. For
ε3 � 0.004, the manner in which T χimp → 0 as T → 0 is
identical to that in the Kondo regime of the conventional
Anderson model.

In order to better support the description of the splitted
ASR, in Fig. 5(a) we have numerically calculated the phase
φ as a function of ε3, from equation (10). It is important to
point out that the accurate computation of the phase is a very
challenging task. On one hand, one needs to calculate the real
part of the Green’s function by taking a Hilbert transform of
the spectral function, which in turn contains errors due to NRG
discretization and ad hoc broadening procedures. On the other
hand, for the system described in this paper, the derivative
of the noninteracting impurity self energy ∂�11(ω)/∂ω has
strong variations near ω = ε3. Given the limited information
that the NRG provides about the spectral function and since
the integral in (10) must be evaluated within the range [−∞,0]

FIG. 5. (a) Phase φ and (b) g0[1 − sin2(π 〈n1〉/2 + φ)] vs ε3, for
ε2 = 0 and several values of t3/D: 0.03 (red ×), 0.04 (brown �), 0.05
(green �), 0.06 (blue �). This result shows that the splitting of the
ASR can be attributable to a fine tuning of the phase φ.
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FIG. 6. (a) Kondo temperature TK and (b) finite-T conductance
g vs ε3. The horizontal lines in (a) correspond to the temperatures
in (b) at which the conductance was calculated: T = 0 (purple �),
T1 (blue •), T2 (green �), T3 (orange ×), and T4 (red �). Here
t3 = 0.04D and the rest of the parameters are as in Fig. 2. As shown
by the plots, the phase φ can be experimentally determined through
electrical conductance measurements.

in energy, we only show the parameter space corresponding to
ε3 > 0.

Despite all the inconveniences inherent to the numerical
evaluation of φ, Fig. 5(a) provides a clear confirmation on how
the generalized FSR Eq. (9) explains the splitting of the ASR
and consequently the transport properties of the TQD. As a
comparison to Fig. 2 we also show in Fig. 5(b) the conductance
computed directly from the expression 1 − sin2(〈n1〉π/2 + φ).
For all the curves shown, 〈n1〉 is practically 1. Although there
is no quantitative agreement between Fig. 2 and Fig. 5(b), the
last one certainly displays the expected trend. Also, note in
Fig. 5(a) that the phase is φ � π/2 close to ε3 = 0, which
entails a vanishing intensity of the ASR at the Fermi level and
a high conductance. In addition, at a given ε3 value such that
the phase is finite, both φ and the conductance increase with t3.
Lastly, the two properties also decrease monotonically down
to zero, as ε3 is tuned away from the Fermi level.

Interestingly, the conductance signatures of the ASR
splitting persist at T > 0. However, to better understand the
temperature dependence of g/g0, it is instructive to consider
first the evolution of the Kondo temperature with ε3. This
is depicted in Fig. 6(a). Here we consider t3 = 0.04D and
the rest of the parameters are as in Fig. 2. The Kondo
temperature TK was determined via the conventional criterion
TKχimp(TK ) = 0.0701 [57]. As shown by the graphic, TK

decreases asymptotically to T/D = 1.16 × 10−6 by increas-
ing |ε3|. This value corresponds to the Kondo temperature in
the absence of dot 3. Decreasing |ε3| results in an increment
of states in the vicinity of the Fermi level, favoring the Kondo
correlations and therefore increasing TK .

Finite-T conductance calculations are shown in Fig. 6(b).
The color code corresponds to the four temperatures T1 <

T2 < T3 < T4, shown as horizontal lines in Fig. 6(a). In
panel (b) we also include the T = 0 curve. We recall that
for large values of |ε3|, the spectral function has a regular
ASR with no splitting. Increasing the temperature above TK

gradually destroys the Kondo resonance. This in turns limits
the access through dot 1, as well as the respective destructive
interference given by the different transport paths. As a result,
the conductance through the TQD system is increased. On
the other hand, note that for small values of ε3, g/g0 remains

almost unchanged with respect to the T = 0 case, due to the
high values of TK . We stress here that a nonzero conductance
behavior in the vicinity of ε3 = 0 constitutes the fingerprint of
the ASR splitting. Therefore, the corresponding magnitude of
the phase φ may be inferred from conductance measurements
at experimentally accessible temperatures.

IV. QUANTUM PHASE TRANSITION AND FANO-KONDO
EFFECT

In this section we consider a more general case ε2 
= 0.
When the dot-2 energy level is away from resonance with
the leads, the electronic transport between source and drain
takes place either directly through dot 3 or indirectly through
dot 1. This gives rise to Fano-Kondo interference. On the
other hand, in this configuration the effective one-impurity
model hybridization function exhibits a pseudogap behavior
whenever ε3 
= ε2 and ε3 = −ε2t3

√
�2�3/�2t2 ≡ ε∗. In this

scenario, �(ω) vanishes as ω2 near the Fermi energy. The
Kondo effect in the presence of pseudogapped density of states
has been widely studied [25,48,49]. It is well established that
it exhibits a QPT, between Kondo and non-Kondo phases.
Therefore, the TQD proposed in this paper allows a systematic
study of the Fano-Kondo effect in the presence of a QPT. This
is the main focus of this section.

We start by analyzing the dependence of TK on ε3. This
is shown in Fig. 7(a) for ε2 = −0.03D and several values of
t3. We point out that for finite ε2, T χimp does not exhibit a
diamagnetic behavior (not shown). As in Sec. III, the behavior
of TK can be explained in terms of the hybridization function
�(ω). For a given ε3, TK increases with t3, as it happens
with the magnitude of �(0). At ε3 = 0, the hybridization
function has a Lorentzian centered at the Fermi level, and
the Kondo temperature acquires its maximum value. If ε3 is
further increased towards ε∗, the system approaches to the
pseudogap regime, and TK rapidly vanishes. This behavior is
characteristic of a quantum phase transition (QPT), separat-
ing strong-coupling (Kondo) and local-moment (non-Kondo)
phases. This is a second important result of this paper. To better
understand the nature of the QPT, in Fig. 7(b) we have plotted
ln TK vs −|ε∗ − ε3|−1, for the particular case t3/D = 0.04. As

nl
T K

−|ε  − ε |3
∗ −1  ε  /D3

  T
  /D K

(a) (b)

FIG. 7. (a) TK vs ε3, for several values of t3/D: 0.02 (black •),
0.03 (red ×), 0.04 (brown �), 0.05 (green �), 0.06 (blue �). (b) ln TK

vs −|ε∗ − ε3|−1, for t3/D = 0.04. In both figures, ε2 = −0.03D. The
behavior of TK against ε3 is characteristic of a Kosterlitz-Thouless
quantum phase transition.
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shown by the graphic, there is a linear dependence between
these two quantities, when ε3 → ε∗. This is confirmed by the
red line shown as a guide for the eye. Therefore, the QPT
is of the Kosterlitz-Thouless type [58], in which TK vanishes
exponentially, rather than as a power law. Note that the system
exhibits an unquenched behavior only at the transition point,
ε3 = ε∗.

To better illustrate the implications of the QPT on the trans-
port properties of the TQD, we consider again a symmetric
system, i.e., t2 = t3 = t . In this case, the contribution from
the second term in Eq. (8) to −ImT (0) can be neglected, since
G′

11(0) is very small. Moreover, due to the fact that the phase φ

is expected to vanish, one can also assume π�(0)A11(0) = 1.
Collectively, these considerations reduce the zero-temperature
conductance to the following Fano-like expression:

g/g0 = (ε2ε3)2

(ε2ε3)2 + (ε2�3 + ε3�2)2
. (12)

We remind here that Eq. (12) is valid for ε3 
= ε∗. In the
opposite case and as long as ε1 = −U/2, the dot-1 spectral
function vanishes at the Fermi level, i.e., Kondo correlations
are prevented as a consequence of the pseudogapped host.
This in turn is detrimental to the Fano-Kondo interaction as
we shall further discuss in the following. Then, for ε3 = ε∗,
g/g0 = 1 − (ε2ε3)2λ(0), which thus gives zero transport for
�2 = �3.

The analysis of the conductance in a more general
asymmetric case (t2 
= t3) cannot be carried out analytically,
and a numerical evaluation of Eq. (8) is required. In this
scenario, the phase φ is now expected to be finite. Even
more, there is no reason to presume a negligible contribution
to the conductance from the term involving G′

11(0). Another
important point of consideration is the behavior of the Kondo
temperature near the pseudogap regime, which as we showed,
vanishes exponentially with |ε∗ − ε3|−1. Strictly speaking, the
calculation of the T = 0 properties of any system through the
NRG methodology requires an infinite number of numerical
iterations. This being unfeasible, it is a common practice to
stop the iterative procedure once the stable fixed point has been
reached. Within the strong-coupling fixed point, this occurs
when the temperature TN ∼ 


−(N−1)/2
NRG , associated to the N th

iteration, is below TK . However, the Kondo temperature
decreases exponentially near the pseudogap regime (ε3 → ε∗)
in the case under study. For this reason, we have chosen to
show conductance calculations at T = T ′ = 2.13 × 10−12D,
equivalent to N = 60 iterations with discretization parameter

NRG = 2.5. Typically, this temperature corresponds to nano-
Kelvins.

Figure 8(a) shows g vs ε3, for ε2/D = −0.03 and various
values of t3. For a given ε3 such that TK > T ′ [see Fig. 7(a)],
the behavior of g is essentially that of the T = 0 case, which
follows a Fano-like shape. Since dot-2 is out of resonance
with the leads, the TQD electronic’s transport occurs primarily
through dots 1 and 3. In fact, when ε3 is tuned near to the Fermi
energy, the electrical conductance vanishes independently
of t3. This obeys the destructive Fano-Kondo interference
between transport through dots 1 and 3. When ε3 is increased
above the Fermi level, the transport takes place only through
dot 1 (assisted by the “Kondo cloud”), raising g. We note,

FIG. 8. (a) g vs ε3, for ε2/D = −0.03. Phase φ vs ε3 for (b)
ε2/D = −0.03 and (c) ε2/D = 0.03. In all three panels, we have
several values of t3/D: 0.02 (black •), 0.04 (brown �), 0.05 (green
�), 0.06 (blue �). The drastic drop in g at ε3 > 0 is a result of the
quantum phase transition.

however, that for e.g., t3 = 0.06D (blue �), the conductance
exhibits a dip at ε3 ≈ 0.035. It is easy to show that around
this value, −ImT (0) ≈ π�(0)A11(0). Hence, the minimum
observed in g results from the spectral function fulfilling the
FSR Eq. (9).

On the other hand, if ε3 is such that TK < T ′, thermal
effects associated to the QPT deviate the conductance curves
from the Fano shape. In all four curves, we appreciate a drastic
drop of the conductance, when ε3 is further increased near
their respective transition values ε∗. This is a manifestation of
the QPT. We recall that the calculation has been performed
considering a very low but finite temperature. Therefore, the
pseudogap regime does not only show itself right at ε∗, but
there are traces of this behavior in the vicinity of the transition
value. In this regime, no Kondo effect occurs. Even more,
the on-site energy of both noninteracting dots is away from
resonance with the leads. All these together redound in a low
conductance behavior.

Finally, in Figs. 8(b) and 8(c) we show the dependence of
the phase φ on ε3 for ε2/D = −0.03 and 0.03 (respectively)
calculated directly from Eq. (10). The results are shown for
different values of t3. As in Sec. III, we only display results
for the range ε3 > 0. Nevertheless, given the symmetry of
the system it is possible to infer the ε3 < 0 behavior of φ,
for (let’s say) ε2 = −0.03, by taking the results from the
case ε2 = 0.03 and making φ → −φ and ε3 → −ε3. In both
panels [Figs. 8(b) and 8(c)], the phase φ increases with t3 and
vanishes for large values of |ε3|, similarly to the ε2 = 0 case.
However, now φ presents a maximum at a finite ε3. Given
the complicated expression for the T = 0 conductance when
ε2 
= 0, it is not possible to relate the behavior of φ to g for
an arbitrary ε3. Nevertheless, these results show that the dot-1
spectral function still exhibits a splitting of the ASR whenever
φ is finite.

V. CONCLUSION

In summary, the transport properties of a triple quantum dot
system have been investigated. The device under consideration
consists of two effectively noninteracting dots connected in
parallel to metallic leads, as well as to a central interacting
quantum dot. The described arrangement permits a compre-
hensive study of the Kondo-resonance zero-field splitting,
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resulting from the restrictions imposed by the Friedel sum
rule generalized to systems with a structured density of states.
This splitting can be tuned by an appropriate change of
the noninteracting quantum dots on-site energy levels. When
both noninteracting dots are nearly resonant with the metallic
leads, the interacting dot spectral function at the Fermi level
approaches to zero in the presence of Kondo correlations. On
the other hand, when one noninteracting dot energy level is
away from the Fermi energy, the conductance exhibits traces
of Fano-Kondo interference. Also in this configuration, a
quantum phase transition (of the Kosterlitz-Thouless type)
inherent to a pseudogap behavior strongly affects the Fano-
Kondo effect. All these behaviors can be inferred from
experimental measurements.
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APPENDIX: EQUATION OF MOTION

In this appendix, we use the equation of motion technique
to calculate the dot-1 Green function, as described in Sec. II.
In general, the retarded Green function

〈〈di ; d
†
j 〉〉 = −i

∫ ∞

0
dteiωt 〈{di (t), d†

j (0)}〉 ≡ Gij (ω) (A1)

obeys equations of motion of the form

ωGij (ω) − 〈[di,d
†
j ]〉 = 〈〈[di,H ]; d†

j 〉〉 (A2)

= −〈〈di ; [d†
j ,H ]〉〉. (A3)

For the Hamiltonian (1)

[di,σ ,H ] = (εi + Uini,−σ )di,σ + δi1

∑
l

tldl,σ

+
∑

l

δil tld1,σ +
∑
α,k

Vα,icαkσ , (A4)

being δij the Kronecker delta. Using

〈〈cαkσ ; d†
i,σ 〉〉 = 1

ω − εα,k

∑
l

Vα,lGli(ω), (A5)

which can also be deduced from the equation of motion (A2),
it is easy to arrive to the following general expression for the
retarded Green function:

Gij (ω) = G
(0)
i

{
δij + Ui〈〈ni,−σ di,σ ; d†

j,σ 〉〉 + δi1

∑
l

tlGlj (ω)

+
∑

l

δil tlG1j (ω) − i
∑
l 
=i

�ilGlj (ω)

⎫⎬
⎭, (A6)

where G
(0)
i = (ωi + i�i)−1 is the noninteracting Green func-

tion of dot i in the absence of the other dots, ωi = ω − εi

and �ij = √
�i�j . Note that we have obtained (A6) within the

wide band approximation. Following a similar procedure, it is
possible to obtain

Gij (ω) = G
(0)
j

{
δij + Uj 〈〈di,σ ; nj,−σ d

†
j,σ 〉〉 + δ1j

∑
l

tlGil(ω)

+
∑

l

δlj tlGi1(ω) − i
∑
l 
=j

�jlGil(ω)

⎫⎬
⎭. (A7)

With the aid of (A6) and (A7) we explicitly get

G11(ω)/G
(0)
1 = 1 + U1�(ω) + t2G21 + t3G31 (A8)

G21(ω)/G
(0)
2 = t2G11 − i�23G31 (A9)

G31(ω)/G
(0)
3 = t3G11 − i�32G21 (A10)

where �(ω) = 〈〈n1,−σ d1,σ ; d†
1,σ 〉〉. The above system of equa-

tions can be solved for G11 yielding the interacting dot-1
Green function as described in Sec. II. In the same fashion,
it is possible to explicitly obtain the transmission function
T (ω), in terms of the interacting Green function G11 as written
in (8).
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