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We have surveyed the in-plane transport properties of the graphene twist bilayer using (i) a low-energy effective
Hamiltonian for the underlying electronic structure, (ii) an isotropic elastic phonon model, and (iii) the linear
Boltzmann equation for elastic electron-phonon scattering. We find that transport in the twist bilayer is profoundly
sensitive to the rotation angle of the constituent layers. Similar to the electronic structure of the twist bilayer, the
transport is qualitatively different in three distinct angle regimes. At large angles (θ >≈ 10◦) and at temperatures
below an interlayer Bloch-Grüneisen temperature of ≈10 K, the conductivity is independent of the twist angle,
i.e., the layers are fully decoupled. Above this temperature the layers, even though decoupled in the ground state,
are recoupled by electron-phonon scattering and the transport is different both from single-layer graphene as well
as the Bernal bilayer. In the small-angle regime θ <≈ 2◦, the conductivity drops by two orders of magnitude
and develops a rich energy dependence, reflecting the complexity of the underlying topological changes (Lifshitz
transitions) of the Fermi surface. At intermediate angles, the conductivity decreases continuously as the twist
angle is reduced, while the energy dependence of the conductivity presents two sharp transitions, that occur
at specific angle-dependent energies, and that may be related to (i) the well-studied van Hove singularity of
the twist bilayer and (ii) a Lifshitz transition that occurs when trigonally placed electron pockets decorate the
strongly warped Dirac cone. Interestingly, we find that, while the electron-phonon scattering is dominated by
layer symmetric flexural phonons in the small-angle limit, at large angles, in contrast, it is the layer antisymmetric
flexural mode that is most important. We examine the role of a layer perpendicular electric field finding that it
affects the conductivity strongly at low temperatures, whereas this effect is washed out by Fermi smearing at
room temperatures.
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I. INTRODUCTION

The appearance of graphene in the first decade of this
century may now be seen as presaging the emergence of a
new class of materials: the low-dimensional van der Waals
heterostructures [1]. Amongst such systems the few-layer
graphenes play a key role as both the most studied example,
as well as a group of materials possessing structural simplicity
yet unusually rich electronic properties. In this respect, one
of the most interesting of the few-layer graphenes is the
graphene twist bilayer, a system that exhibits a remarkably
diverse electronic structure as a function of the rotation of the
layers. Twist graphene stacks, and as a prototype the graphene
twist bilayer, have thus attracted sustained theoretical and
experimental attention [2–43].

From the band theory point of view, the twist bilayer is a
material both technically as well as conceptually challenging.
There are two reasons for this. First, the size of unit cell
diverges in the small-angle limit θ → 0, and thus a numerical
solution of the band structure problem is of increasing
technical difficulty as the twist angle is reduced. Second,
while all physical properties of the bilayer must be determined
by the mutual rotation of the two layers, this angle does
not uniquely determine the lattice structure. Thus, the usual
paradigm of backfolding bands to a superstructure Brillouin
zone (BZ) cannot be applied: the twist bilayer does not have
a well-defined Brillouin zone. Instead, the system is endowed
with an emergent momentum scale, a “moiré momentum,”
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which depends only on the twist angle and determines an
effective Brillouin zone, in general different from the geometric
Brillouin zone [2,18]. Once the existence of an effective BZ is
established, the usual band physics of superstructures follows:
single-layer states of the constituent layers are backfolded to
this effective BZ, leading to a hybridization of these states
and the concomitant creation of an angle-dependent series of
van Hove singularities (vHS), observed both in many theory
calculations as well as experiments [7,9,24,25,28,31,44]. In
the small-angle limit, a multitude of these vHS accumulate
at the Dirac point, leading to a profoundly complex band
structure consisting of a plethora of very high effective mass
bands near the Dirac point. The fermiology of the small-angle
limit exhibits a corresponding richness, with multiple Lifshitz
transitions found in a very small energy window near the Dirac
point [2].

This electronic structure is suggestive of correspondingly
rich transport properties. A Fermi surface topology that
changes dramatically as a function of energy [2,4], in com-
bination with the fact that the Fermi energy is a parameter
that, experimentally, can be controlled via doping, implies
that the twist bilayer is a material for which the transport
properties are of great interest. However, thus far experiments
have been performed only for the large-angle limit [6,35,45],
and theoretical calculations restricted to the case of interlayer
transport [46–48]. The purpose of this paper, therefore, is to
present a systematic investigation of the in-plane transport
of the twist bilayer for the complete range of twist angles
1◦ < θ < 30◦.

A fundamentally important point of interest is the electron
momentum transfer due to scattering from, for example,
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phonons or defects. This is related to the key role of interlayer
momentum conservation for the electronic properties of the
ground state: electron states from the constituent layers with
momentum k1,2 (the subscript labels the layer index) scatter
only if the condition k2 − k1 = G1 − G2 is met (G1,2 are
reciprocal space vectors from each layer). The fact that the
reciprocal lattice vectors of the two layers are mutually
rotated with respect to each other renders this condition
nontrivial, and leads to the emergence of a selection rule
for single-layer states governed by the “moiré momentum”
g(c) = [8π/(

√
3a)] sin θ/2. However, with the presence of

phonons that provide a momentum q, the interlayer momentum
conservation condition now becomes k2 − k1 + q = G1 −
G2, evidently allowing for many scattering processes that,
without the phonon momentum, would be forbidden. In fact,
the importance of phonons for understanding the transport
properties of the twist bilayer has already been observed in the
case of interlayer transport where, based on an effective Hamil-
tonian theory, it was predicted that the interlayer conductivity
should depend sensitively on rotation angle, taking substantial
values only near commensurate rotation angles [48]. However,
once phonons are included into the transport calculation, this
dramatic angle dependence of the conductivity is removed
[47].

We will explore the conductivity properties of the twist
bilayer within the Boltzmann approach where the electron-
phonon scattering is very naturally included. The diverg-
ing minimum unit-cell size in the small-angle limit N =
(2 sin2 θ )−1 with θ = cos−1[(3q2 − 1)/(3q2 + 1)], q ∈ N, ne-
cessitates the use of an effective Hamiltonian approach, in
which the interaction of the twisted layers is represented by
a continuous “moiré field” [2,27], an approach that, in the
small-angle limit, has been shown to yield excellent agreement
with tight-binding calculations [2].

We find that, similar to the ground-state electronic struc-
ture of the bilayer, the transport properties are qualitatively
different in three distinct angle regimes. At large angles
θ >≈ 10◦, the transport may be characterized by an interlayer
Bloch-Grüneisen temperature, below which the phonon bath
does not possess momenta sufficient to scatter between the
cones of the two mutually rotated layers that are separated by a
momentum �K = 8π/(3a) sin θ/2 in reciprocal space. Above
this temperature, which is rather low at ≈10 K, the two layers,
even though decoupled in the ground state, are recoupled by
electron-phonon scattering leading to an in-plane transport
different from both of that of single-layer graphene as well as
any “simple stacking” of the bilayer, such as the Bernal-stacked
bilayer. At intermediate angles, we find the energy dependence
of the conductivity shows two sharp transitions that may be
linked to underlying topological changes in the Fermi surface
of the bilayer. One of these is the well-known low-energy
van Hove singularity of the twist bilayer, that leads to a
pronounced drop in conductivity associated with the low band
velocity saddle point of the van Hove singularity, while the
second is driven by the creation of low-energy electron pockets
decorating the trigonally warped Dirac cones of the twist
bilayer. Finally, the small-angle regime is associated with a
pronounced (almost two orders of magnitude) reduction in
conductivity as compared to the large-angle (θ > 15◦) regime
with an energy dependence that exhibits a very complex

structure driven by the multiple topological changes in Fermi
surface that characterize the bilayer fermiology at low twist
angles.

II. MODEL

A. Electronic structure

In this section, we summarize the geometry of the pristine
graphene twist bilayer and describe how we calculate its
electronic eigenstates |p〉. The method we use is described
in Ref. [2] and we recall it here to introduce our notation
in a transparent way, and also because we will refer to the
undistorted case repeatedly when solving the more general
case of a distorted twist bilayer.

The single-layer graphene (SLG) lattice is characterized by
the primitive vectors a1 = a(1,0) and a2 = a( 1

2 ,
√

3
2 ). With the

lattice vectors R being integer combinations of these primitive
vectors, the atoms of the A (B) sublattice are found at the
positions R + νA (B). Here, νA = (0,0) and νB = 2

3 (a1 + a2).
The reciprocal primitive vectors are b1 = 2π

a
(1,− 1√

3
) and

b2 = 2π
a

(0, 2√
3
), and integer linear combinations of these

vectors give the reciprocal lattice vectors G.
A twist bilayer consists of two SLG lattices, which we label

with an index λ = ±1, separated by a distance c and with a
relative rotation angle θ . We choose the coordinate system
such that the graphene layers lie perpendicular to the z axis at
z = λc/2 and each layer is rotated by an angle λθ/2 around the
z axis. The (real-space and reciprocal) vectors of the rotated
layers are denoted with a superscript [λ] and related to the
unrotated vectors by, for instance, a[λ]

1 = R̂λθ/2a1, where R̂φ is
the rotation matrix with rotation angle φ.

We wish to solve the Schrödinger equation

H0|p〉 = εp|p〉, (1)

where H0 represents the twist bilayer Hamiltonian. We ap-
proach this problem by expanding the twist bilayer eigenstates
|p〉 = ∑

k,α,λ c
p
k,α,λ|k,α,λ〉 in a basis of SLG Bloch states

|k,α,λ〉 = 1√
N

∑
R

e−ik(R[λ]+ν[λ]
α )

∣∣R[λ] + ν[λ]
α ,λ

〉
, (2)

that evidently take finite amplitude only on sublattice α of layer
λ. Here, N is the number of unit cells in the sample and |r,λ〉
denotes an electron located at the two-dimensional position
vector r in layer λ. In this basis, H0 is a matrix consisting of
matrix elements

〈k′,β,μ|H0|k,α,λ〉

= 1

N

∑
R,R′

eik′(R′[μ]+ν
[μ]
β )e−ik(R[λ]+ν[λ]

α )

× 〈
R′[μ] + ν

[μ]
β ,μ

∣∣H0

∣∣R[λ] + ν[λ]
α ,λ

〉
. (3)

To make further progress, we assume that the hopping energy
between two sites is a function of their separation, i.e.,

〈r + δ,μ|H0|r,λ〉 = tμ,λ(δ), (4)

where the hopping function tμ,λ(δ) may be different for
interlayer hopping (μ = −λ) as compared to intralayer hop-
ping (μ = λ) and the argument δ is the distance between
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the hopping sites projected on the xy plane. Inserting the
Fourier transform tμ,λ(δ) = (2π )−2

∫
d2q ′ tμ,λ(q′) e−iq′δ of the

hopping function into the matrix element (3), and using lattice
vector relations derived from

∑
R eikR = VBZ

∑
G δ(k − G)

we find

〈k′,β,μ|H0|k,α,λ〉
= V −1

uc

∑
G,G′

tμ,λ(k′ + G′[μ])eiGνα e−iG′νβ δk+G[λ];k′+G′[μ] ,

(5)

where Vuc is the area of the SLG unit cell and the sum runs
over all reciprocal SLG lattice vectors G, G′. From this result
we see that two states |k,λ〉, |k′,μ〉 are coupled only when the
quasimomenta difference of the two Bloch states satisfy

k′ − k = G[λ] − G′[μ], (6)

the interlayer conservation of quasimomentum [2,18,37] [see
also Fig. 1(a)].

To solve the Schrödinger equation (1), with the help of the
matrix elements (5), we must choose an explicit functional
form for tμ,λ(q′). In this work we apply a Gaussian function
for the real-space hopping energy which, together with the
resulting Fourier transform, we write as

tμ,λ(δ) = Aμλe
−Bμλ(δ2+c2

μ,λ), (7)

tμ,λ(q′) = πAμλe
−Bμλc

2
μ,λ

Bμλ

e−q ′2/(4Bμλ), (8)

with constants Aμλ and Bμλ and the z distance between the
hopping sites cμ,λ = (μ − λ)c/2. Upon insertion of Eq. (8)
into Eq. (5), we then have an explicit expression for obtaining
the matrix elements of H0.

For a practical numerical scheme, we must truncate the
infinite basis of SLG Bloch states and the form of Eq. (5),
in conjunction with the exponential decay of the hopping
in reciprocal space tμ,λ(k′ + G′[μ]), provides a natural cutoff
provided k′ is close to a high-symmetry K point. In fact, for
realistic values of the tight-binding constants, we require only
the vectors k′ + G′[μ] of smallest magnitude which occur when
k′ + G′[μ] lies close to one of the first star of special K points
[see Fig. 1(b)]. If k′ is close to K = 2π

a
(2/3,0), this occurs for

G0 := 0, G1 := −b1, and G−1 := −b1 − b2 and, neglecting
all but these three vectors in the summation over reciprocal
lattice vectors, Eq. (5) becomes

〈k′,β,μ|H0|k,α,λ〉
≈ V −1

uc

∑
j=0,±1

tμ,λ

(
k′ + G[μ]

j

)
M

β,α

j δk+G[λ]
j ;k′+G[μ]

j
, (9)

with M
β,α

j = eiGj (να−νβ ) given by

Mj =
(

1 ei2πj/3

e−i2πj/3 1

)
. (10)

In this first star approximation, each SLG Bloch state |k,α,λ〉
couples to only three SLG states |k′,β,μ〉, with k′ = k +
G[λ]

j − G[μ]
j and j = 0, ± 1 [see Fig. 1(c)]. Note that in the

case of intralayer hopping (μ = λ) the coupling condition
is k′ = k for all three hopping terms, irrespective of j .
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FIG. 1. The Brillouin zones of the two rotated single layers with
rotation angle θ = 15◦. The red squares in panel (a) depict all states
k′ of layer μ = +1 that are coupled to a given state k (blue ×) in layer
λ = −1, according to the coupling condition (6). The black hexagon
depicts the reciprocal twist bilayer unit cell defined by these coupling
vectors, here centered at the unrotated K point. Panel (b) displays
the reciprocal SLG lattice vectors G[λ]

j that are used in the first star
approximation; λ = ±1 is the layer index and j = 0, ± 1 labels the
three equivalent K points. The vectors G[λ]

0 = 0 are not visible. The
first star approximation restricts the interlayer hopping from a given
state k to only three states k′ = k + G[λ]

j − G[μ]
j which is depicted

in panel (c) for k (blue ×) in layer λ = −1 and k′ (red squares)
in layer μ = +1. The smaller symbols depict the vectors k + G[λ]

j

and k′ + G[μ]
j , presented to show that the three allowed hopping

sites k′ derive from the three equivalent K points. With the support
of phonons (d), interlayer scattering from state k to any state k′ is
possible via three different processes j = 0, ± 1 with corresponding
phonon vectors qj [see also Eq. (24) of the text]. We show two states
k (blue ×) and k′ (red square) and, with the smaller symbols, how
the three phonon wave vectors qj derive from the vectors k + G[λ]

j

and k′ + G[μ]
j .

For interlayer hopping (μ = −λ) and j = ±1 the coupling
vectors G[λ]

j − G[μ]
j form a new reciprocal basis with a

length scale |G[λ]
j − G[μ]

j | = g = 4 sin(θ/2)/
√

3(2π/a) that
decreases monotonically with rotation angle and corresponds
to the real-space moiré lattice scale of D = 1/[2 sin(θ/2)].
This is in contrast to the physically irrelevant real-space
unit-cell size and corresponding reciprocal scale, which do
not depend monotonically on rotation angle.

In the small-energy limit only electron states k, k′ near K
are relevant and we may further simplify the matrix element
by expanding k, k′ around the K point. Defining the small
vector κ = k − K[λ] and the three equivalent K points K[λ]

j =
K[λ] + G[λ]

j , we write the argument of the hopping function in

Eq. (9) as k′ + G[μ]
j = k + G[λ]

j = κ + K[λ]
j . The expansion of
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Eq. (8) up to first order is

tμ,λ

(
k + G[λ]

j

) ≈ tμ,λ(K)

(
1 − κ [−λ]Kj

2Bμλ

)
, (11)

where we have used the relation κK[λ]
j = κ [−λ]Kj for the

scalar product of rotated vectors. To examine interlayer and
intralayer coupling separately, we write the matrix H0 in a
layer-space block-matrix form, i.e., as subdivided into four
blocks according to layer index, such that the two blocks on
the diagonal represent the intralayer hopping of the individual
layers, and the two off-diagonal blocks represent the interlayer
hopping between the layers. Let us first consider the intralayer
blocks (μ = λ). Using the expansion (11) in Eq. (9), we find

〈k′,λ|H0|k,λ〉

≈ δk,k′�vF

(
ε0/(�vF ) κ [−λ]

x + iκ [−λ]
y

κ [−λ]
x − iκ [−λ]

y ε0/(�vF )

)
, (12)

which is the standard SLG Dirac-Weyl Hamiltonian for a
rotated coordinate system. Here, the Fermi velocity is �vF =
−πtλ,λ(K)/(aVucBλλ) and the physically irrelevant energy
shift ε0 = 3tλ,λ(K)/Vuc may be set to zero. For the interlayer
interaction (μ = −λ), we retain only the zeroth order of
Eq. (11) to find the interlayer matrix elements

〈k′,β, − λ|H0|k,α,λ〉
≈ V −1

uc t−λ,λ(K)
∑

j=0,±1

M
β,α

j δk+G[λ]
j ;k′+G[−λ]

j
, (13)

which do not depend on the wave vectors k, k′ except via
the coupling condition (6). Equations (12) and (13) allow us
to set up a compact Hamiltonian H0 that, as has been shown
in Ref. [2], reproduces well the exact tight-binding spectrum
within an energy window of ±0.4 eV about the Dirac point.

B. Phonons

We will now consider arbitrary deformations of the twist
bilayer lattice, described by the three-dimensional displace-
ment u(λ)(r) of the layer λ at the two-dimensional position r.
In this section, we will derive the twist bilayer phonon modes
from a simple elastic model and finally express the quantity
u(λ)(r) in terms of the corresponding phonon amplitudes.

We approximate the twisted bilayer lattice by a bilayer of
isotropic elastic planes. The resulting phonon spectrum only
contains the low-energy (quasi)acoustic phonon modes and
is independent of rotation angle. This approximation is valid
because due to the weak interlayer interaction, the stacking
order has only little influence on the bilayers’ vibrational
properties [49].

The continuous elastic bilayer has six phonon modes (σ,ν),
which are labeled by polarization ν ∈ {l,t,f} and by symmetry
σ ∈ {+,−} with respect to the layer index. For a phonon with
wave vector q the polarization can be longitudinal (ν = l),
in-plane transverse (ν = t), or flexural, i.e., normal to the plane
(ν = f), and is given by the direction eq,ν of the displacement
vector, which, respectively, is eq,l = q̂, eq,t = ẑ × q̂, and
eq,f = ẑ, where q̂ = q/|q| and ẑ = (0,0,1). Layer symmetric
(antisymmetric) phonons are labeled with σ = + (σ = −)
and correspond to oscillations in which the layers displace
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FIG. 2. Phonon dispersions of the low-energy phonon modes
that we consider in this work. See Eqs. (16)–(18) for the phonon
dispersions and Table I for the relevant parameters.

relative to each other in the same or in opposite directions, i.e.,
u(λ)(r) = σ · u(−λ)(r).

In order to express the displacement vector u(λ)(r) in terms
of phonon amplitudes uq,σ,ν , we Fourier transform the coordi-
nate r to reciprocal space with u(r) = V/(2π )2

∫
d2q uqe

−iqr,
with V being the two-dimensional volume of the sample.
Moreover, we switch from the layer index λ to the symmetry
index σ via the transformation uσ = (u(+1) + σu(−1))/

√
2,

and the inverse transformation u(λ) = (u+ + λu−)/
√

2. These
transformations may be written in a more compact form as
uσ = ∑

λ sσ,λu(λ)/
√

2 and u(λ) = ∑
σ sλ,σ uσ /

√
2, with sλ,σ =

λ(1−σ )/2 = ±1. Finally, we decompose uq,σ = ∑
ν uq,σ,ν · eq,ν

into polarization components.
The displacement vector takes the form

u(λ)(r) = V√
2(2π )2

∑
σ,ν

∫
d2q uq,σ,νsλ,σ e−iqreq,ν . (14)

The phonon amplitudes can be expressed in terms of phonon-
creation and -annihilation operators

uq,σ,ν = �√
2ρV ωq,σ,ν

(a†
q,σ,ν + a−q,σ,ν), (15)

where ρV is the mass of the bilayer sample, a
†
q,σ,ν (aq,σ,ν)

creates (annihilates) a phonon of mode (σ,ν) and wave vector
q, and ωq,σ,ν is the phonon energy.

The energy dispersions (see Fig. 2) of the six phonon modes
of a continuous elastic bilayer are [50]

ωq,σ,l =
√

α2
l q

2 + �2
l δσ,−1, (16)

ωq,σ,t =
√

α2
t q

2 + �2
t δσ,−1, (17)

ωq,σ,f =
√

α2
f q

4 + �2
f δσ,−1. (18)

The symmetric phonons (+,ν) are purely acoustic and have the
same dispersion as in a single two-dimensional layer. Note the
quadratic dispersion of the flexural mode (+,f). Antisymmetric
modes (−,ν) have a small energy offset �ν at q = 0 due
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to the interlayer interaction. This adds some optical flavor
to the otherwise acoustic vibrations, and we refer to these
antisymmetric phonon modes as quasiacoustic phonons. In
contrast, optical phonons, not treated by a continuum elastic
model, would require out-of-phase oscillations of neighboring
atoms in the same layer. As the atomic intralayer coupling is
much stronger than the interlayer coupling, the energy of an
optical phonon at q = 0 is much higher than the energy offsets
�ν of the quasiacoustic modes (−,ν) and is expected to play
almost no role in electron-phonon scattering of the bilayer.

C. Electron-phonon scattering

In this section, we calculate the scattering matrix element
〈p′,�′|T |p,�〉, that describes scattering from the twist bilayer
eigenstate |p〉 to the twist bilayer eigenstate |p′〉 while creating
or destroying a phonon, with the concomitant change in the
phonon population from |�〉 to |�′〉. In this expression, T is
the phonon-induced scattering potential which we treat here
as a perturbation.

First, we expand the scattering matrix element in the SLG
basis (2) yielding

〈p′,�′|T |p,�〉 = 〈�′| ·
∑
g,α,λ

∑
g′,β,μ

[
c
∗p′
g′,β,μc

p
g,α,λ

×〈p′ + g′,β,μ|T |p + g,α,λ〉] · |�〉.
(19)

To calculate the matrix elements 〈k′,β,μ|T |k,α,λ〉, we return
to Eq. (3) and replace the Hamiltonian of the unperturbed twist
bilayer H0 by the Hamiltonian of the distorted twist system
H = H0 + T . The deformation of the twist bilayer enters via
the hopping function which now does not depend only on
the hopping distance δ but, due to the spatial variation of the
deformation, also on the position r in the bilayer at which the
hopping takes place. Instead of Eq. (4) we write

〈r + δ,μ|H0 + T |r,λ〉 = tμ,λ(r,δ). (20)

An explicit expression for tμ,λ(r,δ) will be discussed subse-
quently. We proceed as in the undeformed case by sending the
hopping to Fourier space via the double transform tμ,λ(r,δ) =
V/(2π )4

∫
d2q

∫
d2q ′tμ,λ(q,q′)e−iqre−iq′δ . The first argument

q corresponds to the spatial dependence r of the hopping
function and hence q is the phonon wave vector. We insert
this Fourier transformation into Eq. (3), finding

〈k′,β,μ|H0 + T |k,α,λ〉
= V −1

uc

∑
G,G′

tμ,λ(q,k′ + G′[μ]) eiGνα e−iG′νβ , (21)

with the phonon vector q fulfilling

q = (k′ + G′[μ]) − (k + G[λ]). (22)

The resulting equations (21) and (22) should be compared to
the matrix element (5) and the coupling condition (6) of the
pristine twist bilayer. In contrast to the previous result, now all
states k′ are allowed to couple to a given state k provided the
lattice deformation contains a Fourier component q.

In the first star approximation, Eq. (21) becomes

〈k′,β,μ|H0 + T |k,α,λ〉
≈ V −1

uc

∑
j=0,±1

tμ,λ

(
qj ,k′ + G[μ]

j

)
M

β,α

j , (23)

with the phonon vectors

qj = (
k′ + G[μ]

j

) − (
k + G[λ]

j

)
, (24)

as depicted in Fig. 1(d). The result (23) shows that in the
first star approximation scattering between any given k and
k′ is possible via three different processes j = 0, ± 1 with
corresponding phonon vectors qj , deriving from the three
equivalent K points.

We now consider an explicit hopping function tμ,λ(r,δ) and
its Fourier transform. We use the ansatz from Eq. (7) but due
to the deformation u(λ)(r) of the lattice the hopping distance
between site r in layer λ and site r + δ in layer μ changes
by u(μ)(r + δ) − u(λ)(r). We decompose this displacement
into in-plane and out-of-plane components u(λ)(r) = ū(λ)(r) +
h(λ)(r)ẑ and write the real-space hopping function as

tμ,λ(r,δ) = Aμλe
−Bμλ(δ+ū(μ)(r+δ)−ū(λ)(r))2

× e−Bμλ(cμ,λ+h(μ)(r+δ)−h(λ)(r))2

. (25)

Note that the r dependence is only due to the deformation field
uλ(r), as required. Considering only small lattice deforma-
tions, we can Taylor expand the hopping function up to linear
order, finding

tμ,λ(r,δ) ≈ tμ,λ(δ)[1 − 2Bμλδ · (ū(μ)(r + δ) − ū(λ)(r))

− 2Bμλcμ,λ(h(μ)(r + δ) − h(λ)(r))]. (26)

Here, the zeroth-order term is the hopping function tμ,λ(δ)
of the undeformed twist bilayer [see Eq. (7)]. It enters the
Hamiltonian H0 we treated in Sec. II A. The first-order terms
represent the change of the hopping energy due to one-phonon
scattering processes, while terms beyond first order correspond
to multiple phonon scattering processes and the mixing of the
phonon modes. In what follows, we will treat only one-phonon
processes and thus have retained only the first-order terms in
Eq. (26).

Note that in Eq. (26) a linear contribution of the flexural
deformation h(μ)(r + δ) − h(λ)(r) appears. This is in contrast to
the electron-phonon coupling of single-layer graphene, where
due to the symmetry with respect to h(r) → −h(r) flexural
phonons can couple only quadratically, i.e., via two-phonon
processes, to the electrons [51–53]. If the symmetry with
respect to the xy plane is broken, linear flexural phonon
coupling becomes possible, as has also been discussed for
AB-stacked bilayer graphene [50].

To make further progress, write the displacement vector
u(λ)(r) = ū(λ)(r) + h(λ)(r)ẑ in terms of the phonon amplitudes
[see Eqs. (14) and (15)], and insert the Fourier transform
tμ,λ(q,q′) = V −1

∫
d2r

∫
d2δ tμ,λ(r,δ) eiqreiq′δ of the hopping

function (26) into the scattering matrix elements (23).
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The final result of this calculation may be expressed as a
sum over all phonon modes

〈k′,β,μ|T |k,α,λ〉

=
∫

d2q
∑

η

(a†
q,η + a−q,η)wk′,β,μ;k,α,λ

q,η , (27)

where the vibrational mode is specified with η = (σ,ν). Here,
the terms w

k′,β,μ;k,α,λ
q,η , which are the scattering probabilities

for scattering from a SLG state |k,α,λ〉 to another SLG state
|k′,β,μ〉 while creating a phonon (q,η) or destroying a phonon
(−q,η), are given by

w
k′,β,μ;k,α,λ

q,(σ,l) =
∑

j

δ(k
′
j − kj − q)

Dμ,λM
βα

j√
ωq,σ,l

× i
(
sλ,σ e

− k′2
j

4Bμλ k
′
j − sμ,σ e

− k2
j

4Bμλ kj

)
· q̂,

(28)

w
k′,β,μ;k,α,λ

j ;q,(σ,t) =
∑

j

δ(k
′
j − kj − q)

Dμ,λM
βα

j√
ωq,σ,t

× i
(
sλ,σ e

− k′2
j

4Bμλ k
′
j − sμ,σ e

− k2
j

4Bμλ kj

)
· (ẑ × q̂),

(29)

w
k′,β,μ;k,α,λ

j ;q,(σ,f) =
∑

j

δ(k
′
j − kj − q)

Dμ,λM
βα

j√
ωq,σ,f

× 2Bμλcμ,λ

(
sλ,σ e

− k′2
j

4Bμλ − sμ,σ e
− k2

j

4Bμλ

)
,

(30)

for longitudinal, transverse, and flexural phonons, respectively,
and where Dμλ = π�Aμλe

−Bμλc
2
μ,λ/(2Vuc

√
ρV Bμλ), kj = k +

G[λ]
j , k

′
j = k′ + G[μ]

j , and sλ,σ = λ(1−σ )/2.
With this result, the matrix element for the phonon-induced

scattering of twist bilayer states [Eq. (19)] may be written as

〈p′,�′|T |p,�〉 =
∫

d2q
∑

η

〈�′|a†
q,η + a−q,η|�〉W p′;p

q,η ,

(31)

where the term

W p′;p
q,η =

∑
g,α,λ

∑
g′,β,μ

c
∗p′
g′,β,μc

p
g,α,λw

p′+g′,β,μ,p+g,α,λ
q,η (32)

is the scattering probability from a twist bilayer state |p〉 to
another twist bilayer state |p′〉 while creating a phonon (q,η)
or destroying a phonon (−q,η); note that we have |W p′;p

q,η |2 =
|W p;p′

−q,η|2.
We have derived the scattering matrix elements [Eq. (27)]

valid for scattering of low-energy states k near K[λ] and k′
near K[μ]. A similar result can be obtained for scattering in
the inequivalent valleys K′[λ] and K′[μ]. Within this model
we deploy here, however, the K and K ′ valleys are treated
separately, allowing only phonon scattering K ↔ K and
K ′ ↔ K ′. Treating the K and K ′ valleys independently,
however, disregards the fact that, via phonon scattering,

interaction between these valleys is possible. For small and
intermediate angles θ <≈ 15◦ the momentum separation
between the K and K ′ valleys is sufficiently large that only at
very high temperatures are these cones connected by phonon
scattering. As we are principally interested in low angles
and temperatures, we will disregard this mechanism. We
note, however, that at large angles this type of scattering
mechanism may be important. In particular, note that at
θ = 30◦ the interlayer interaction of all four valleys will be
equally important as the momentum separation of the K cones

�K = 8π

3a
sin

θ

2
(33)

and the momentum separation between the K and K ′ cones

�K = 8π

3a
sin

(
π

6
− θ

2

)
(34)

is equal. Therefore, if a phonon of sufficient momentum exists
such that scattering between Dirac cones is possible, then this
scattering mechanism will couple all four cones.

D. Calculation of the conductivity

For the sake of completeness, in this section we describe
how the conductivity of the twist bilayer is calculated on the
basis of the linearized Boltzmann equation. The conductivity
tensor σ is defined by j = σE, where E is a homogeneous
electric field applied to a sample and

j = − 4

(2π )2

∫
d2p evpfp (35)

is the resulting current density. Here, e is the elementary
charge, vp = ∇pεp/� is the band velocity and εp is the energy
of an twist bilayer eigenstate |p〉. The factor 4 accounts for
spin degeneracy and equal contributions from the inequivalent
K and K ′ valleys, which we treat independently. In a steady
state, the distribution function fp is constant, and therefore it
may be obtained from the Boltzmann transport equation

∂fp

∂t

∣∣∣∣
field

+ ∂fp

∂t

∣∣∣∣
scattering

= 0, (36)

where the field term is

∂fp

∂t

∣∣∣∣
field

= −∂f 0
p

∂εp
evp · E, (37)

with the Fermi-Dirac distribution function f 0
p = (eβ(εp−εF ) +

1)−1. The scattering term in Eq. (36) is determined by the
Fermi golden rule

∂fp

∂t

∣∣∣∣
scattering

= − 2π

�

V

(2π )2

∫
d2p′ ∑

�f

|〈p′,�f |T |p,�i〉|2

× fp(1 − fp′)δ(εp′,�f
− εp,�i

)

+ 2π

�

V

(2π )2

∫
d2p′ ∑

�f

|〈p,�f |T |p′,�i〉|2

× fp′(1 − fp)δ(εp,�f
− εp′,�i

), (38)

where scattering processes between all electron states |p〉,|p′〉
and all phonon configurations |�i〉,|�f 〉 are considered and
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εp,� = εp + ε� is the sum of the energies of an electron |p〉
and the phonon population |�〉. Inserting the generic electron-
phonon scattering matrix elements from Eq. (31), we obtain

∂fp

∂t

∣∣∣∣
scattering

= 2π

�

∫∫
d2p′d2q

∑
η

∣∣W p′;p
q,η

∣∣2

× [fp′(1 − fp)(1 + nq,η)δ(εp′ − εp − ωq,η)

+ fp′(1 − fp)nq,ηδ(εp′ − εp + ωq,η)

− fp(1 − fp′)(1 + nq,η)δ(εp′ − εp + ωq,η)

− fp(1 − fp′)nq,ηδ(εp′ − εp − ωq,η)], (39)

where nq,η is the phonon occupation number and ωq,η is the
phonon energy. The four terms in the square brackets represent
the four different scattering processes for scattering to or from
electron state |p〉 while creating or annihilating one phonon.
We linearize the scattering term

fp ≈ f 0
p − ∂f 0

p

∂εp
φp (40)

and assume the phonon occupation nq,η is given by the
Bose-Einstein distribution n0

q,η = (eβωq,η − 1)−1. Employing
the elastic scattering approximation ωq,η � εp and retaining
only terms linear in φp, the Boltzmann transport equation (36)
is transformed to

vp · eE =
∫

d2p′Pp′,p(φp′ − φp) · δ(εp′ − εp), (41)

with

Pp′,p = 2π

�

∫
d2q

∑
η

∣∣W p′;p
q,η

∣∣2 · 2ωq,η

∂n0
q,η

∂ωq,η

. (42)

The above formulas are generic for the linearized Boltzmann
transport equation within the elastic approximation. For the
specific case of the twist bilayer graphene, we insert the ap-
propriate twist bilayer electron-phonon scattering probabilities
W

p′;p
q,η , as given in Eqs. (32) and (28)–(30), and then solve for

the unknown function φp.
In order to solve Eq. (41) we transform to a basis of

functions ψL(p) that are orthonormal on the Fermi surface
[54], i.e..

1

Ñ

∫
d2p ψL(p)ψL′(p)δ(εp − εF ) = δL,L′ , (43)

with normalization Ñ = ∫
d2p δ(εp − εF ). The basis func-

tions ψL(p) may be constructed by Gram-Schmidt or-
thonormalization from any complete set of basis func-
tions, for example, the polynomials of p components
{1,px,py,p

2
x,pxpy,p

2
y, . . .}. Note that the orthonormalization

(43) will, in general, yield different sets of functions ψL(p)
for different Fermi energies εF . All functions depending on p,
e.g., φp and Pp′,p, may then be transformed to the new basis

via the relations

φL = 1

Ñ

∫
d2p δ(εp − εF )φp ψL(p), (44)

φp =
∑
L

φLψL(p), (45)

PL′,L = 1

Ñ2

∫∫
d2p d2p′δ(εp − εF )δ(εp′ − εF )

×Pp′,p ψL(p)ψL′(p′), (46)

Pp′,p =
∑
L,L′

PL′,LψL(p)ψL′(p′). (47)

The linearized Boltzmann equation (41) in the new basis reads
as

vL · eE = Ñ
∑
L′

[
PL′,L −

∑
L′′

CL,L′,L′′PL′′,0

]
φL′, (48)

with the Clebsch-Gordan coefficients

CL,L′,L′′ = 1

Ñ

∫
d2p δ(εp − εF )ψL(p)ψL′(p)ψL′′(p), (49)

and where we have chosen the basis function with index L =
0 to be the constant function ψ0(p) = 1. Equation (48) is a
matrix equation vL = ∑

L′ ML,L′φL′ which can be solved for
the unknown vector φL′ by inversion of the matrix ML,L′ .
Having solved the Boltzmann equation (48), we subsequently
use Eqs. (45) to calculate the function φp. The current density
is obtained from Eq. (35), which using Eq. (40) we rewrite as

j = 4

(2π )2

∫
d2p evp

∂f 0
p

∂εp
φp. (50)

Finally, we read off the conductivity tensor σ from the equation
j = σE. Due to Eq. (48), the proportionality j ∼ |E| always
holds, i.e., the resulting conductivity is guaranteed to be
independent of |E|, as required. Note that due to the elastic
scattering approximation all scattering processes are between
electron states with the same energy and thus different energies
can be treated separately in solving the linearized Boltzmann
equation. It is only in the last step, the integration of current
density (50), that different energies contribute according to
the Fermi-Dirac distribution, leading to a conductivity that at
Fermi energy εF depends on scattering processes of electron
states within an energy window εF − kBT < ε < εF + kBT .

III. COMPUTATIONAL DETAILS

For numerical calculations we parametrize the model
outlined in the previous section as indicated in Table I.
The parameters Aμ,λ and Bμ,λ for the tight-binding hopping
energies [Eqs. (7) and (8)] have been fitted to results of density
functional theory calculations for a data set of small unit-cell
structures, including both Bernal and twist bilayers [15]. The
parameters αν of the phonon spectrum [Eqs. (16)–(18)] de-
scribe the in-plane elastic properties of the twist bilayer and can
be obtained directly from the phonon dispersion of graphene or
graphite, which has been studied extensively both theoretically
[55–59] as well as experimentally [60–62]. Comparing the
phonon dispersion of graphene and graphite reveals that the in-
plane elastic properties αν are robust against different stacking
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TABLE I. Values of various parameters and physical constants
used in the model of Sec. II; a is the graphene lattice constant and
c the interlayer separation of the bilayer, A and B are parameters
that determine the tight-binding matrix elements [15], and � and α

parameters that determine the spectrum of the six low-energy phonon
modes of the bilayer. See text for further details.

a = 2.46 Å �l = �t = 4.65 meV
c = 3.35 Å �f = 8.38 meV

Aλ,λ = −8.45 eV αl = 131.64 meV Å

Bλ,λ = 0.66 Å
−2

αt = 85.57 meV Å

A−λ,λ = 50 eV αf = 30.28 meV Å
2

B−λ,λ = 0.44 Å
−2

configurations of graphene layers and, therefore, the same
values can be used for the twist bilayer. For the parameters �ν

describing the interaction between the layers we use values in
agreement with Ref. [63]. It should be noted, however, that in
the literature a range of values (±30%) can be found for this
constant [49,64,65]. Furthermore, a small dependence of �ν

on layer rotation is suggested [49], which is neglected in this
work as it does not affect our results noticeably.

When calculating the twist bilayer electronic band struc-
ture, we expand the twist eigenfunctions in SLG basis
functions |p〉 = ∑

g,α,λ c
p
p+g,α,λ|p + g,α,λ〉. The number of

required basis functions, i.e., the dimension of the Hamiltonian
that has to be diagonalized at each point in k space, depends
on the Fermi energy εF and on the rotation angle θ of the
system. In this work we only calculate bilayers with θ � 1◦
and |ε| � 0.4 eV, in which case a basis of a few hundred SLG
functions has been found to be sufficient [2,18].

The computationally most expensive part of the numerical
procedure, however, is the calculation of scattering probabili-
ties between all points on the Fermi surface, as the number of
such scattering processes W p,p′

evidently scales quadratically
with Np, the number of mesh points on the Fermi surface.
Depending on the complexity of the Fermi surface, we use a
mesh size of 500 < Np < 3000 points.

Solving the Boltzmann equation requires the inversion of
the matrix ML′L = PL′,L − ∑

L′′ CL,L′,L′′PL′′,0 in Eq. (48). The
dimension of this matrix is given by the number nL of basis
functions ψL(p) required to transform the functions vp and
Pp′,p to the basis of orthonormal Fermi surface functions. It
turns out that these functions are smooth enough that nL =
45 is sufficient for θ � 5◦. For smaller rotation angles, we
increase it gradually to nL = 435 at the smallest rotation angle
θ = 1◦ that we treat in this work.

With the present model we calculate all four components σij

of the 2 × 2 conductivity tensor. However, in all calculations
we find that the conductivity tensor is isotropic, and we can thus
write the result as σij = σδij with σ a scalar. In the following,
we refer to this scalar σ when referring to conductivity.

IV. RESULTS

Having established a formalism within which the conduc-
tivity of the twist bilayer may be calculated, in this section we
will explore the conductivity over the full range of angles of

the twist bilayer. As is by now well known, the twist bilayer
exhibits an extraordinary richness of electronic structure as a
function of the twist angle (see, for example, Ref. [2]), and our
primary interest here will be (i) to establish the corresponding
behavior for the transport properties and (ii) to relate this
transport behavior to the underlying electronic structure. To
this end, we will first overview the electronic structure of the
twist bilayer.

The ground-state electronic structure of the twist bi-
layer may be characterized by three qualitatively different
types of behavior that occur at three distinct twist angle
regimes. At large angles (θ >≈ 15◦), the bilayer is essentially
electronically decoupled while, in contrast, at small angles
(θ <≈ 2◦) the bilayer is strongly coupled, and exhibits a
rich electronic structure that differs significantly both from
single-layer graphene and any “simple stacking” arrangement
such as the Bernal- (AB-) stacked bilayer. These two coupling
strength limits are connected by an angle window in which
the electronic spectrum is qualitatively that of single-layer
graphene, but decorated by van Hove singularities occurring
due to the intersection of the two Dirac cones from each layer.
As the twist angle is reduced, these van Hove singularities both
increase in number and move continuously towards the Dirac
point (reflecting the increasing number of intersection points
of the two cones as they move closer together in momentum
space). This ends at small angles in the complete destruction
of the single-layer spectrum.

In order to elucidate the relationship between the underlying
electronic structure and the conductivity, we will first set
∂f 0

p /∂εp := −δ(εF − εp) in Eq. (50). Under this approxima-
tion only states at ε = εF contribute to the conductivity and this
evidently facilitates understanding the relationship between
the conductivity σ (εF ) and the underlying electronic structure.
Note that there are two distinct temperature dependencies in
the formalism described in Sec. II, a “fermionic temperature”
of the electron quasiparticles and a “bosonic temperature”
of the phonon bath, and thus this approximation is not a
temperature-independent approximation.

In the subsequent sections we will successively describe the
conductivity at large angles, intermediate angles, and finally
in the small-angle strong coupling limit.

A. Conductivity at large angles: θ > 10◦

In Fig. 3, we present the conductivity of the twist bilayer
for 10◦ < θ < 30◦ and four temperatures: T = 10, 30, 50, and
300 K. The Fermi energy is εF = 50 meV in all four panels (the
results do not change qualitatively upon changing the Fermi
energy). In dramatic contrast to the ground-state electronic
structure, which at these energies would be identical to that
of single-layer graphene and therefore angle independent, we
see that the transport properties show a pronounced angle
dependence once T > 10 K. This can be understood by
noting that the Dirac cones from each layer are separated in
momentum space by

�K = 8π

3a
sin

θ

2
. (51)

Thus, once the phonon bath has sufficient momentum to scatter
between these two cones (see Fig. 2). then even though the
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FIG. 3. Transport recoupling of the bilayer at large angles. The
conductivity σ as a function of twist angle for a Fermi energy of εF =
50 meV and for temperatures T = 10 K to T = 300 K as indicated.
Only at low temperatures does the transport become independent of
the twist angle, as may be seen in the T = 10 K panel for θ > 20◦.
Thus, in contrast to the ground-state electronic structure, only at
low temperatures does the conductivity of the twist bilayer become
layer decoupled at large angles. The crossover between the layer
decoupled and layer coupled transport behavior is determined by
an angle-dependent interlayer Bloch-Grüneisen temperature, below
which the phonon bath does not possess sufficient momentum to
scatter between the two Dirac cones of each layer that are separated
in momentum space by �K = 8π/(3a) sin θ/2. Note that in this
calculation the temperature-dependent Fermi smearing is switched
off by setting ∂f 0

p /∂εp = −δ(εF − εp) in Eq. (50) of the main text,
and thus the conductivity reflects only scattering processes occurring
at the Fermi energy.

ground state of the bilayer is electronically decoupled, the
transport problem recouples the layers. We should stress that
the purpose of the calculations we present in this section is
simply to probe the question of transport coupling of the
bilayer. An accurate calculation of in-plane transport in the
large-angle decoupled limit requires both second-order phonon
scattering processes, as the in-plane flexural phonon couples
at order O(q2), as well as K ↔ K ′ scattering to be included.

To understand the angle-dependent interlayer coupling in
more detail, we consider the contributions to the resistivity
of the individual phonon modes: flexural, longitudinal, and
transverse (we have six phonon modes as each of these may be
either layer symmetric or layer antisymmetric in nature). By
restricting the sum in Eq. (31) to a specific phonon mode η0 we
obtain the conductivity σ[η0] in which only the selected phonon
mode is active. As we consider only single electron-phonon
scattering events, these conductivity contributions fulfill the
equation σ−1 = ∑

η(σ[η])−1, with σ being the conductivity
including all phonon modes. As may be seen in Fig. 4,
the antisymmetric flexural mode (−,f) makes the largest
contribution to the resistivity, while in contrast the symmetric
flexural phonons (+,f) make a negligible contribution. The
antisymmetric flexural phonon spectrum, as may be seen in
Fig. 2, possesses a gap of ≈8 meV, and the magnitude of this

-0.1 -0.05 0 0.05 0.1
εF  (eV)

0

0.5

1

1.5

σ [η
]-1

  (
V

/A
)

(+,l)
(+,t)
(+,f)
(-,l)
(-,t)
(-,f)
total

θ = 20°, T = 50 K

FIG. 4. Particle-hole asymmetry of the transport in the twist
bilayer. Shown is the contribution to the resistivity σ−1

[η] from the six
distinct phonon modes η = (σ,ν) that the bilayer possesses, plotted
as a function of the Fermi energy εF for temperature T = 50 K and
a rotation angle of θ = 20◦. In contrast to the case in single-layer
graphene, or the Bernal-stacked bilayer, the transport is asymmetric,
a fact that arises as the moiré field itself does not possess particle-hole
symmetry. Note that the temperature-dependent Fermi smearing
∂f 0

p /∂εp of the electron states is not included, and thus the resulting
transport reflects only scattering processes that take place at the Fermi
energy.

gap, along with the momentum separation of the cones �K ,
evidently determines the temperature at which the scattering
between the two cones is switched on.

Curiously, we find that the energy dependence of the
resistivity does not display particle-hole symmetry, exhibited
most strongly by the antisymmetric flexural mode which
has a linear dependence on Fermi energy as may be seen
in Fig. 4. This is in dramatic contrast to both single-layer
graphene, as well as the Bernal-stacked bilayer, in which the
dependence on Fermi energy (or equivalently charge carrier
density) is particle-hole symmetric [50,52]. The reason for
this lies in the nature of the interlayer coupling, which for
the twist bilayer is carried by the position-dependent “moiré
field” given by the layer off-diagonal blocks of the twist
Hamiltonian (13), a much more complex object than the
relatively simple position-independent coupling of the AB

bilayer. These layer off-diagonal blocks in fact explicitly
break particle-hole symmetry, as may be seen by operating
with antiunitary operator iσyK (K the complex conjugation
operator). In contrast, the Dirac-Weyl Hamiltonian, as well as
the layer off-diagonal blocks of the Bernal bilayer, do possess
particle-hole symmetry.

B. Conductivity at intermediate angles: 2◦ < θ < 10◦

At intermediate twist angles, the transport behavior is,
as may be seen from Fig. 5(b), strikingly different from
the large-angle case. Shown in Fig. 5(b) is the conductivity
as a function of energy which, in contrast to the rather
smooth dependence seen at large angles, exhibits two points
of nonanalytic behavior (recall we have switched off the Fermi
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FIG. 5. Band velocity dominated transport regime. At interme-
diate angles, the transport of the twist bilayer is dominated by band
structure effects that result from the hybridization of the two Dirac
cones from each layer. To see this, compare the band velocity averaged
over the Fermi surface |v| [panel (c)] with the conductivity [panel
(b)]. Clearly, the dramatic changes in conductivity that, for example,
occur at 88 and 194 meV for the θ = 3◦ system are the result of
corresponding changes in the Fermi surface averaged band velocity
(and similar for all other angles presented). These sudden transitions
result from topological changes in the Fermi surface that occur at
these energies, and both produce noticeable features in the density
of states [see panel (a)]. For details and explanation of the changes
in Fermi surface topology, see Sec. IV B and Fig. 6. Note that the
temperature-dependent Fermi smearing is switched off by setting
∂f 0

p /∂εp = −δ(εF − εp) in Eq. (50) of the main text, and thus the
conductivity reflects only scattering processes occurring at the Fermi
energy.

smearing). These are labeled by “van Hove singularity” and
“Lifshitz transition” in Fig. 5(b) and, within the energy range
of the plot, occur for all angles 2◦ < θ < 4◦. The former of
these is evidently closely connected to the well-known van
Hove singularities found in the density of states of the twist
bilayer at these angles, as may be seen by comparison of
the density of states shown in Fig. 5(a) and the conductivity
plotted in Fig. 5(b), while the latter has its origin (as we will
shortly show) in a topological change in the Fermi surface,
and is responsible for the steplike feature seen at density of
states at ≈0.2 eV. To investigate these features further we
display in Fig. 5(c) the band velocity averaged over the Fermi
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FIG. 6. Fermi surfaces of the twist bilayer with rotation angle
θ = 3◦ shown for four different energies ε1 = 87 meV, ε2 = 89 meV,
ε3 = 193 meV, and ε4 = 195 meV. The color encodes the band
velocity |vp| in units of the SLG Dirac band velocity vSLG while
the black hexagons depict the twist bilayer reciprocal space unit cell
[see also Fig. 1(a)]. The Fermi surfaces should be compared to the
θ = 3◦ conductivity and average band velocity displayed in Fig. 5 and
illustrate the topological changes that underlie the two pronounced
features in the conductivity indicated by the arrows in Fig. 5.

surface v = ∫
d2p|vp|δ(εF − εp)/

∫
d2p δ(εF − εp). Both of

the nonanalytic features of σ (εF ) can clearly be correlated to
similar changes in the average band velocity, implying a band
structure origin for both.

In the top two panels of Fig. 6 we present a set of extended
Fermi surfaces for the θ = 3◦ bilayer and, as indicated, two
energies ε1 = 87 meV and ε2 = 89 meV that are either side
of the point labeled “van Hove singularity” in the conductivity
found at ε = 88 meV. As may be seen while at ε1 the Fermi
surface consists of two disconnected loops corresponding to
the two Dirac cones of each layer, at ε2 these loops have
merged to form a qualitatively different Fermi surface. This
intersection of the cones, and the resulting band repulsion at
the intersections, creates a local energy gap that leads both
to the van Hove peak in the density of states, as well as the
pronounced drop in the Fermi surface averaged band velocity.
This drop in average band velocity leads to a corresponding
drop in conductivity, and thus explains the conductivity valley
of the θ = 3◦ curve at ε = 88 meV in Fig. 5(b). It is interesting
to note that exactly the same band feature is responsible
for an enhancement of the intraband contribution to the
optical conductivity [66], which contrasts to the suppression
of in-plane charge conductivity found here. Formally, this
results from the different structures of the two theories used
to derive these quantities. The optical response is, as with
any response function, obtained via second-order perturbation
theory and the low velocities of the van Hove singularity imply
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small energy denominators and hence enhancement, whereas
in the Boltzmann equation the velocity enters in the numerator
and thus its reduction results in a suppression of charge
transport.

We next consider the second pronounced feature in σ (ε),
the apparently discontinuous drop at ε ≈ 194 meV. As shown
in the lower panels of Fig. 6 where we plot the Fermi surfaces,
either side of this transition (ε3 = 193 meV to ε4 = 195 meV),
the origin of this feature is somewhat different: we see that a
new set of disconnected Fermi sheets arise as the transition
point is crossed. This topological change in the fermiology
evidently is (a) discontinuous as the sheets appear at a finite
momentum away from the central strongly trigonally warped
Fermi surface and (b) results in additional scattering processes,
which causes the sudden decrease of the conductivity.
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FIG. 7. Importance of the twist bilayer wave functions in the
small-angle regime. At small twist angles the clear correspondence
between the conductivity and the Fermi surface averaged band
velocity seen at larger angles no longer holds. To see this, compare the
Fermi surface averaged velocities [panel (b)] with the conductivities
[panel (a)] in the highlighted region. While the average band velocity
of the θ = 1◦ bilayer in this region is somewhat higher than that
for the θ = 2◦ bilayer, the conductivity of the former is ≈5 times
lower than the latter. This indicates that the bilayer wave functions
now play a dominating role in determining the transport, consistent
with the fact that in the small-angle limit the twist bilayer wave
functions become qualitatively different from those of single-layer
graphene and show features of charge localization [2,18]. Note that
the temperature-dependent Fermi smearing is switched off by setting
∂f 0

p /∂εp = −δ(εF − εp) in Eq. (50) of the main text, and thus the
conductivity reflects only scattering processes occurring at the Fermi
energy.
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FIG. 8. Resistivity σ−1
[η] due to particular phonon modes η = (σ,ν)

plotted vs Fermi energy εF for temperature T = 50 K and rotation
angle θ = 2◦. The temperature-dependent Fermi smearing ∂f 0

p /∂εp

of the electron states is not included.

C. Conductivity at small angles: θ � 2◦

In Fig. 7(a), we plot the conductivity σ as a function of
Fermi energy εF for a set of rather small rotation angles θ of the
twist bilayer (θ = 2◦, 1.5◦, and 1◦). It is immediately apparent
that the conductivity at these angles is strongly suppressed as
compared to the large-angle regime and, furthermore, develops
a plethora of nonanalytic structures as a function of Fermi
energy. These arise from the multiple topological changes in
the Fermi surface as a function of energy that characterize
the fermiology of the small-angle region [2]. Interestingly, it
is clear from a comparison between the conductivity and the
average band velocity, shown in Fig. 7(b), that the transport
properties of the bilayer cannot be explained solely on the
basis of the average band velocity alone. As a particular
example, inspection of the θ = 1◦ average velocity in the
region close to 60 meV shows that while the average band
velocity is somewhat higher than that for the θ = 2◦ bilayer,
the conductivity is five times lower. Evidently, the twist bilayer
wave functions, which enter via the electron-phonon scattering
matrix elements W

p′;p
q,η , play a crucial role in transport at small

angles. This is in contradistinction to the situation at large
angles, where the conductivity features could be explained on
the basis of the band velocity alone, but is consistent with
the fact that, in the small-angle regime, the twist bilayer wave
functions become highly structured due to the interference of
many single-layer graphene states that are coupled together by
the interlayer interaction [18].

Finally, we investigate the influence of each of the six
phonon modes on the small-angle conductivity. In Fig. 8,
we plot the inverse conductivities, i.e., resistivities, (σ[η])−1

for a rotation angle θ = 2◦ and a temperature T = 50 K. We
find that each resistivity contribution qualitatively follows the
features exhibited by the total resistivity, but that the resistivity
is dominated by the layer symmetric flexural mode (+,f). At
energies εF > 80 meV it accounts for around 75% of the
total resistivity, while the remaining scattering results almost
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FIG. 9. Conductivity σ of the twist bilayer as a function of Fermi
energy εF for a temperature T = 50 K and a series rotation angles θ

that encompass both large- and small-angle cases. The temperature-
dependent Fermi smearing ∂f 0

p /∂εp of the electron states is included,
which results in a smearing out of the data presented in Figs. 5(b)
and 7(a), in which the Fermi smearing is not included. Note that the
y-axis scaling changes at σ = 0.2 A/V.

entirely from the layer antisymmetric flexural phonon mode
(−,f) and each of the in-plane phonon modes contributes only
around 1% to the resistivity. This is in interesting contrast to the
large-angle regime in which the conductivity was dominated
by the layer antisymmetric flexural mode.

D. Temperature dependence of the conductivity

Having described the transport properties of the twist
bilayer, and elucidated the relation between the conductivity
and the underlying electronic structure, we now restore the
Fermi smearing temperature dependence ∂f 0

p /∂εp in Eq. (50).
In Fig. 9, we plot the conductivities for all rotation angles
studied in Secs. IV A–IV C as a function of Fermi energy with
the temperature set to T = 50 K. In comparison to Figs. 5(b)
and 7(a) we observe that the sharp valleys and peaks are
to some extent smoothed due to the Fermi smearing of the
order of kBT = 4.3 meV. The general features, however, are
retained [and the intermediate-angle nonanalytic behavior of
σ (εF ) can be seen at all temperatures T < 300 K]. In particular,
the pronounced reduction in conductivity as a function of twist
angle is not, as expected, substantially impacted by restoring
the Fermi temperature. In Fig. 10, we plot the conductivity for
a series of energies 10 meV < εF < 200 meV as a function
of twist angle for T = 50 K, while the inset shows the same
data for T = 300 K. The general trend of resistivity reduction
with twist angle can be seen, but also interestingly it appears
that the intermediate-angle regime is associated with a large
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FIG. 10. The reduction of conductivity σ with decreasing rotation
angle θ of the twist bilayer, shown for a series of Fermi energies
ε1 = 10 meV, ε2 = 50 meV, ε3 = 100 meV, ε4 = 150 meV, and ε5 =
200 meV at temperature T = 50 K. The inset shows the same data
but calculated at T = 300 K.

scatter with respect to energy, not found in either the large- or
small-angle regimes.

Finally, we examine the temperature dependence of the
conductivity. For a rotation angle of θ = 4◦ we consider two
representative energies ε1 = 50 meV situated in a region where
σ (ε) is approximately a constant function, and ε2 = 157 meV
that is situated at the node of the conductivity (see the inset
in Fig. 11). In the main plot of Fig. 11, we present the
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FIG. 11. Temperature dependence of the conductivity σ of the
twist bilayer for a rotation angle of θ = 4◦. The main plot shows the
inverse conductivity (resistivity) at fixed Fermi energies ε1 = 50 meV
and ε2 = 157 meV. The lines are presented only as a guide to the eye.
The inset panel shows the conductivity vs Fermi energy for different
temperatures; note the logarithmic scaling of the y axis. In both plots,
circles (squares) and continuous (dashed) lines represent the results
of a calculation including (not including) the temperature-dependent
Fermi smearing ∂f 0

p /∂εp.
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temperature dependence of the inverse conductivity σ−1 for
these two energies. In both plots are shown (i) the results of a
calculation without the temperature-dependent Fermi smear-
ing of the electron distribution (dashed lines and squares),
i.e., ∂fp/∂εp := −δ(εF − εp), as well as (ii) the results of a
calculation including the Fermi smearing (continuous lines
and circles). With the only temperature dependence arising
from the phononic contribution, an increase in temperature
will result in an overall lower conductivity due to the increased
phonon population. With only one phonon mode with fixed
energy ω, one would find σ ∼ βnω(1 + nω), which for kBT �
ω yields σ ∼ T −1. The dashed lines in Fig. 11 show this linear
temperature dependence of the inverse conductivity for T >

30 K. Including additionally the Fermi smearing of the electron
distribution (continuous lines in Fig. 11) allows electrons of a
wider range of energies to participate in transport and hence is
particularly relevant in an energy region where the conductivity
contribution from constant energy surfaces changes rapidly
with energy, e.g., at ε2 in Fig. 11. As may be seen in the main
plot, the ε2 conductivity data are dramatically changed by the
inclusion of Fermi smearing. However, a normal temperature
dependence (i.e., an increase of the resistivity with temperature
is always observed).

E. Conductivity dependence on a layer
perpendicular electric field

The rich fermiology of the small-angle limit of the twist
bilayer arises due to the fact that the momentum scale on which
the hybridization of the bare Dirac cones takes place becomes
small in this limit (recall the moiré momentum is proportional
to sin θ/2). This suggests that a displacement of the bare Dirac
cones by, for instance, an applied interlayer bias, will lead to
significant changes in the electronic structure of the small-
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FIG. 12. Conductivity σ (top) and average band velocity v

(bottom) plotted versus Fermi energy εF for temperature T = 50 K
and the two rotation angles θ1 = 1.7◦ (left) and θ2 = 4◦ (right). The
different colors correspond to different strengths of the perpendicular
electric field: E0 = 0, E1 = 59.7 mV/Å, E2 = 119.4 mV/Å, and
E3 = 179.1 mV/Å. The temperature-dependent Fermi smearing
∂f 0

p /∂εp of the electron states is included.

angle twist bilayer and, possibly, in the transport properties.
In this way we may imagine that transport in the small-angle
limit may be particularly susceptible to external perturbation.
In this section, we will investigate this via application of a
layer perpendicular electric field E⊥ = E⊥ẑ that shifts the
bare Dirac cones by λceE⊥/2 (λ = ± labels the layers, c is
the interlayer distance).
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FIG. 13. Fermi surfaces at θ1 = 1.7◦, ε1 = 40 meV and at
θ2 = 4◦, ε2 = 200 meV for different strengths of the perpendicular
electric field: E0 = 0, E1 = 59.7 mV/Å, E2 = 119.4 mV/Å, and
E3 = 179.1 mV/Å. The color encodes the band velocity |vp| in units
of the SLG Dirac band velocity vSLG, the black hexagons depict the
twist bilayer reciprocal unit cell.
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In Fig. 12, we display the conductivity σ and Fermi surface
averaged band velocities v for different values of E⊥ for the
two rotation angles θ1 = 1.7◦ and θ2 = 4◦. We choose a series
of field strengths Ej = j × 59.7 mV/Å, with j = 0, . . . ,3.
This corresponds to potential differences of ��j = j × 0.2 V
between the two layers. As may immediately be seen, at
energies ε1 = 40 meV for θ1 and ε2 = 200 meV for θ2, the
conductivity changes by up to a factor of ≈3.

To explain these changes in the bilayer conductivity we
analyze the corresponding Fermi surfaces, which we display
in Fig. 13. In the case of θ1 and ε1 with increasing electric
field new low-velocity Fermi sheets appear, allowing for more
scattering and therefore decreasing the conductivity. In the
case of θ2 and ε2 the band velocity increases with increasing
perpendicular field, which in this case leads to an increase in
the conductivity until the field reaches E2. Further increase
of the perpendicular field to E3 leads to a further increase in
the average band velocity, however, the additional significant
change in the shape of the Fermi surface alters the allowed
scattering processes such that that the conductivity does not
change. These results suggest that the bilayer may indeed form
an interesting system for manipulation of transport properties
by external perturbation, although it should be stressed that
the results presented here are smeared out upon increasing the
temperature above 50 K.

V. CONCLUSIONS

We have surveyed the in-plane electric conductivity of the
graphene twist bilayer in a wide range of twist angles 1◦ < θ <

30◦ and Fermi energies ε < 300 meV. The calculations have
been performed on the basis of an effective Hamiltonian for the
twist bilayer band structure, first introduced in Ref. [2]. The
transport problem has been treated by (i) employing the model
of an isotropic elastic bilayer for the phonon dispersion and
(ii) using the linear Boltzmann equation for elastic electron-
phonon scattering to calculate scattering probabilities and the
conductivity.

Similar to the ground state of the twist bilayer, we find
that the in-plane transport properties are qualitatively different
in three distinct angle regimes. At large twist angles 10◦ <

θ < 30◦, the conductivity may be characterized by an inter-
layer Bloch-Grüneisen temperature: below this temperature,
phonons of sufficient momentum to scatter between the Dirac
cones of the mutually rotated layers do not exist, and the bilayer
is decoupled (with the total conductivity simply a sum of the
conductivities of the two layers). Above this temperature,
even though in the ground state the bilayer is decoupled,
the transport problem recouples the bilayer. In particular, the
conductivity, in striking contrast to single-layer graphene, does
not possess particle-hole symmetry. This arises from the fact
that the effective moiré potential that describes the coupling
between the two layers of the twist bilayer (a complex valued
r-dependent field) does not possess particle-hole symmetry.

At intermediate angles 3◦ < θ < 10◦, two sharp transitions
are seen in the energy dependence of the conductivity, which
otherwise presents a smooth function. The first of these
transitions is related to the well-known van Hove singularity
that occurs at the energy for which the cones from each layer
first intersect, and results in a pronounced drop in the Fermi
velocity and hence conductivity. The second sharp transition
in the conductivity arises due to a topological change in the
Fermi surface, a Lifshitz transition, that occurs at the energy
at which backfolded bands to the effective moiré Brillouin
zone create new electron pockets that trigonally decorate
the strongly warped Dirac cone. The increased scattering
to these low-velocity sheets causes a rapid reduction of the
conductivity.

At very small angles of θ < 2◦, the conductivity is sup-
pressed by almost two orders of magnitude compared to the
large-angle case and, furthermore, develops a richly structured
energy dependence. In contrast to the large- and intermediate-
angle conductivity, where features of the conductivity can
be clearly related to corresponding features of the Fermi
surface averaged band velocity, we find this is not the case
in the small-angle regime. The reason for this difference is
that at large and intermediate angles, the twist bilayer wave
functions are very close to those of single-layer graphene,
and therefore the changes in conductivity are dominated by
band structure changes that the interlayer interaction induces.
However, the significantly stronger interlayer interaction in
the small-angle regime results both in renormalization of
the band structure, as well as in wave functions that differ
qualitatively from those of single-layer graphene, and indeed
show pronounced features of charge localization [2,18]. The
scattering of such twist bilayer states by phonons will evidently
be very different to the phonon scattering of states that can be
well approximated as single-layer graphene states, and it is this
effect that is responsible for the loss of a clear correspondence
between the Fermi surface averaged band velocity and the
conductivity.

Finally, we have addressed the issue of how the conductivity
of the bilayer may be manipulated by an external layer
perpendicular field, finding that it is possible to do so, but that
at room temperature such effects will be largely washed out by
Fermi smearing. Future work on this interesting system should
address the role that impurities play in both the electronic
structure and transport of the twist bilayer. In particular, in the
small-angle regime in which the bilayer wave functions differ
qualitatively from those of single-layer graphene, the physics
of impurity scattering may be very different from that of either
graphene or Bernal-stacked bilayer graphene.
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[16] A. Jorio and L. G. Cançado, Solid State Commun. 175-176, 3

(2013).
[17] X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-vorakiat,

L. Cheng, S. A. Cheong, H. Su, J.-X. Zhu, Y. Liu, K. P. Loh,
A. H. Castro Neto, T. Yu, and E. E. M. Chia, Phys. Rev. Lett.
110, 067401 (2013).

[18] S. Shallcross, S. Sharma, and O. Pankratov, Phys. Rev. B 87,
245403 (2013).

[19] Y. Kim, H. Yun, S.-G. Nam, M. Son, D. S. Lee, D. C. Kim, S.
Seo, H. C. Choi, H.-J. Lee, S. W. Lee, and J. S. Kim, Phys. Rev.
Lett. 110, 096602 (2013).

[20] A. Tejeda, A. Taleb-Ibrahimi, W. de Heer, C. Berger, and E. H.
Conrad, New J. Phys. 14, 125007 (2012).

[21] G. Trambly de Laissardière, D. Mayou, and L. Magaud, Phys.
Rev. B 86, 125413 (2012).
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