
PHYSICAL REVIEW B 94, 245308 (2016)
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Quantum dots in GaAs/InGaAs structures have been proposed as a candidate system for realizing quantum com-
puting. The short coherence time of the electronic quantum state that arises from coupling to the nuclei of the sub-
strate is dramatically increased if the system is subjected to a magnetic field and to repeated optical pulsing. This
enhancement is due to mode locking: oscillation frequencies resonant with the pulsing frequencies are enhanced,
while off-resonant oscillations eventually die out. Because the resonant frequencies are determined by the pulsing
frequency only, the system becomes immune to frequency shifts caused by the nuclear coupling and by slight
variations between individual quantum dots. The effects remain even after the optical pulsing is terminated. In this
work, we explore the phenomenon of mode locking from a quantum mechanical perspective. We treat the dynamics
using the central-spin model, which includes coupling to 10–20 nuclei and incoherent decay of the excited elec-
tronic state, in a perturbative framework. Using scaling arguments, we extrapolate our results to realistic system
parameters. We estimate that the synchronization to the pulsing frequency needs time scales in the order of 1 s.
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I. INTRODUCTION

Ground-breaking insights in the field of quantum comput-
ing have demonstrated that there is a class of computational
problems that can be solved much more efficiently on a
quantum computer than on a classical one [1–3]. This
fascinating prospect has inspired a large amount of research
directed at finding reliable realizations of quantum computers
[4]. An essential but challenging requirement for successfully
implementing quantum algorithms is to maintain sufficiently
long coherence times [3,5].

One promising approach utilizes electronic spin states in
quantum dots in solid-state systems [6,7]. Quantum dots have
been realized in several forms in semiconductor materials, such
as InGaAs [4]. The self-assembled variety can be engineered
by strain between two different semiconductor materials (e.g.,
GaAs and InGaAs) with a slight lattice-constant mismatch.
The manipulation and readout is done optically [8–10], which
poses an advantage compared to interaction via magnetic
fields.

In a simplified picture, a self-assembled quantum dot can be
described as a single electron whose spin dynamics is subject
to a fixed external magnetic field and to a small Overhauser
field, the effective magnetic field that arises from a hyperfine
interaction with the nuclei of the substrate [11–13]. Because
the electron is delocalized nonuniformly, the electron couples
differently to each of the nuclei [12,14]. The electron-spin
dynamics is dominated by Larmor precession with a frequency
set by the external magnetic field plus a statistical deviation due
to the Overhauser field. This mechanism causes dephasing of
the Larmor oscillations on a nanosecond time scale [12,13,15–
18], severely limiting the coherence time at first sight.

However, optical excitation of the electron with periodically
applied short (picosecond) laser pulses can increase the
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coherence time dramatically [14,19–23]. The effect of the
(pump) pulses is twofold: they quickly drive the system
towards a steady state, which exhibits a revival effect of
the dephased Larmor oscillations [22]. Second, the full
system slowly becomes synchronized to the pulsing repetition
rate [21,24–29]. Any mode that is not resonant with the pulse
repetition rate eventually dies out. This effect, known as mode
locking, manifests itself as an additional enhancement of
the amplitude of the revivals. In practice, advanced schemes
composed of multiple pump pulses per period tend to increase
coherence times even further [22,30].

The typical experimental scenario is an ensemble of
quantum dots rather than a single one [26]. The individual
quantum dots differ slightly, e.g., in their effective g factors and
hyperfine coupling strengths. As a consequence, the character-
istic frequencies of the dots vary, but the resonant frequencies
remain pinned at fixed values set by the pulsing period only.
Thus, the revival effect is robust against these variations, and
can indeed be observed in quantum dot ensembles [21,31,32].

A significant difference between two types of revivals is ob-
served when the pulsing is terminated at some moment. With-
out mode locking, revivals appear after the pulsing ends, but
they quickly attenuate. However, a quantum dot ensemble that
has become mode locked after an extended exposure to peri-
odic pulsing, will show strong revivals for a longer period [21]
and thus retain coherence after the pulsing has been switched
off. Mode locking is thus considered as the main mechanism
responsible for the observed long coherence times, and conse-
quently as an essential ingredient that renders pulsed quantum
dots suitable for quantum-computational applications.

In this work, we aim for a theoretical explanation of
mode locking by analysis of a minimal model for the spin
dynamics in a single quantum dot. For this purpose, we
use an extended version of the central-spin model, also
known as the Gaudin model [33]. This integrable [34] model
incorporates the external magnetic field and the hyperfine
couplings between the electron and nuclear spins [13,35]. We
additionally include the optical interaction as instantaneous
excitation of the electron to an excited (trion) state, which
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decays gradually. Because the latter process is incoherent,
the system evolves nonunitarily. Here, we describe this time
evolution effectively with the Lindblad formalism [36].

Despite the apparent simplicity of the model, the theoretical
description of the dynamics is challenging due to the vastly
different time scales associated to the various interactions:
the duration of each laser pulse takes place on a picosecond
scale, and their repetition rate is typically 13.2 ns [21,31].
On the other hand, coherence can be maintained in time
intervals spanning several minutes or longer [19,22]. In
addition, the number of degrees of freedom in the system grows
exponentially with the number N of nuclei in the model. Thus,
a full quantum mechanical description is feasible only for very
small numbers of nuclei, typically N ∼ 10, which is far from
the realistic value of N ∼ 104–106 [12–14].

We tackle this problem with a perturbative approach for
the time evolution. The underlying idea is the separation
of time scales between the Larmor precession and the trion
decay on one hand, and the hyperfine interaction on the other.
The hyperfine coupling is separated into a longitudinal part
(parallel to the external field) and a transverse part. The latter
is treated as a perturbation to lowest nontrivial order. We justify
this approach from the time scale of higher-order perturbations
being much longer than the pulse interval. One key advantage
of this method is that we obtain analytic estimates for the
resonant frequencies. We also use the perturbed results for
numerics at long time scales, up to ∼20 000 pulse intervals,
which corresponds to ∼200 μs.

Our numerical method is not capable of reaching experi-
mentally relevant regimes in terms of system size and times,
but from our results we obtain scaling laws that allow us
to extrapolate. We study the relative difference between the
spectrum after a long period of pulsing and the initial one. In
doing so, we find tiny but robust peaks at the frequency values
where we expect the resonances to be. The growth rate of
these peaks turns out to be quadratic in the hyperfine coupling
strength. We also investigate the dependence on the modeled
number of nuclei N and the effect of the discretization of
the distribution of coupling strengths. Our eventual estimate
for the required pulsing duration is of the order of ∼0.1–1 s,
consistent with experimental observations [37].

In this paper, we proceed as follows. In Sec. II, we set up
our model. Section III is dedicated to the time evolution in a
general sense and to the perturbative framework. We provide
and interpret the results on the mode-locking effect in Sec. IV.
We conclude in Sec. V with a discussion and an outlook. In the
Appendixes, we provide technical details on the perturbative
method and a steady-state analysis.

II. MODEL

Our aim is to describe the dynamics of the central spin and
the nuclear spins in the quantum dot that mutually interact
through the hyperfine coupling, and are subject to an external
magnetic field and to laser pulses that excite the central-spin
electron to the trion state. We consider the system in a Voigt
geometry, where the magnetic axis (‖ x̂) and the optical axis
(‖ ẑ) are perpendicular.

The degrees of freedom associated to the central spin are
given by four basis states: two ground states |↑〉 and |↓〉 and

two excited (trion) states |⇑↑↓〉 and |⇓↑↓〉. Typically, the laser
radiation is circularly polarized in one single helicity [9,38],
so that one of the trion states decouples. We therefore restrict
ourselves to a three-dimensional Hilbert space for the central
spin, with the basis {|↑〉,|↓〉,|T〉} where |T〉 ≡ |⇑↑↓〉 encodes
the trion state that is relevant to the dynamics.

We customarily treat the nuclei as effective spin- 1
2 particles,

although in fact, the nuclei in question have higher spin
quantum numbers of 3

2 (for Ga and As) or 9
2 (for In). Within

the scope of this work, where the only nuclear interaction is
the hyperfine coupling to the central spin, this simplification
does not lead to essentially different physics. Thus, given N

spin- 1
2 nuclei in addition to the central spin, we have a total

Hilbert space dimension of D = 3 × 2N .
The coherent part of the dynamics in the central-spin model

is described by a Hamiltonian that encodes the effect of the
external magnetic field and the hyperfine coupling between
the central spin and the nuclear spins [13,18,35]

H = �Ŝx + ET|T〉〈T| +
N∑

j=1

Aj

(
Î x
j Ŝx + Î

y

j Ŝy + Î z
j Ŝz

)
,

(1)

where Ŝμ and Î
μ

j (μ = x,y,z) are the components of the spin
operators of the central spin and the nuclear spins, respectively,
in units of �. The first term encodes the Larmor precession due
to the external magnetic field. We denote the associated energy
by � = gμBBext in terms of the Landé g factor, the Bohr
magneton μB, and the external magnetic field Bext ( �Bext =
Bextx̂). The second term sets the trion state at an energy ET

relative to the central-spin states |↑〉 and |↓〉. The third term is
the hyperfine coupling between the central spin and each of the
nuclear spins. The coupling strengths are encoded through the
energies Aj . For the sake of simplicity, we neglect the effect of
the external magnetic field on the nuclear spins, and omit any
additional couplings that are relevant only at time scales much
longer than the pulse repetition period, such as the quadrupolar
coupling term between the electron and the nuclei [39–42] or
the hyperfine interaction among the nuclear spins [43].

Here, we notice the vastly different energy scales in this
Hamiltonian. The trion energy ET typically has a value of
1.39 eV [31]. The Larmor energy � lies in the range of a few
0.1 meV for typical fields of 6 T. The values of the couplings
Aj depend on the details of the system, e.g., the localization
area of the central-spin electron in the sample. Generally,
they are much smaller than � for the range of external
fields we consider. Typical values for the largest couplings
lie in the μeV range. The corresponding time scales for the
Larmor and hyperfine oscillations are 20 and 103–104 ps,
respectively [12].

The relevant time scales of the Hamiltonian dynamics are
determined by the frequencies λ ≡ �/� and aj ≡ Aj/�. When
aj/λ is small, as we shall assume throughout this work, the
effect of the hyperfine coupling is to shift the eigenfrequencies
slightly away from the Larmor frequency λ. This effect is
observable as dephasing of the Larmor precession [12]. The
characteristic time scale, known as the dephasing time T ∗, is
determined by the squared sum of the couplings A = ∑N

j=1 a2
j

as T ∗ = √
8/A. By virtue of the central limit theorem, for a
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fixed value ofA, the choice of the individual couplings aj does
not affect the dephasing essentially [10,12].

The latter statement is not a priori true for higher-order
effects, such as the synchronization to the pulses that we shall
focus on. Let us therefore specify a realistic choice of the
values aj of hyperfine couplings, based on the idea that aj is
proportional to the probability density of the electronic wave
function at the position of the nucleus labeled by j . In good
approximation, we assume that the wave function amplitude
is a Gaussian in two dimensions ∝e−|r|2/2R2

which is cut off
at r = rcutoff , based on the idea that the electron is confined to
a finite region. Assuming that each nucleus occupies an equal
area, we set

aj = C

2πR2
exp

(
− j

N + 1

r2
cutoff

2R2

)
(j = 1, . . . ,N), (2)

where R is a scaling factor denoting the characteristic radius
of the electronic wave function (cf. Refs. [34,44–49]). The
constant C is set such that the square sum

∑
j a2

j has the value
corresponding to the dephasing time T ∗, which we treat as an
input parameter.

The shape of the distribution is determined only by the
dimensionless cutoff parameter r̃cutoff = rcutoff/R. For small
values (r̃cutoff → 0), all couplings are (almost) equal, which is
the so-called box model, named after the idea that the wave-
function amplitude can be thought of as constant. For large
values of r̃cutoff , the distribution contains a few larger couplings
and relatively many small ones, where the latter correspond
to weakly interacting nuclei in the tail of the Gaussian wave
function. This may be understood from the observation that in
the continuous limit N → ∞, the probability density function
D(a) corresponding to Eq. (2) is proportional to 1/a with
appropriate cutoffs, with the lower one set by r̃cutoff . For large
r̃cutoff , the lower cutoff of D(a) is small, and the distribution is
then dominated by small values of a, i.e., the weak couplings.
In the remainder of this work, we choose the value r̃cutoff = 2,
unless stated otherwise.

III. TIME EVOLUTION

A. General framework

The full unitary time evolution of the system including the
excitation and decay of the trion would require that we include
the photons it absorbs and emits as part of the Hilbert space.
This full problem being intractable, we treat the photon degrees
of freedom effectively through the Lindblad formalism [36].
In this formalism, the spin degrees of freedom constitute our
“system,” whereas the photons are treated as the “bath.” This
effective description comes at the cost of losing unitarity in
the dynamics of the system part. Physically speaking, the
trion decay acts incoherently on the system. Energy is not
necessarily conserved: the trion decay is due to photons which
carry energy from the system into the photonic bath. In this
formalism, the system is described by a density matrix ρ(t)
rather than by a quantum state. The Lindblad master equation
that governs the dynamics of the density matrix is

dρ

dt
(t) = Lρ(t), (3)

where L is the Liouville operator that acts as

Lρ = − i

�
[H,ρ] − γ

(
1

2
b†bρ + 1

2
ρb†b − bρb†

)
. (4)

The first term describes the unitary part of the dynamics,
involving the Hamiltonian of Eq. (1). The second term
constitutes the single decoherence channel of the trion decay,
with operator b = |↑〉〈T| acting on the central spin only. The
decay rate γ is typically of the order of (400 ps)−1 [31]; the
energy equivalent is �γ ∼ 1 μeV.

In comparison to the Larmor oscillations, the hyperfine
interaction, and the trion decay rate, the duration of the pulses
(up to 1 ps) is sufficiently short that they can effectively
be considered as instantaneous: Each moment the system
is pulsed, the state of the central spin is unitarily mapped
|ψ〉 �→ P|ψ〉 [27,29,50]; in density-matrix language, the pulse
action reads as ρ �→ PρP†. In this work, we consider π pulses
only, which map the central-spin state |↑〉 to the trion state |T〉,
and leaves |↓〉 invariant. The corresponding pulse action thus
reads as P = |T〉〈↑| − |↑〉〈T| + |↓〉〈↓|.

Because the Liouville operator is time independent, the
Lindblad equation can be solved formally as

ρ(t) = etLρ(0). (5)

Whereas the solution is formally simple, a concrete solution
involves diagonalization of the Liouville operator L in order
to compute the exponential. The Liouville operator is a
linear operator on the D2-dimensional vector space of density
matrices; the expression Lρ [Eq. (4)] does not represent a
matrix multiplication of two D × D matrices, but should be
interpreted as a matrix multiplication of a D2 × D2 matrix
and a D2 component vector. A brute-force calculation of
Eq. (5) would thus require diagonalization of a matrix of
dimension D2 × D2. As the Hilbert-space dimension D grows
exponentially in the number of nuclei N , the brute-force
approach becomes intractable for anything more than a few
spins. This problem motivates the need for other methods of
calculation.

B. Perturbation theory

The key idea behind the perturbative treatment is the
separation of time scales. We consider the Larmor precession
and the trion decay as “fast” processes, and the hyperfine
dynamics as “slow.” In terms of the energy scales, the hyperfine
couplings are much smaller than the other energies, namely,
Aj � � and Aj � �γ . We thus include the fast dynamics
in the zeroth order of the perturbation theory and treat the
hyperfine dynamics perturbatively.

Because the aim is to obtain the dynamics governed
by the Lindblad master equation, the object that is treated
perturbatively is the Liouville operator L. Following the idea
of separating the fast and slow dynamics, one would be tempted
to choose L(0) as given by Eq. (4) with H replaced by H (0) =
�Ŝx + ET|T〉〈T|. The diagonalization of this Liouvillian is
straightforward, but one runs into a high degree of degeneracy
because L(0) acts nontrivially only in the central-spin space
and as the identity in the nuclear spin sector. Instead of dealing
with the difficulties of highly degenerate perturbation theory,
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we include the x̂ part of the hyperfine coupling into the zeroth
order. We thus define L(0) and L(1) according to

L(0)ρ = − i

�
[H (0),ρ] + γ

(
1

2
b†bρ + 1

2
ρb†b − bρb†

)
, (6a)

L(1)ρ = − i

�
[H (1),ρ], (6b)

with

H (0) = �Ŝx + ET|T〉〈T| +
N∑

j=1

Aj Î
x
j Ŝx, (7a)

H (1) =
N∑

j=1

Ãj

(
Î

y

j Ŝy + Î z
j Ŝz

)

= 1

2

N∑
j=1

Ãj (I+
j S− + I−

j S+) (7b)

(cf. Refs. [35,51]). Here, we used a different notation Ãj

for the transverse couplings, with the same values Aj in
order to keep track of the perturbation parameters Ãj /�. The
operators S± = Sz ∓ iSy and I±

j = I z
j ∓ iI

y

j are the raising
and lowering operators in the spin-x̂ basis for the central and
nuclear spins, respectively. The Hamiltonian H (1) describes
processes where spin Ŝx is transferred from the central electron
to a nucleus and vice versa.

The zeroth-order time evolution, that involves diagonal-
ization of L(0), is particularly straightforward in the basis of
eigenstates of Sx and I x

j . In this basis, L(0) is diagonal, and
we directly read off the eigenvalues ±iωpq , ±i	pq , and −γ ,
where

ωpq = 1
2 (θp − θq),

(8)
	pq = λ + 1

2 (θp + θq),

with the definition

θp ≡ 〈p|
N∑

j=1

aj I
x
j |p〉 =

N∑
j=1

aj s
p

j , (9)

which encodes frequency shifts of the central-spin oscillations
induced by the hyperfine interaction with the nuclear spins in
the x direction. The indices p and q label configurations of
the nuclear spin, i.e., states of the form |sp

1 ,s
p

2 , . . . ,s
p

N 〉, where
s
p

j = 〈p|I x
j |p〉.

In this zero-order model, the presence of dephasing follows
naturally from inclusion of the longitudinal component of the
hyperfine interaction into the Hamiltonian H (0). The Larmor
precession is represented by the expectation values 〈Sy〉(t)
and 〈Sz〉(t). {For a generic observable Ô, the time-dependent
expectation value is given by 〈O〉(t) = Tr[Ôρ(t)].} As shown
in Appendix A, 〈Sy〉(t) and 〈Sz〉(t) contain oscillatory contri-
butions with the shifted Larmor frequencies 	pp = λ + θp

[see Eq. (8)], in addition to decaying contributions (those
involving exponentials of the form ezt with Re z < 0). Hence,
the nondecaying contributions are a Fourier sum of the form∑

p

cppei(λ+θp)t + H.c., (10)

where p runs over all nuclear configurations and the co-
efficients cpp depend on the observable and on the initial
density matrix. In the limit aj � λ that we have assumed, the
frequencies λ + θp in Eq. (10) all lie close to the bare Larmor
frequency λ. Even without exact details on the distribution
of the couplings aj , the central limit theorem implies that θp

[Eq. (9)] has a distribution that is approximately Gaussian,
with variance σ 2 = 1

4

∑
j a2

j = 1
4A. The latter quantity has a

fixed value determined by the atomic properties of the quantum
dot and by the amount of localization of the electronic wave
function [12]. If the coefficients are assumed to have equal
weights (cpp ≡ c), then the Fourier sum of Eq. (10) is well
approximated by the Fourier integral∫

dθ D(θ )(ceiθt eiλt + H.c.) = e−t2/2σ 2
(ceiλt + c∗e−iλt ),

(11)

where D(θ ) = e−θ2/2σ 2
/
√

2πσ 2 is the normal distribution
of the frequency shifts θp. The right-hand side shows an
oscillation with the Larmor frequency λ modulated by a Gaus-
sian decay with characteristic time 1/σ

√
2 = √

8/A. Here,
we observe the mechanism of dephasing: the contributions
of slightly different frequencies gradually get out of phase,
leading to a complete suppression of the oscillations at long
times; see, e.g., Ref. [52] for an illustration. The characteristic
time is the dephasing time T ∗.

It should be noted that for the derivation of Eq. (11), we
have assumed a continuum limit or, equivalently, N → ∞. For
a finite and small number of nuclear spins, the dephasing is
not perfect, and revivals occur, where oscillations accidentally
“rephase” at some time t > 0. The typical time at which
accidental revivals occur grows rapidly as function of N ,
however, and their amplitudes are negligible even for system
sizes that we are able to treat numerically (N ∼ 15–20), let
alone for realistic values of N ∼ 104–106.

The zeroth order captures the dephasing of the central spin
due to the influence of the nuclear magnetic moments, but
not the reverse effect of the central-spin magnetic moment
onto the nuclei. Mode locking cannot be described in this
framework because the nuclear dynamics does not respond
to the pulsing directly, but only through coupling with the
central spin. Nontrivial perturbations incorporate the nuclear
spin flips essential for the nuclear dynamics that gives rise to
mode locking.

The perturbation L(1) brings forth corrections to the eigen-
frequencies [Eq. (8)] and to the eigenvectors. The first-order
corrections to the eigenvalues all vanish because a spin flip
maps one nuclear configuration to another perpendicular one.
The first-order correction to the eigenvectors, however, is
highly nontrivial, and contains many terms that encode a single
simultaneous flip of the central spin and one nuclear spin (see
Appendix A for details).

The question arises as to whether expansion to first order
for the eigenvalues and for the eigenvectors provides an
accurate description that represents all essential aspects of
the dynamics. In order to answer this question, we apply
the perturbation theory to a minimal model, namely, the
Hamiltonian dynamics of the central spin with a single nuclear
spin. In Appendix B, we compare the exact and perturbative
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time evolution in order to provide an estimate on how the
errors scale in terms of the perturbation parameters Aj .
The results suggest that for the eigenvalues, a second-order
perturbation is required, whereas for the eigenvectors, linear
order is sufficient. Inclusion of higher orders would increase
the computational complexity by a considerable amount, while
not improving the accuracy significantly.

C. Numerical implementation

The large Hilbert-space dimension poses a serious chal-
lenge for the numerical evaluation of the time evolution of the
density matrix, even for the perturbative method. In order to
be able to perform the calculation for moderate numbers of
nuclei (N ∼ 15–20), we store the density matrix in a sparse
format, and compute the time evolution “on-the-fly” using the
results exhibited in Appendix A. We do not store the Liouville
operator explicitly because it is generally too large even in a
sparse format. The time-evolved density matrix is again sparse,
but with a larger number of nonzero entries: The number of
nonzero entries is multiplied by up to 2N for each application
of the first-order evolution operator because the latter involves
a spin flip at every nuclear spin, in either the row or the column
index. Eventually, repeated application would lead to a dense
(or an almost dense) matrix.

In order to limit the number of nonzero entries, we
“truncate” the density matrix by neglecting all matrix entries
whose magnitude is smaller than the predefined threshold
value 4−(N+1). Diagonal entries are exempt from truncation,
in order to preserve the trace of the density matrix. Off-
diagonal entries are generally small, as demonstrated by the
structure of the perturbation theory, where each spin flip is
accompanied by a small multiplication factor of approximately
aj/λ. Furthermore, the decay and dephasing processes will
additionally lead to exponential or Gaussian decay of some
entries to values below the threshold. Thus, the threshold value
can be kept quite low, so that the errors introduced by the
truncation remain small. We justify this approximation with
quantitative arguments involving the structure and size of the
density matrix elements, presented in Appendix C.

The required computational resources scale exponentially
in N . For the data presented in this work, we have restricted
ourselves to N � 17. We consider the values N = 15–17 as
good compromise, for which the relevant physics is visible,
at manageable computation times, typically up to a few
100 CPU hours. Such computation times enable us to run
multiple simultaneous computations for investigation of the
dependence on external parameters, such as the dephasing
time and the cutoff of the coupling distribution.

The initial density matrix is chosen to describe a completely
disordered spin bath corresponding to a temperature scale that
is essentially infinite from the perspective of the small energy
scales in the Hamiltonian. Thus, the distribution of frequency
shifts θp has a Gaussian shape centered at zero. The central
spin is initially in the negative z direction. Generically, the
initial configuration does not affect the results on long time
scales. As we argue in Appendix D, the system converges to
a (quasi)steady state within a few pulse intervals, which is
independent on the initial state. Mode locking is essentially a

perturbation to this quasisteady state, and is thus unaffected
by the initial configuration.

IV. DYNAMICS OF THE OVERHAUSER FIELD:
MODE LOCKING

A. Overhauser spectrum

In order to compare with other theoretical and experimental
studies, we study mode locking through the Overhauser field
�BO, the effective magnetic field caused by the nuclear spins.
In particular, the longitudinal part (parallel to the external
magnetic field) Bx

O shows strong signs of the mode-locking
effect, due to its almost one-to-one correspondence with the
oscillation frequencies. The latter frequencies are essentially
the Larmor modes shifted by a contribution from the Over-
hauser field. Details on this correspondence will be given in
Sec. IV B.

In the following, we consider the observable Ox =∑
j aj I

x
j = gμBBx

O/�. Although Ox has dimensions of (an-
gular) frequency, we will refer to it as the “Overhauser field”
as well, as it is proportional to the proper Overhauser field
by the (dimensionful) constant gμB/�. The time-dependent
expectation value of Ox reads as

〈Ox〉(t) = Tr[ρ(t)Ox] =
∑

p

ρpp(t)Ox
pp =

∑
p

ρpp(t)θp,

(12)

where we have used the spin-x basis, like in Sec. III. In this
basis, Ox is diagonal, Ox

pq = 〈p|Ôx |q〉 = θpδpq . [The matrix
element ρpp(t) contains an implicit trace over the central-spin
degrees of freedom.] In order to extract more information
than just the expectation value, we interpret the summation∑

p ρpp(t)Ox
pp as an average over a probability distribution:

here, the matrix elements ρpp(t) serve as the probabilities
associated to the eigenvalues Ox

pp. Because the spectrum
is dense, we can treat the distribution ρpp as a continuous
distribution ρ(Ox) of the continuous variable Ox [53]. In our
(finite-size) numerics, we obtain ρ(Ox) as a histogram with
appropriate bin sizes.

In Fig. 1(a), we present the probability distribution
of observable Ox

pp after at t = 200Tpulse, 2000Tpulse, and
20000Tpulse, with couplings aj set such that the dephasing
time T ∗ has a realistic value of T ∗ = 3.16 ns. The external
magnetic field is set at Bext = 6 T. In the initial (thermal)
state the distribution of Overhauser fields is approximately
Gaussian. On the investigated time scale of t = 20 000Tpulse =
264 μs, the deviation from the initial distribution is hardly
noticeable, and even smaller than the numerical noise caused
by the discretization (binning). In order to extract the mode-
locking effect, we examine the relative deviation ρrel(t) ≡
ρpp(t)/ρpp(0) − 1, i.e., we divide the difference between the
probability distribution at t > 0 by the initial distribution
by the latter. The result is shown in Fig. 1(d). We find
that the distance 
ω between the peaks approximately
matches the pulsing rate 
ω ≈ 2π/Tpulse = 0.476 ns−1 ≈
2π × 75.8 MHz, so that we can attribute the observed effect
to the synchronization to the pulses.

For a better illustration of the transformation to a peaked
structure, we perform the same calculation with the coupling
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FIG. 1. (a) Spectrum of the longitudinal Overhauser field Ox = ∑
j aj I

x
j after 200, 2000, and 20 000 pulses, with realistic couplings

aj , chosen such that T ∗ = √
10 ns ≈ 3.16 ns. (b), (c) A similar plot for couplings multiplied by factors

√
10 and 10, respectively, i.e.,

with T ∗ = 1 ns and T ∗ = 1
10

√
10 ns ≈ 0.316 ns. In (a)–(c), the distributions are normalized to an integral of 1. (d)–(f) Relative probability

distributions ρrel(Ox) = ρ(Ox)t /ρ(Ox)0. In (d) and in the insets of (e) and (f), the black vertical lines indicate the values where the resonance
condition is fulfilled, according to Eqs. (16) and (20). The insets of (e) and (f) span the same horizontal and vertical range as panel (d).

values enlarged by factors
√

10 and 10, which shortens the
dephasing time to T ∗ = 1 ns and T ∗ = 0.316 ns, respectively.
The couplings are scaled uniformly, i.e., the ratios between
the individual values are fixed. The results are exposed in
Figs. 1(b) and 1(c). The idea is that the deviation from the initial
distribution grows much faster for these increased couplings.
Comparison of the relative differences ρrel [Figs. 1(e) and 1(f)]
to Fig. 1(d) shows that they are increased by factors of 10
and 100, respectively, compared to the realistic couplings.
Thus, the growth rate of the peaks is roughly quadratic in
the couplings.

Another difference between the distributions at T ∗ = 3.16,
1, and 0.316 ns is the number of peaks. The distance between
the resonance peaks is unchanged, namely, approximately
equal to 2π/Tpulse, but the width of the distribution increases
with decreasing dephasing time, so that more peaks are visible.

B. Resonance condition

The question arises as to whether we can predict the location
of the peaks in the Overhauser spectrum. We expect that
whenever the system is mode locked, it admits a steady state,
where the time evolution of the density matrix is periodic with
a period of Tpulse. In Appendix D we demonstrate that, when
we consider the time evolution at zero order in the perturbation
theory, we can find periodic solutions for arbitrary values of
	Tpulse, so that we cannot single out a resonant value for the
frequency 	. This property is due to the nature of the pulse,
that maps any spin component perpendicular to the z axis to
a trion state, that subsequently decays in the Lindblad time
evolution. Thus, the periodicity condition does not necessarily
imply that an integer number of Larmor precessions fits inside
the period Tpulse.

As demonstrated by the peaks in the numerical results, the
higher-order perturbative effects do not preserve this property.
Due to the complicated structure of the perturbations (see

Appendix A), we choose to avoid a direct derivation of the
resonance condition through tedious algebra. Alternatively,
we conjecture from the structure of the time evolution that
the peaks correspond to an integer or to a half-integer number
of Larmor oscillations, i.e., where exponentials of the form
ei	Tpulse take the values ±1. The proposed condition is then
tested empirically.

Two remarks are in place here. First, we must take into
account the second-order corrections 	(2)

pp in the frequencies.
Whereas the value may be small, there are a large number
of Larmor precessions in one period, so that the contribution
	(2)

ppTpulse adds up to a significant amount. Second, the trion
decay leads to a small phase shift φT that is independent of the
number of Larmor precessions between two pulses [15,54].
With those considerations, we conjecture our resonance
condition to be(

	(0)
pp + 	(2)

pp

)
Tpulse + φT = nπ, (13)

where 	(0)
pp = λ + θp is the zeroth-order frequency and n is an

integer, whose parity (even or odd) will be determined in due
course. In the following, we investigate 	(2)

pp and φT in more
detail.

The quadratic frequency shift is the second-order perturba-
tive correction to the eigenvalues

	(2)
pp = 1

4

∑
j

a2
j

(
δpj ,+

λ + θp − 1
2aj

+ δpj ,−
λ + θp + 1

2aj

)
, (14)

where δpj ,± = 1 if the j th spin of the basis vector p is |±〉
and 0 otherwise. (For details we refer to Appendix A.) Due to
the denominators in Eq. (14) having an explicit dependence on
aj , there is no direct relation between the zeroth- and second-
order frequencies. However, if we approximate ± 1

2aj by its
average value θp/N , the denominators can be approximated
as λ + θp(N − 1)/N , eliminating the explicit dependence on
aj . In this approximation, the second-order frequency shift is

245308-6



QUANTUM MODEL FOR MODE LOCKING IN PULSED . . . PHYSICAL REVIEW B 94, 245308 (2016)

equal to

	(2)
pp = 1

4
(
λ + N−1

N
θp

) ∑
j

a2
j , (15)

where the fixed value 1
4

∑
j a2

j = 1
4A is just a multiplicative

prefactor. Substitution into Eq. (13) yields the resonance
condition

λ + θp + A/4

λ + N−1
N

θp

= nπ − φT

Tpulse
. (16)

This quadratic equation for θp = Ox
pp can be solved straight-

forwardly. For an intuitive understanding, we expand the
solution in orders of A, which provides us with the peak
positions

Ox(n) = nπ − φT

Tpulse
− λ − NA/4

λ + (N − 1) nπ−φT

Tpulse

+ O(A2),

(17)
for either even or odd integers n.

The physical reason behind the second-order frequency
shift is the transverse component of the Overhauser field.
The precession frequency of the central spin is proportional
to the length of the total magnetic field (Bext + Bx

O,B
y

O,Bz
O),

not just the longitudinal component [55]. The second-order
perturbation accounts for the transverse components of the
Overhauser field. This geometrical argument also explains
why the first nontrivial correction is of second order in the
couplings.

The trion phase φT can be obtained from examination of the
structure of the eigenvectors, e.g., as exhibited in the zeroth-
order time evolution and in Ref. [54]. We analyze the Larmor
precession through the expectation value 〈Sz〉(t). Assuming a
(post-pulse) initial state with 〈Sy〉(0) = 0, we find

〈Sz〉(t) = 〈Sz〉(0) cos 	t + γ 2ρTT(0)

γ 2 + 	2
cos 	t

+ γ	ρTT(0)

γ 2 + 	2
sin 	t, (18)

where we select one frequency 	 ≡ 	pp. With the fa-
miliar trigonometric identity cos(	t + φ) = cos 	t cos φ −
sin 	t sin φ, we obtain

R sin φ = −γ	ρTT(0),
(19)

R cos φ = (	2 + γ 2)〈Sz〉(0) + γ 2ρTT(0)

for some positive constant R. Typically, the initial density
matrix approaches 〈Sz〉(0) = − 1

4 , 〈Sy〉(0) = 0, and ρTT = 1
2 ,

which yields φ = π + arctan γ /	. The term π comes from
the fact that both sin φ and cos φ are negative. Subtracting the
initial angle π yields the trion phase

φT = φ − π ≈ arctan γ /	, (20)

where the rightmost expression assumes the initial condition
introduced above (cf. Refs. [15,54]). In the limits considered
here, 	 ≈ λ and γ � λ, the trion phase is approximately equal
to the ratio γ /λ between the trion decay rate and the Larmor
frequency.

The physics behind the trion phase is the asymmetry
between the central-spin up and down states while the trion

decays [15,54]: the trion decays to spin up only, but is mixed
into the down state as well by the Larmor precession. Because
this mixing happens on a finite time scale, the trion amplitude
has decreased in the time spin up is rotated to down. The
asymmetry in mixing thus decreases if the Larmor precession
is faster, consistent with the limit of small γ /	 in Eq. (20).
(The assumption γ /	 � 1 is valid for all data presented in
this work.) If the Larmor precession is slow compared to the
trion decay, then the approximation in Eq. (20) is no longer
valid, and other contributions appear that represent the effects
of coherent trion recombination, known as spontaneously
generated coherence [15,54].

Finally, we empirically determine the parity of the integer
n. We have explicitly calculated the solutions to the resonance
condition (17) with the trion phase of Eq. (20), and find
that they line up well with the resonance peaks for odd n,
as displayed in Figs. 1(d)–1(f) by the vertical lines. These
contributions to the density matrix correspond to frequencies
such that approximately a half-integer number of Larmor
precessions fits into one period Tpulse.

Purely classical simulations with rather crude assumptions
about the pulse and the trion decay also show the same
dominant resonance behavior at half-integer precessions [56],
thereby supporting our findings here. Interestingly, there are
indications [53,57] that the nuclear Zeeman effect, which is
not included in our model, changes the parity from odd to
even.

At present, we may only speculate why the half-integer
number of Larmor precessions represent the more robust
resonance condition. In Ref. [58], a transition between the
two parities has also been reported for off-resonant pulses,
upon changing the sign of the detuning. There, the mechanism
is understood through a nonzero Sx polarization, which
causes the transition rate for the nuclei from spin up to
down to be different from that of the opposite process. For
positive detuning, the system would diverge from the integer
resonance condition into the half-integer one. Here, we have
not considered detuned pulses, and we do not observe a
significant nonzero spin expectation value along the magnetic
axis. Whether the mechanism proposed in Ref. [58] also
applies here is thus an interesting issue that is open for future
research.

C. Transverse components of the Overhauser field

We have mentioned the effect of the transverse components
of the Overhauser field on the resonance condition. In addition,
with pulsing acting on the central spin in the z direction, the
question arises as to whether spin polarization is transferred
to the nuclei. In that case, the transverse components Oy

and Oz would attain nonzero expectation values after many
pulses.

The expectation values 〈Oy〉 and 〈Oz〉 can be computed in
the same way as the longitudinal counterpart. For extraction
of probability distributions, analogously to 〈Ox〉 in Eq. (12),
the density matrix is first transformed into a basis in which
the observable is diagonal. For Oy and Oz, the distributions
are plotted in Figs. 2(a) and 2(b). The distributions at large
times are almost indistinguishable from the initial (Gaussian)
distribution. The linear dependence of the relative difference
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FIG. 2. Behavior of the transverse components Oμ (μ = y,z)
after many pulses (t = 19 901Tpulse). (a), (b) Probability distributions
of the observables in their respective eigenbasis. (c), (d) Relative
differences ρrel of the distribution at t = 19 901Tpulse with the initial
one. (e), (f) Time evolution Oμ(t) after 19 901Tpulse, with tred ≡
t − 19 901Tpulse. The shaded regions indicate fast oscillations, with
frequency close to the Larmor frequency λ. The nuclear couplings
have been chosen such that T ∗ = 1 ns.

ρrel [Figs. 2(c) and 2(d)] indicates that the initial and final
distributions are shifted slightly with respect to each other.
These shifts are consistent with the finite values 〈Oy〉(t) and
〈Oz〉(t) at the moment of the pulse. [See Figs. 2(e) and 2(f)
for the time evolution of these expectation values. This time
evolution is close to a steady state, i.e., approximately the same
evolution repeats itself after every pulse.]

A striking difference to the distribution of Ox is that the
transverse components do not have the typical peak structure
associated to mode locking. We furthermore observe that the
width of the distribution remains almost invariant in all three
directions. In other words, the dephasing time does not change
over time.

The results also show the uncertainty in each of the three
components Ox , Oy , and Oz. By virtue of the uncertainty
principle, the three independent components of the Overhauser
field cannot be determined with infinite precision because
they are defined from angular momentum operators which
do not commute among each other. Hence, strictly speaking
we cannot interpret a joint probability distribution of Ox , Oy ,
and Oz. However, the commutators scale as

∑
j a2

j , so that the
Overhauser field can be treated as almost classical in the limit
of large N [52]. But here, we cannot apply a semiclassical
approach because the uncertainty defines a coarser frequency
scale than the peak structure we desire to resolve.
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FIG. 3. (a) Growth rate ηt = ρrel/t for couplings scaled such that
T ∗ = 3.16 ns (a) or T ∗ = 1 ns (b). (c) Dependence of peak heights
of ρrel on A for different N . The lower horizontal axis shows A, and
the upper horizontal axis the equivalent dephasing times T ∗. For each
N , we fit power laws ∝Aα with α ≈ 1, depicted as straight lines. In
the inset, we zoom in on the regime around T ∗ = 2 ns. The axes of
the inset are linear.

D. Mode-locking rate

Figure 1 shows that the formation of the peaks happens
at a slow rate, which is expected to scale roughly as the
square of the couplings aj . This scaling law may also be
understood from the following heuristic arguments. First, the
first-order perturbations to the entries of the density matrix can
be understood as single-spin-flip processes with amplitudes in
the order of aj/λ. Second, the distribution of Overhauser fields
involves the diagonal entries ρpp. Due to the conservation of
the trace of ρ, a change of ρpp is linked to a change in ρp′p′ .
A transition between these matrix elements requires two spin
flips, so that the corresponding amplitude is quadratic in aj/λ.
We note the similarity to Fermi’s golden rule, which is also
second order in the perturbation.

In Figs. 3(a) and 3(b), we take the relative density
distribution ρrel at time t , and divide it by t . The resulting
quantity ηt = ρrel,t /t is then compared for different times t .
For large t , the curves for ηt are almost identical, signifying
linear growth of ρrel in time. In the short-time limit, in the order
of ∼10 pulses, ηt tends to be smaller; the linear growth does
not set in immediately. When the peaks become macroscopic
(ρrel � 0.1), e.g., for t = 20 000 Tpulse in Fig. 3(b), the growth
accelerates because it is exponential by nature. Within each
pulse period, the entries of the density matrix increase or
decrease by an amount proportional to the entries themselves.
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Of course, for small values of ρrel, the exponential growth is
indistinguishable from a linear dependence.

Comparing Figs. 3(a) and 3(b), we find only small differ-
ences, except for the vertical scale being 10 times larger in
Fig. 3(b). This corroborates the earlier expectation that the
peaks in the spectrum form at a rate proportional to the square
of the couplings or, equivalently, inversely proportional to the
square of the dephasing time T ∗, given a fixed distribution of
couplings up to an overall multiplicative factor.

In Fig. 3(c), we have compared the growth of the peaks in
the spectrum for different numbers of nuclei N and for different
coupling strengths at a fixed point in time. The quantity of
study is the peak value of ηt , averaged over the three peaks
closest to Ox = 0. In the main plot of Fig. 3(c), we have plotted
on a double-logarithmic scale in order to identify scaling laws
of a power-law nature. Fitting power laws ηt,peak ∝ Aα to the
data for each individual N , we find exponents α = 1.06 ±
0.05. Thus, the growth rate ηt,peak is approximately linear in A
or, equivalently, ∝1/(T ∗)2.

The scaling laws show a clear trend on a large range of
coupling values, but closer inspection of the data points on
a small range [see Fig. 3(c), inset] reveals a finer structure.
Also, the scaling of the peak values as function of N for a
fixed coupling value is not definite: For

∑
j a2

j = 2 ns−2, the
peak growth decreases for increasing N , whereas it increases
at, e.g., A = 0.8 ns−2 and 8 ns−2. We attribute this seemingly
erratic behavior to discretization effects of the distribution of
couplings. The coarse graining of this distribution leads to
Overhauser spectra with different peak shapes, depending on
the exact value of A. For large N , the distribution will be
dense, and we expect the deviations from linear dependence
to be smaller.

The linear fits over a broad range of values of A eliminate
this fine dependence. We compare the fit coefficients for
different values of the number of nuclei N in order to
determine a scaling law in terms of this quantity. Based on
the linear proportionality of the growth rate ηt to A, where
the latter is independent of N ,1 we would expect that ηt is
independent on N . However, other studies suggest the scaling
law ηt ∝ N−1/2 [56]. Our data suggest a weak dependence of
the growth rate on N , compatible with either of these cases,
ηt ∝ N0 or ηt ∝ N−1/2. With the narrow range of system sizes
studied here, and the relative large uncertainties in the fitting
parameters, we are unable to determine which of both is more
plausible.

We have also carried out a scaling analysis in terms
of the external magnetic field strength Bext as parameter.
Here, we find that the peak growth rate scales as η ∝ λ−2,
where we recall that λ = gμBBext/�. This scaling law follows
from the structure of the perturbation theory, and confirms
the idea mentioned before, namely, that the rate of mode
locking scales as the square of the perturbation parameters

1In this context, we normalize the distribution of couplings
according to the value of A, which is set by the dephasing time T ∗.
Here, N plays the role of a “sampling resolution” of the distribution. It
should not be confused with its common interpretation as the effective
number of nuclei in the system. In that interpretation, A is a derived
parameter that depends on the latter number.
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FIG. 4. (a) Effect of the distribution of couplings on the peak
structure. (b) Dependence of the peak growth rate on the normalized
cutoff radius r̃cutoff . The squared sum of the couplings and the number
of nuclei are fixed by T ∗ = 2 ns and N = 15, respectively.

aj/λ. Experimental data confirm the qualitative behavior
that a stronger magnetic field incurs faster dephasing, but
quantitative measurements establishing the scaling law have
not yet been performed [37].

The assumption that the distribution of couplings is fixed
is artificial in this numerical setting: for the small-N numerics
presented here, we have used a distribution of couplings based
on a Gaussian wave-function envelope, with a relatively small
cutoff radius r̃cutoff , in order to prevent the largest coupling
from dominating the nuclear dynamics. This construction
cuts off the couplings with small values; thus, the physical
distribution of couplings would contain relatively more smaller
couplings than the artificial one. Figure 4(a) shows that if we
increase the cutoff value, the peak height of ρrel increases.
In other words, by choosing the distribution of couplings
with a small cutoff, we underestimate the growth rate η. In
Fig. 4(b), we plot the peak heights as a function of the cutoff
values. The data suggest an increasing trend: the spectral peaks
grow faster for a larger cutoff. Because the present data are
strongly affected by the discretization due to the small value
of N , we are not able to identify a specific dependence (e.g.,
exponential). Rigorous analysis of the dependence is left for
future research.

On the other hand, we are also not capable of reaching the
limit r̃cutoff → 0 reliably. This limit corresponds to the box
model, where all couplings have (almost) the same value. For
small values of N , the distribution of all possible frequencies
	pp (as is the initial distribution of Ox) is no longer Gaussian,
but peaked. In this situation, we are unable to resolve the effect
of mode locking. The box-model limit requires a different
approach, namely, where the dynamics of the nuclear spins is
treated collectively instead of each spin individually [50].

E. Effect on the coherence

As explained in the Introduction, we distinguish two
mechanisms that give rise to the revival effects in the central-
spin Larmor oscillations. First, as suggested by Fig. 5(a),
we observe a revival effect that appears already after a few
pulses, long before mode locking sets in. The mechanism
for this revival is the nature of the pulse, combined with the
incoherent decay of the trion. The system quickly converges to
the steady state associated to this process. As demonstrated in
Appendix D, the steady-state expectation values of 〈Sz〉(t)
before and after the pulse are nonzero. In Fig. 5(a), we
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FIG. 5. Amplitude of the central-spin Larmor oscillations after
termination of periodic pulsing. Here, pulses (indicated by the vertical
solid lines and the label P) are applied periodically every 13.2 ns until
t = 132 ns. The vertical dashed lines indicate t = (132 + 13.2l) ns
(l = 1,2, . . .) where the revivals are located. The three panels differ
in the amount of mode locking: (a) no mode locking, (b) weak
mode locking (Lorentzian peaks with w = 0.05), and (c) strong
mode locking (w = 0.005). The insets show the initial distribution of
O = ∑

j aj I
x
j . In all cases, A = 2 ns−2 (T ∗ = 2 ns) and N = 15.

The shaded regions indicate fast oscillations.

recover the pre- and post-pulse amplitudes of the steady
state of approximately 0.077 and 0.289, respectively (see
Appendix D).

Unfortunately, observing a clear revival effect with mode-
locked density matrices obtained after a long time evolution
proves to be a challenge: For realistic values of the hyperfine
couplings, the effect is too small, and for enlarged ones
(T ∗ � 0.5 ns), the approximation errors add up, eventually
leading to an unphysical density matrix with (small) negative
diagonal entries. Instead, we artificially apply mode locking
by multiplying the initial density matrix entries ρpq by the
function

F (	pq) =
∞∑

k=−∞
lw[(	pq − ωk)Tpulse/2π ], (21)

where lw(x) = w/[π (w2 + x2)] designates a Lorentzian peak
of width w, and ωk = (2k + 1)π/Tpulse + φT are the resonant
frequencies. These half-integer resonant frequencies coincide
to high precision with those for the longitudinal Overhauser
field Ox , as expressed by Eqs. (16) and (20). The Lorentzian
peak shape should be interpreted as a generic example; other
shapes will yield similar qualitative behavior [59].

In the case of repeated pulsing, there appears to be no
qualitative difference between the revivals in absence or in
presence of mode locking. However, a remarkable difference
arises in a pulse protocol where the pulsing is terminated at

some moment, as demonstrated by Fig. 5. If we pulse until
t = lTpulse, then there will be a clear revival at t = (l + 1)Tpulse.
In absence of mode locking [see Fig. 5(a)], the subsequent
revivals are significantly attenuated. In contrast, if the spectrum
is mode locked [see Figs. 5(b) and 5(c)], the revivals at t =
(l + 1)Tpulse,(l + 2)Tpulse, . . . are strong, and their amplitude
decays slowly. The decay rate is determined by the amount
of focusing: for narrower peaks, the revivals attenuate more
slowly, and thus the coherence time is larger. The revival
amplitudes decay exponentially as e−t/Tcoh , with a coherence
time equal to Tcoh = Tpulse/2πw. For the examples illustrated
in Figs. 5(b) and 5(c), the coherence times are 42 and 420 ns,
respectively. The ratios of the amplitudes of subsequent peaks
are 0.730 and 0.969, respectively.

In addition, the narrower the peaks, the more robust an
ensemble will be against any statistical variation of the
frequencies. In particular, the statistical variation in the fre-
quencies 	pq , caused by the slightly different g factors of the
individual quantum dots, does not alter the amplitudes of the
revivals. Either without or with mode locking, the amplitude
at the pulse times is unaffected, because both mechanisms
filter the resonant contribution, which is independent of the
Larmor frequency (or equivalently, of the g factor). However,
the additional statistical uncertainty in the distribution of
frequencies 	pq leads to a shorter dephasing (and rephasing)
time.

F. Estimate of the minimal pulsing duration

We combine the observations in Sec. IV D in order to
find an estimate of the time scale η−1 at which the peaked
structure sets in, by extrapolation to realistic parameter values.
For concreteness, we assume an external magnetic field of
Bext = 6 T and a typical value of the dephasing time of
T ∗ ∼ 1 ns [21]. The effective number of nuclei is N ∼ 105.

From Fig. 3, we find a mode-locking rate of η ∼ 102 s−1.
As discussed in Sec. IV D, the N dependence is uncertain: both
η ∝ N0 and η ∝ N−1/2 are plausible. In the latter case, η is
decreased by a factor of ∼102 for N ∼ 105. On the other hand,
the low cutoff value r̃cutoff = 2 for the distribution of couplings
leads to the mode-locking rate being underestimated. The data
in Fig. 4 suggest that for realistic cutoff values, η is increased
slightly by up to roughly one order of magnitude.

The relation between the mode-locking rate η and the
necessary illumination time Tillum (duration during which the
sample has to be pulsed) for a desired value of the coherence
time Tcoh, is obtained from the considerations in Sec. IV E.
We equate the numerically obtained peak heights to those of
F (	pq) given by Eq. (21), i.e.,

1 + ρrel,peak(Tillum) = coth πw ≈ 1

πw
= 2Tcoh

Tpulse
, (22)

where the approximation is valid if the peaks are sufficiently
narrow (w � 1). If we assume that the peaks in the Overhauser
spectrum grow exponentially as 1 + ρrel,peak(t) = eηt , we find
Tillum = η−1 ln(2Tcoh/Tpulse). For extremely long coherence
times, e.g., as reported in Ref. [22], the ratio Tcoh/Tpulse can be
as large as 1010, for which Tillum ≈ 24η−1. This value should be
considered as a lower bound: In a realistic scenario, we expect
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that saturation will occur, i.e., that the exponential growth
slows down when a high degree of mode locking is reached.

Combination of these observations leads to an estimate
of the mode-locking rate of η ∼ 102–103 s−1, assuming the
scaling law η ∝ N0. Thus, the estimated minimal illumination
time lies in the range of 0.1–1 s. We reemphasize that this
value should be interpreted as a lower bound in view of the
expected saturation effect discussed above.

V. DISCUSSION AND CONCLUSION

Our estimate for the minimal pulsing duration that leads to
the long coherence times reported in Ref. [22] is in the order of
0.1–1 s. In the experiments, the sample is illuminated for much
longer, but it has not been investigated to what extent the long
illumination time is required. As far as our knowledge reaches,
the relation between the illumination time and the coherence
time has not been investigated quantitatively.

Our analysis of the scaling in terms of the number of nuclei
N is uncertain because we have access to a very limited number
of values. Whereas for the estimation above we have assumed
the mode-locking rate to be independent of N , our data are
also compatible with the N−1/2 scaling suggested by other
studies [56]. With the latter scaling behavior, realistic values
of N imply a decrease of η by ∼102, leading to an estimated
minimal illumination time of 10–100 s.

Mode locking has also been addressed in studies that use
(semi)classical approaches [53,57]. In these studies, a much
faster growth of the peaks has been reported. We ascribe this
difference to the loss of coherence at the pulses. For instance,
in Ref. [53], it is assumed that the pulses polarize the electron
spin completely, regardless of the pre-pulse state. Thus, at each
pulse the system is reset to a pure state, which leads to a much
stronger effect of the resonance.

The qualitative distinction between the revival behavior
in presence and absence of mode locking is recovered by
experiments by Greilich et al. [22,37]. In these measurements,
the electron spin signal shows a revival effect on a fast
time scale of 10 pulses (∼120 ns). The pre-pulse amplitude
is approximately 30% of the post-pulse amplitude, and the
revivals die quickly after the pulses are switched off, which
matches the behavior shown in Fig. 5(a). As of now, it is
unknown whether the origin of this signal is the steady-state
behavior as we describe here, or if it is a side effect of residual
coherence between the measurements that are repeated every
few microseconds. Second, the mode-locking effect [see
Fig. 5(c)] requires a pulsing duration in the order of seconds
or beyond, and the coherence effect is retained on even longer
time scales. Experimental results have also confirmed that the
pre- and post-pulse amplitudes have (almost) the same value
in this case [22].

It should be emphasized that we have chosen the philosophy
of analyzing a minimal model that clarifies the phenomenon of
mode locking. Hereby, we have neglected several interactions
known to have a quantitative effect on the results. In particular,
it has been suggested that the nuclear Zeeman effect, absent
in our model, leads to a significant decrease in the mode-
locking rate [53,57]. Further interactions that affect the nuclear
dynamics are the quadrupolar interaction of the nuclei (in
case they are considered as spin- 3

2 particles) [39–42], the

dipole-dipole interaction between nuclei [43], and anisotropy
of the dipolar hyperfine interaction or of the g factors (in case of
a hole central spin rather than an electron) [40,47,60–64]. The
present framework of perturbation theory could be extended
with these additional interactions with relatively small effort.
The present framework also enables us to investigate the effect
of the pulse action, in particular, how off-resonant pulses give
rise to nuclear spin polarization in the magnetic-field direc-
tion [50,58]. An extensive analysis of additional interactions
and of other pulse types lies beyond the scope of this work.

The perturbative method also has its limitations. For
realistic couplings, the effect of mode locking becomes visible
only for unfeasibly long times. On the other hand, if the
couplings are artificially increased, the errors (being quadratic
in the couplings) grow much more rapidly, so that the resulting
density matrices become unphysical before we reach times
for which the focusing effect becomes significant. For more
precise estimates and a longer time interval for the evolution,
further development of our methods may be required. For
example, we could eliminate the error from not including
multi-spin-flip processes within a single pulsing period, which
arises due to the perturbation theory being of first order in
the eigenvectors. Dividing the pulsing interval into multiple
subintervals alleviates this problem to some extent, but may
also introduce additional truncation errors which may become
significant if the subintervals are too short.

Alternative promising approaches towards calculation of
the central-spin-model dynamics have been proposed, such
as diagrammatic perturbation theory [51], exact time evo-
lution [65], density matrix renormalization group (DMRG)
methods [49,52,66], Monte Carlo methods [34], and ap-
proaches employing conserved quantities [67,68]. Each of
these methods should be scrutinized as to how well they
are suited and capable of capturing the mode-locking effect.
One essential requirement is that sufficient information on the
nuclear configuration is carried over from one pulse to the
next. Methods which treat the Overhauser field naively as a
classical variable (e.g., the expectation value only) and violate
this requirement, are by nature unable to capture the physics
of mode locking correctly.
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APPENDIX A: FULL PERTURBATIVE RESULTS

In this appendix, we provide an overview of the perturbative
results for clarification and for reference. We first review the
known solution of finding the eigenvalues and eigenvectors of
the zeroth-order Liouville operator L(0) [12,29]. Subsequently,
we build the higher-order perturbations based on top of this
result.

For studying the perturbative expansion of the Liouville
operator L, we represent in a matrix language where it is
encoded as a D2 × D2 matrix, where D = dimH = 3 × 2N
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is the Hilbert-space dimension. Due to the decay term [see
Eq. (6a)], it cannot be represented as a D × D matrix.

The zeroth order L(0) [Eq. (6a)] has been chosen to
be block diagonal in the nuclear degrees of freedom.

Working in the x̂ basis, we can write
the (p,q) block in the central-spin basis
{|+〉〈+|,|−〉〈−|,|+〉〈−|,|−〉〈+|,|T〉〈T|, |+〉〈T|, |T〉〈+|, |−〉
〈T|,|T〉〈−|} as the 9 × 9 matrix

L(0)
pq =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iωpq
1
2γ

iωpq
1
2γ

−i	pq
1
2γ

i	pq
1
2γ

−γ

−iε+
p − 1

2γ

iε+
q − 1

2γ

−iε−
p − 1

2γ

iε−
q − 1

2γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where the zero entries have been left blank. The entries on the
diagonal are given in terms of ωpq and 	pq as given by Eq. (8),
and of

ε±
p = ± 1

2 (λ + θp) − ET/�, (A2)

where θp is defined by Eq. (9).
The matrix L(0)

pq itself has an internal block structure: There
is one 5 × 5 block consisting of the degrees of freedom |+〉〈+|,
|−〉〈−|, |+〉〈−|, |−〉〈+|, and |T〉〈T|, which we will refer to as
the spin-spin/trion-trion (SS/TT) sector. The spin-trion/trion-
spin (ST/TS) components |+〉〈T|, |T〉〈+|, |−〉〈T|, and |T〉〈−|
are all uncoupled.

We continue with the diagonalization of the zeroth order. In
the spin-spin sector, we simply have the eigenvectors |+〉〈+| ⊗
|p〉〈q|, |−〉〈−| ⊗ |p〉〈q|, |+〉〈−| ⊗ |p〉〈q|, |−〉〈+| ⊗ |p〉〈q|.
The trion-trion eigenvector is rTT ⊗ |p〉〈q|, with

rTT = |T〉〈T| +
1
2 iγ

−ωpq − iγ
|+〉〈+| +

1
2 iγ

ωpq − iγ
|−〉〈−|

+
1
2 iγ

−	pq − iγ
|+〉〈−| +

1
2 iγ

	pq − iγ
|−〉〈+|. (A3)

This eigenvector couples the trion-trion and the spin-spin
degrees of freedom together to form the SS/TT sector.
For the ST/TS sector, the eigenvectors are |+〉〈T| ⊗ |p〉〈q|,
|T〉〈+| ⊗ |p〉〈q|, |−〉〈T| ⊗ |p〉〈q|, and |T〉〈−| ⊗ |p〉〈q|. The
respective eigenvalues are −iωpq , iωpq , −i	pq , i	pq , and −γ

for the SS/TT sector, where ωpq and 	pq are given by Eq. (8),
and represent the oscillating modes. The purely real eigenvalue
−γ encodes the trion decay. The eigenvalues associated to the
ST/TS sector are − 1

2γ − iε+
p , − 1

2γ + iε+
q , − 1

2γ − iε−
p , and

− 1
2γ + iε−

q , which are mixed real and imaginary, and thus
represent decaying oscillations.

In matrix language, the Liouville operator is diagonalized as
L = RDL, where D is the diagonal matrix of eigenvalues, R

the matrix of right eigenvectors, and L = R−1 the matrix of left
eigenvectors. The matrix L being non-Hermitian means that
the eigenvalues are generally complex, and L = R−1 �= R†.

Similarly, we have L(0) = R(0)D(0)L(0), with

D(0)
pq = diag

( − iωpq,iωpq, − i	pq,i	pq, − γ,

− 1
2γ − iε+

p , − 1
2γ + iε+

q ,

− 1
2γ − iε−

p , − 1
2γ + iε−

q

)
(A4)

as the diagonal matrix of eigenvalues and with

R
(0)
pq;p′q ′ = δpp′δqq ′

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 iγ /2
−ωpq−iγ

1 iγ /2
ωpq−iγ

1 iγ /2
−	pq−iγ

1 iγ /2
	pq−iγ

1

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A5)

and

L
(0)
pq;p′q ′ = δpp′δqq ′

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −iγ /2
−ωpq−iγ

1 −iγ /2
ωpq−iγ

1 −iγ /2
−	pq−iγ

1 −iγ /2
	pq−iγ

1

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A6)
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as the matrices of right and left eigenvectors, respectively. The latter two are related by inversion, L(0) = (R(0))−1. The right and
left eigenvectors are represented by the columns of R and the rows of L, respectively. The Kronecker deltas indicate that the
matrices are diagonal in the nuclear indices, i.e., these 9 × 9 matrices are the blocks for a single value of the nuclear indices
(p,q).

The time evolution at zero order etL(0) = R(0)etD(0)
L(0) is then calculated straightforwardly as

etL(0) =
∑
pq

[
eitωpq |pq; −−〉〈pq; −−|+e−itωpq |pq; ++〉〈pq; ++|+ eit	pq |pq; −+〉〈pq; −+| + e−it	pq |pq; +−〉〈pq; +−|

+ e− 1
2 γ t−iε+

p t |pq; +T〉〈pq; +T| + e− 1
2 γ t+iε+

q t |pq; T+〉〈pq; T+|

+ e− 1
2 γ t−iε−

p t |pq; −T〉〈pq; −T| + e− 1
2 γ t+iε−

q t |pq; T−〉〈pq; T−| + e−γ t |pq; TT〉〈pq; TT|

+
1
2 iγ

−ωpq − iγ
(e−γ t − e−itωpq )|pq; ++〉〈pq; TT| +

1
2 iγ

ωpq − iγ
(e−γ t − eitωpq )|pq; −−〉〈pq; TT|

+
1
2 iγ

−	pq − iγ
(e−γ t − e−it	pq )|pq; +−〉〈pq; TT| +

1
2 iγ

	pq − iγ
(e−γ t − eit	pq )|pq; −+〉〈pq; TT|

]
. (A7)

The first-order correction to the time evolution follows from expansion of the matrices D = D(0) + D(1) + . . ., R = R(0) +
R(1) + . . ., and L = L(0) + L(1) + . . . into orders of L(1), and subsequent substitution into L = RDL, with the condition that
L(0) = R(0)D(0)L(0). The first-order perturbations of the eigenvalues μα of L are equal to μ(1)

α = 〈l(0)
α |L(1)|r (0)

α 〉, where 〈l(0)
α | and

|r (0)
α 〉 are the left and right eigenvectors, respectively, of the zeroth-order problem, associated to eigenvalue μ(0). The spin flip in

H (1) [Eq. (7b)] maps each eigenvector either to zero or to a perpendicular eigenspace, so that μ(1)
α vanishes. Thus, the first-order

perturbation of the eigenvalues is trivial, i.e., D(1) = 0.
The first-order perturbations to the right eigenvectors follow from

∣∣r (1)
α

〉 =
∑

β:μ(0)
β �=μ

(0)
α

∣∣r (0)
β

〉 〈l(0)
β

∣∣L(1)
∣∣r (0)

α

〉
μ

(0)
α − μ

(0)
β

. (A8)

As the operator L(1) involves exactly one nuclear spin flip, the perturbation to an eigenvector |r (0)〉 with nuclear indices (p,q) has
contributions living in the nuclear spaces (p′,q) and (p,q ′), where the first or second index, respectively, is raised or lowered for
one nucleus. (In total, this constitutes 2N possibilities.)

The first-order eigenvector corrections, as encoded by R(1) and L(1) = −L(0)R(1)L(0), are quite lengthy, hence, we only provide
the resulting correction to the time evolution, and leave out the intermediate steps. The expansion of the time evolution up to first
order is given by

etL = RetDL ≈ R(0)etD(0)
L(0) + R(0)etD(0)

L(1) + R(1)etD(0)
L(0) + . . . , (A9)

where the first term on the right-hand side is the zeroth order [Eq. (A7)] and the two following terms constitute the first order.
The latter can be written as sums over the nuclear configurations (p,q) and over the nuclei j ,

R(0)etD(0)
L(1) = 1

2

∑
pq

N∑
j=1

aj

(
E01

j ;pq + F01
j ;pq + G01

j ;pq

)
, R(1)etD(0)

L(0) = 1

2

∑
pq

N∑
j=1

aj

(
E10

j ;pq + F10
j ;pq + G10

j ;pq

)
, (A10)

where

E01
j ;pq = − eit(−ω+ 1

2 aj )

1
2aj − ω − 	

|p̄− q; ++〉〈p̄+ q; −+| −
1
2 iγ eit(−ω+ 1

2 aj )( − 1
2aj + iγ + ω

)(
1
2aj − ω − 	

) |p̄− q; ++〉〈p̄+ q; TT|

− eit(ω+ 1
2 aj )

1
2aj + ω + 	

|p̄+ q; −−〉〈p̄− q; +−| −
1
2 iγ eit(ω+ 1

2 aj )( − 1
2aj + iγ − ω

)(
1
2aj + ω + 	

) |p̄+ q; −−〉〈p̄− q; TT|

− eit(−ω− 1
2 aj )

1
2aj + ω − 	

|p q̄−; ++〉〈p q̄+; +−| −
1
2 iγ eit(−ω− 1

2 aj )(
1
2aj + iγ + ω

)(
1
2aj + ω − 	

) |p q̄−; ++〉〈p q̄+; TT|

− eit(ω− 1
2 aj )

1
2aj − ω + 	

|p q̄+; −−〉〈p q̄−; −+| −
1
2 iγ eit(ω− 1

2 aj )(
1
2aj + iγ − ω

)(
1
2aj − ω + 	

) |p q̄+; −−〉〈p q̄−; TT|, (A11)
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W. BEUGELING, GÖTZ S. UHRIG, AND FRITHJOF B. ANDERS PHYSICAL REVIEW B 94, 245308 (2016)

E10
j ;pq = eitω

1
2aj − ω − 	

|p̄− q; +−〉〈p̄+ q; −−| −
1
2 iγ

−ω + iγ

(
e−γ t

1
2aj − iγ − 	

− eitω

1
2aj − ω − 	

)
|p̄− q; +−〉〈p̄+ q; TT|

+ e−itω

1
2aj + ω + 	

|p̄+ q; −+〉〈p̄− q; ++| −
1
2 iγ

ω + iγ

(
e−γ t

1
2aj − iγ + 	

− e−itω

1
2aj + ω + 	

)
|p̄+ q; −+〉〈p̄− q; TT|

+ eitω

1
2aj + ω − 	

|p q̄−; −+〉〈p q̄+; −−| −
1
2 iγ

−ω + iγ

(
e−γ t

1
2aj + iγ − 	

− eitω

1
2aj + ω − 	

)
|p q̄−; −+〉〈p q̄+; TT|

+ e−itω

1
2aj − ω + 	

|p q̄+; +−〉〈p q̄−; ++| −
1
2 iγ

ω + iγ

(
e−γ t

1
2aj + iγ + 	

− e−itω

1
2aj − ω + 	

)
|p q̄+; +−〉〈p q̄−; TT|,

(A12)

F01
j ;pq = − eit(−	+ 1

2 aj )

1
2aj − ω − 	

|p̄− q; +−〉〈p̄+ q; −−| −
1
2 iγ eit(−	+ 1

2 aj )( − 1
2aj + iγ + 	

)(
1
2aj − ω − 	

) |p̄− q; +−〉〈p̄+ q; TT|

− eit(	+ 1
2 aj )

1
2aj + ω + 	

|p̄+ q; −+〉〈p̄− q; ++| −
1
2 iγ eit(	+ 1

2 aj )( − 1
2aj + iγ − 	

)(
1
2aj + ω + 	

) |p̄+ q; −+〉〈p̄− q; TT|

− eit(	− 1
2 aj )

1
2aj + ω − 	

|p q̄−; −+〉〈p q̄+; −−| −
1
2 iγ eit(	− 1

2 aj )(
1
2aj + iγ − 	

)(
1
2aj + ω − 	

) |p q̄−; −+〉〈p q̄+; TT|

− eit(−	− 1
2 aj )

1
2aj − ω + 	

|p q̄+; +−〉〈p q̄−; ++| −
1
2 iγ eit(−	− 1

2 aj )(
1
2aj + iγ + 	

)(
1
2aj − ω + 	

) |p q̄+; +−〉〈p q̄−; TT|, (A13)

and

F10
j ;pq = eit	

1
2aj − ω − 	

|p̄− q; ++〉〈p̄+ q; −+| −
1
2 iγ

−	 + iγ

(
e−γ t

1
2aj − iγ − ω

− eit	

1
2aj − ω − 	

)
|p̄− q; ++〉〈p̄+ q; TT|

+ e−it	

1
2aj + ω + 	

|p̄+ q; −−〉〈p̄− q; +−| −
1
2 iγ

	 + iγ

(
e−γ t

1
2aj − iγ + ω

− e−it	

1
2aj + ω + 	

)
|p̄+ q; −−〉〈p̄− q; TT|

+ e−it	

1
2aj + ω − 	

|p q̄−; ++〉〈p q̄+; +−| −
1
2 iγ

	 + iγ

(
e−γ t

1
2aj + iγ + ω

− e−it	

1
2aj + ω − 	

)
|p q̄−; ++〉〈p q̄+; TT|

+ eit	

1
2aj − ω + 	

|p q̄+; −−〉〈p q̄−; −+| −
1
2 iγ

−	 + iγ

(
e−γ t

1
2aj + iγ − ω

− eit	

1
2aj − ω + 	

)
|p q̄+; −−〉〈p q̄−; TT|

(A14)

contain all couplings within the SS/TT sector with frequencies close to ωpq and 	pq , respectively, and

G01
j ;pq = −e− 1

2 γ t−i(ε+
p − 1

2 aj )t

1
2aj − ω − 	

|p̄− q; +T〉〈p̄+ q; −T| − e− 1
2 γ t−i(ε−

p − 1
2 aj )t

1
2aj + ω + 	

|p̄+ q; −T〉〈p̄− q; +T|

− e− 1
2 γ t+i(εq

−− 1
2 aj )t

1
2aj + ω − 	

|p q̄−; T+〉〈p q̄+; T−| − e− 1
2 γ t+i(εq

−− 1
2 aj )t

1
2aj − ω + 	

|p q̄+; T−〉〈p q̄−; T+| (A15)

and

G10
j ;pq = e− 1

2 γ t−iε−
p t

1
2aj − ω − 	

|p̄− q; +T〉〈p̄+ q; −T| + e− 1
2 γ t−iε+

p t

1
2aj + ω + 	

|p̄+ q; −T〉〈p̄− q; +T|

+ e− 1
2 γ t+iε−

q t

1
2aj + ω − 	

|p q̄−; T+〉〈p q̄+; T−| + e− 1
2 γ t+iε+

q t

1
2aj − ω + 	

|p q̄+; T−〉〈p q̄−; T+| (A16)

contain the decaying oscillation terms from the ST/TS sector.
We have adopted a notation where the nuclear index p̄+ (p̄−)
denotes a nuclear configuration with the j th nucleus in the state

|+〉 (|−〉) while the remaining nuclei can be in an arbitrary
state, indicated by p̄. We note furthermore that 	pq + ωpq =
λ + θp and 	pq − ωpq = λ + θq .
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The second-order perturbation of the eigenvalues, as first
nontrivial correction, is important for the accuracy of the per-
turbative time evolution. The perturbation to the eigenvalues
in second order is

μ(2)
α = 〈

l(0)
α

∣∣L(1)
∣∣r (1)

α

〉
=

∑
β:μ(0)

β �=μ
(0)
α

〈
l(0)
α

∣∣L(1)
∣∣r (0)

β

〉〈
l
(0)
β

∣∣L(1)
∣∣r (0)

α

〉
μ

(0)
α − μ

(0)
β

. (A17)

Substitution of the components α = p±, q± yields the cor-
rections to ωpq and 	pq ,

(+iωpq)(2) = μ
(2)
p−q− = i(Q+

p − Q+
q ),

(−iωpq)(2) = μ
(2)
p+q+ = −i(Q−

p − Q−
q ),

(A18)
i	(2)

pq = μ
(2)
p−q+ = i(Q+

p + Q−
q ),

−i	(2)
pq = μ

(2)
p+q− = −i(Q−

p + Q+
q ),

where we define

Q±
p =

∑
j

a2
j

4

δpj ,±
λ + θp ∓ 1

2aj

, (A19)

with δpj ,+ = 1
2 (1 + s

p

j ), i.e., 1 if the j th nucleus is in the |+〉
eigenstate and 0 otherwise, and with δpj ,− = 1

2 (1 − s
p

j ). The

denominators λ + θp ∓ 1
2aj = λ + θp̄ in Eq. (A19) encode the

eigenfrequency λ + θp̄ of the basis state with the j th nucleus
taken out. For large N , the denominators can be approximated
using θp̄ ≈ θp(N − 1)/N , based on the intuition that the
contribution to θp from nucleus j is the average over all nuclei.
With this approximation, the denominators are independent on
j , and can be taken out of the summation, so that we obtain

	(2)
pq = Q+

p + Q−
q

= 1

4

∑
j

a2
j

(
δpj ,+

λ + N−1
N

θp

+ δqj ,−
λ + N−1

N
θq

)
. (A20)

The remaining summation is just the sum of the squared
couplings, that stands in direct correspondence to the dephas-
ing time. For the Larmor frequencies 	pq , the second-order
correction is always positive. In practice, this means the
transverse hyperfine coupling leads to an increase of the
Larmor frequency. In the particular case of the diagonal part
	pp, the two deltas in Eq. (A20) add up to 1, so that

	(2)
pp = 1

4
(
λ + N−1

N
θp

) ∑
j

a2
j . (A21)

The diagonal Larmor frequency 	pp = 	(0)
pp + 	(2)

pp (with
	(0)

pp = λ + θp) can thus be expressed as a function of θp

or, equivalently, we could state that the second-order shift
can be expressed as a function of the zeroth-order frequency
itself. However, this is only true within the approximation of
the couplings aj being equal to the average. In reality, the
values aj are spread around their average, and consequently
the second-order shifts are spread around the value given by
Eq. (A21). Nevertheless, the deviations are small, given that
aj � λ, so that Eq. (A21) provides a good estimate.

Expressions for higher-order corrections to the frequencies
require tedious algebra, but can be estimated to be negligible

in view of the following arguments. The corrections to the
diagonal matrix elements 	pp vanish at odd orders because
a nonvanishing contribution requires an even number of
spin flips. For even orders, each increase of the order by
2 introduces an addition factor

∑
j a2

j /λ
2. Although we

do not know the coefficients of the latter quantity in the
frequency perturbation, its small size in the assumed limit
aj � λ provides a plausible argument that the corrections of
perturbative orders >2 are negligible.

APPENDIX B: COMPARISON OF EXACT AND
PERTURBATIVE SOLUTIONS FOR TWO COUPLED SPINS

We apply the perturbation theory proposed in Sec. III and
worked out in Appendix A to the minimal model of the
Hamiltonian dynamics of the central-spin model with only
one nucleus, in order to answer the question to which order
the expansion should be carried out. We write the simplified
Hamiltonian of this model as

H = Ŝx + AÎxŜx + Ã(Î y Ŝy + Î zŜz), (B1)

where we have set the external magnetic field to 1, and
we distinguish A and Ã as the longitudinal and transverse
hyperfine coupling strengths, respectively. The transverse
coupling acts as the perturbation parameter, but it is set
equal to the longitudinal one at a later stage. In the basis
{|++〉,|+−〉,|−+〉,|−−〉}, the Hamiltonian is represented by
the 4 × 4 matrix

H = 1

2

⎛
⎜⎜⎝

1 + 1
2A 0 0 0

0 1 − 1
2A Ã 0

0 Ã −1 − 1
2A 0

0 0 0 −1 + 1
2A

⎞
⎟⎟⎠.

(B2)

The eigenvalues of this matrix are (E1,E2,E3,E4) = ( 1
2 +

1
4A, 1

2

√
1 + Ã2 − 1

4A,− 1
2

√
1 + Ã2 + 1

4A,− 1
2 + 1

4A) and the
corresponding eigenvectors are

|r1〉 = (1,0,0,0), |r2〉 = (0,1 +
√

1 + Ã2,Ã,0)/N ,
(B3)

|r3〉 = (0,−Ã,1 +
√

1 + Ã2,0)/N , |r4〉 = (0,0,0,1),

where N = [2(1 + Ã2) + 2(1 + Ã2)1/2]1/2 is a normalization
constant.

We compare this exact result to perturbation theory. The
eigenspaces labeled 1 and 4 are already exact and therefore
the perturbations are trivial. For the other eigenvalues and
eigenvectors, we perform an expansion in orders of Ã:

E2 = (
1
2 − 1

4A
) + 1

4 Ã2 + O(Ã3),

E3 = −(
1
2 − 1

4A
) − 1

4 Ã2 + O(Ã3),

|r2〉 = �e2 + 1
2 Ã�e3 − 1

8 Ã2�e2 + O(Ã3),

|r3〉 = �e3 − 1
2 Ã�e2 − 1

8 Ã2�e3 + O(Ã3). (B4)

In this real and Hermitian case, the left eigenvectors are
equal to the right eigenvectors. We subsequently derive the
time evolution in the exact and in the perturbative case for
several orders. The exact time-evolution matrix, determined by
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e−itH = Re−itDL (L = R†), is

e−itH =

⎛
⎜⎜⎜⎜⎜⎝

e− 1
4 iAt e− 1

2 it 0 0 0

0 e
1
4 iAt

[
cos 1

2 rt − ir−1 sin 1
2 rt

] −iÃr−1e
1
4 iAt sin 1

2 rt 0

0 −iÃr−1e
1
4 iAt sin 1

2 rt e
1
4 iAt

[
cos 1

2 rt + ir−1 sin 1
2 rt

]
0

0 0 0 e− 1
4 iAt e

1
2 it

⎞
⎟⎟⎟⎟⎟⎠, (B5)

where r ≡
√

1 + Ã2. The perturbative result can be found
from Eq. (B4), and is equivalent to expansion of each entry
in Eq. (B5) into powers of Ã, i.e., r = 1 + 1

2 Ã2 + . . . and
r−1 = 1 − 1

2 Ã2 + . . . .
We compare the exact and perturbative results by examining

the errors (i.e., their difference) on the frequencies (energies),
and on the coefficients of the diagonal and off-diagonal entries.
The frequency (energy) errors areO(Ã2) for the zeroth and first
order, and O(Ã4) for second order. The same is true for the
diagonal coefficients. The off-diagonal entries are correct up to
O(Ã) for the zeroth order and to O(Ã3) for the first and second
order in the eigenvector expansion. In view of the magnitude of
Ã and the time interval we are interested in, we accept errors of
quadratic order. Under these conditions, the minimal required
perturbation order of the eigenvalues and eigenvectors would
be 2 and 1, respectively.

This intuition is corroborated by a quantitative analysis of
the errors, measured from the overlap between the perturbative
and exact wave function and from the difference between the
two spin expectation values shown in Figs. 6(a) and 6(b),
respectively. The errors grow rapidly if the perturbation order
in the eigenvalues is less than 2. From Fig. 6(b), we observe that
at some moment the spins are almost completely oppositely
directed (spin error ∼1). If the eigenvalue perturbation order
is chosen equal to 2, the errors remain smaller over the course
of the time interval studied here. (These error values have
been magnified in the figure.) If the eigenvalue order is 2,

(a)

0

1

0 4000 8000
t

×105

Overlap error
1 − | ψex(t)|ψpert(t) 2

(b)

0 4000 8000
t

×102

Spin error
Sex (t) Spert (t)

(0, 0)
(1, 1)
(2, 1)
(2, 2)

FIG. 6. Errors between the exact and perturbative results for
Hamiltonian (B1) with A = Ã = 0.05 and some arbitrary initial state
|ψ(0)〉. (a) Overlap errors 1 − |〈ψex(t)|ψpert(t)〉|2. (b) Spin errors
‖〈�Sex〉(t) − 〈�Spert〉(t)‖. The colors distinguish the perturbation orders,
red for (oeigenvalues,oeigenvectors) = (0,0), green for (1,1), blue for (2,1),
and yellow for (2,2). For the latter two, the error values have been
magnified by the factors 105 in (a) and 100 in (b). The red curve
coincides with the green one.

the accuracy is not increased significantly by including the
quadratic order in the eigenvector. We therefore conclude that
perturbation theory of order 2 in the eigenvalues and order 1 in
the eigenvectors is a reasonable compromise between accuracy
and calculation effort.

APPENDIX C: TRUNCATION OF NONDIAGONAL
ELEMENTS OF THE DENSITY MATRIX

As discussed concisely in Sec. III C, we “truncate” the
density matrix by eliminating all matrix elements which have
small absolute values. Loosely speaking, the idea behind the
truncation is that every spin flip in the time evolution leads to
an additional factor of aj/λ, which are the small perturbation
parameters. Thus, many applications of the evolution as
described in Appendix A lead to an exponential increase of
nonzero matrix elements in the sparse representation of the
density matrix. If we omit this step, the sparse matrix would
become increasingly dense, and the calculation intractable.

The precise method of truncation proceeds as follows. At
each pulse, all matrix elements ρpq;στ that are nondiagonal in
the nuclear degrees of freedom (p �= q) and smaller than the
threshold value θ , i.e., |ρpq;στ | < θ are set to zero. For the
results presented in Sec. IV, we have used the cutoff value
θ = 4−(N+1). Lowering this value leads to a sharp increase in
the required computation time, but not to significantly different
results. For example, for N = 15, the relative error between
the results at θ1 = 2−40 and θ2 = 2−32 is of the order of 10−6

at T = 2000 Tpulse.
In Fig. 7, we illustrate the idea behind the approximation:

Although the number Nel of small matrix elements may be
large [see Fig. 7(a)], their weight (number Nel times value z)

(a)

10−18 10−12 10−6

z

1

103

106

N
e
l

θ

d = 01
2

3
4

5

(b)

10−18 10−12 10−6

z

10−12

10−6

1

z
N

e
l

θ

d = 0
1

2
3

4
5

W (z)

FIG. 7. (a) Typical logarithmic histogram of the absolute value
z = |ρpq;στ | of the matrix elements of the density matrix. The binning
on the horizontal axis is given by [2−(k+1),2−k], k = 0,1,2, . . . . The
different curves distinguish the distance d to the diagonal (number of
different spins between p and q). (b) Weight of the matrix elements,
defined as number Nel times value z. The dashed curve indicates the
accumulated weight W (z) of matrix elements up to z [see Eq. (C1)].
For both plots, N = 15 and T ∗ = 1 ns. The vertical dotted lines show
the standard truncation value θ = 4−(N+1) = 2−32.
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is still negligible [see Fig. 7(b)]. For a quantitative estimate,
we also explore the accumulated weight

W (z) =
∑

|ρpq;στ |<z

|ρpq;στ | (C1)

of all matrix elements smaller than z, plotted as the dashed
curve in Fig. 7(b). The curve in the plot is an approximation
equal to W (z) − W (θ1), where θ1 is a very small cutoff. The
precise value of the error W (θ1) is unknown, but it is estimated
to be small; here �10−10. In this case, for N = 15 with
θ = 2−32, the neglected accumulated weight is W (θ ) ∼ 10−4,
very small compared to the total weight W (0) ∼ 1.

The very weak dependence of the resulting distribution of
the longitudinal Overhauser field Ox on the truncation value is
due to the truncated matrix elements values being off diagonal.
Their eventual contribution is roughly their value multiplied by
appropriate factors of the small perturbation parameters aj/λ.
The combination of this observation with the small weights as
illustrated by Fig. 7(b) thus explains why truncation of these
values has no noticeable effect on the results.

APPENDIX D: STEADY STATE IN ZERO ORDER

In a long time evolution under periodic driving, the system
will converge to a steady state. Here, the term steady state refers

to periodic time evolution ρ(t + Tpulse) = ρ(t), for any pair of
times separated by one period Tpulse. The time evolution over
one period is a combination of the unitary pulse action ρ →
P̃ρ ≡ PρP† and the evolution between the pulses governed
by the Lindblad equation (see Sec. III A).

In order to gain some basic intuition, we derive the steady
state in the zero-order theory, using the explicit time evolution
Eq. (A7). We take the usual action of the π pulse given
by P = |T〉〈↑| − |↑〉〈T| + |↓〉〈↓|. Without loss of generality,
we consider a fixed time in one pulsing period, namely, the
moment just before the pulse. The time evolution from one
period to the next is then given by

ρ((n + 1)Tpulse) = Uρ(nTpulse) ≡ eTpulseL(0)P̃ρ(nTpulse). (D1)

The periodicity condition then defines the steady states as the
eigenstates of U with eigenvalue 1.

The operator U can be expressed as a matrix acting on the
density matrix ρ in a vectorized form, similar to the action
of the time evolution eTpulseL(0)

described in Appendix A. For
simplicity, we consider a single nuclear configuration, i.e., we
fix the indices p and q in Eq. (A7), which is justified in view
of eTpulseL(0)

and P̃ being diagonal. For simplicity, we consider
the case p = q, so that ωpq = 0. In addition, we consider the
limit e−γ Tpulse → 0. If we confine ourselves to the SS/TT sector,
choosing the same basis order as in Appendix A, we can write

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 1

2
1
2

1
2 0 0 1

2

− 1
4e−iτ (1 + �∗) − 1

4e−iτ (1 + �∗) 1
4e−iτ (1 − �∗) 1

4e−iτ (1 − �∗) 1
2e−iτ

− 1
4eiτ (1 + �) − 1

4eiτ (1 + �) 1
4eiτ (1 − �) 1

4eiτ (1 − �) 1
2eiτ

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (D2)

where we define τ = 	ppTpulse and � = iγ /(	pp − iγ ). This
matrix has an eigenvalue equal to 1 independent of the param-
eters.2 The steady-state density matrix, that is characterized
by the eigenstate, is

ρ̄ =
⎛
⎝ 1

2 + s̄x s̄z + is̄y 0
s̄z − is̄y 1

2 − s̄x 0
0 0 0

⎞
⎠, (D3)

with s̄x = 0,

s̄y = sin τ − |�| sin φ + |�| sin(τ + φ)

−4 + 2 cos τ − 2|�| cos(τ + φ)
,

s̄z = cos τ + |�| cos(τ + φ)

−4 + 2 cos τ − 2|�| cos(τ + φ)
, (D4)

where we have defined φ from setting � = |�|eiφ . This
density matrix encodes a state for which the spin expectation
value is (s̄x ,s̄y,s̄z) before each pulse. In the spin-z basis,
the pre-pulse steady state is written as ( 1

2 + s̄z)|↑〉〈↑| + ( 1
2 −

2The only other nonzero eigenvalue is 1
2 cos τ − 1

2 |�| cos(τ + φ),
with φ given by � = |�|eiφ . For small |�|, this eigenvalue lies close
to 1

2 .

s̄z)|↓〉〈↓| + is̄y(|↓〉〈↑| − |↑〉〈↓|). From this representation, it
is straightforward to determine the post-pulse density matrix as(

1
2 + s̄z

)|T〉〈T| + (
1
2 − s̄z

)|↓〉〈↓| + is̄y(|↓〉〈T| − |T〉〈↓|).
(D5)

Here, we note that the post-pulse state always points down,
if we consider the SS/TT sector only. In particular, the
component s̄y is mapped into the ST/TS sector, which decays
to a negligible value over a period of Tpulse. The irrelevance
of s̄y means that the periodicity condition is fulfilled even
if Tpulse is not an integer multiple of the Larmor period, i.e.,
for any value of τ (modulo 2π ). As a consequence, given the
parameters γ and Tpulse as input, no particular value for 	pp

is singled out as being “resonant.”
In absence of mode locking, when the frequency distri-

bution is Gaussian, we can assume that the distribution of τ

modulo 2π is uniform in [0,2π ]. Then, the steady state is
characterized by the average values of s̄y and s̄z,

〈s̄y〉 ≈ 1

2π

∫ 2π

0

sin τ dτ

−4 + 2 cos τ
= 0,

(D6)

〈s̄z〉 ≈ 1

2π

∫ 2π

0

cos τ dτ

−4 + 2 cos τ
= 1

2
− 1√

3
≈ −0.077,
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W. BEUGELING, GÖTZ S. UHRIG, AND FRITHJOF B. ANDERS PHYSICAL REVIEW B 94, 245308 (2016)

in the limit |�| → 0, i.e., neglecting the effect of the trion
decay. The corresponding post-pulse value is −1/2

√
3 ≈

−0.289. Thus, in the steady state the system acquires a nonzero
spin expectation value in the z direction both before and after
the pulse.

If the system is maximally mode locked, only a single
value of τ contributes. Considering again the limit |�| → 0,
and assuming a half-integer number of Larmor oscillations

in one pulsing period [τ ≡ π (mod 2π )] we find that the
steady-state pre- and post-pulse expectation values are 1

6 and
− 1

6 , respectively. For an integer number of Larmor oscillations
[τ ≡ 0 (mod 2π )], both values are equal to − 1

2 . In these
two cases, the amplitude of the oscillations is not changed
by the pulse, but the values are different, and there is a
sign flip in the half-integer case that is absent in the integer
case.
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