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First-principles approach to excitons in time-resolved and angle-resolved photoemission spectra
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In this work we put forward a first-principles approach and propose an accurate diagrammatic approximation
to calculate the time-resolved (TR) and angle-resolved photoemission spectrum of systems with excitons. We
also derive an alternative formula to the TR photocurrent which involves a single time-integral of the lesser
Green’s function. The diagrammatic approximation applies to the relaxed regime characterized by the presence
of quasistationary excitons and vanishing polarization. The nonequilibrium self-energy diagrams are evaluated
using excited Green’s functions; since this is not standard, the analytic derivation is presented in detail. The
final result is an expression for the lesser Green’s function in terms of quantities that can all be calculated in
a first-principles manner. The validity of the proposed theory is illustrated in a one-dimensional model system
with a direct gap. We discuss possible scenarios and highlight some universal features of the exciton peaks. Our
results indicate that the exciton dispersion can be observed in TR and angle-resolved photoemission.

DOI: 10.1103/PhysRevB.94.245303

I. INTRODUCTION

Time-resolved (TR) and angle-resolved photoemission
(PE) spectroscopy has been established as a powerful exper-
imental technique to monitor the femtosecond dynamics of
electronic excitations in solid-state physics. Applications cover
the ultrafast dynamics in image potential states [1–7]; electron
relaxation in metals [8–11], semiconductors [12–15], and
more recently topological insulators [16–21]; charge transfer
processes at solid-state interfaces [22–26] and in adsorbate
on surfaces [27–33]; and the formation and dynamics of
excitons [12,13,34–37]. The theoretical description of excitons
constitutes the main focus of the present work.

In TR-PE experiments on semiconductors or insulators
a pump pulse excites electrons from the valence band to
the conduction band. During the action of the pump the
system coherently oscillates between the ground state and the
dipole-allowed excited states, giving rise to a finite polarization
and hence to the emission of electromagnetic waves. Due
to the Coulomb attraction between the conduction electrons
and the valence holes, the excited states may contain bound
electron-hole (eh) pairs or excitons. If so, then the lowest
frequency of the time-dependent polarization (or, equivalently,
the onset of the photoabsorption spectrum) reduces by an
amount given by the exciton binding energy. In this oscillatory
regime the system is not in an eigenstate and we say that it
contains coherent or virtual excitons [38–40]. After the pump
has died off, electrons (holes) remain trapped in the conduction
(valence) band and relax toward the conduction band minimum
(valence band maximum) because of inelastic scattering; see
Fig. 1 for a schematic illustration. The relaxation process
typically occurs on a femtosecond time scale [41–44] and the
resulting quasistationary state is an eh liquid containing inco-
herent or real excitons, i.e., stationary bound eh pairs [38–40].
In this regime we do not have a superposition of ground
state and excited states but an admixture of them (hence
the polarization vanishes). The photocurrent of a TR-PE

experiment is generated by a probe pulse which impinges the
system in this quasistationary state and causes the emission of
electrons from the conduction band. Like virtual excitons have
an effect on the photoabsorption spectrum, so real excitons
leave clear fingerprints on the TR-PE spectrum.

The photoabsorption spectrum is proportional to the po-
larization which, in turn, can be calculated from the Fourier
transform of the time-dependent electron density n(r,t).
In the Green’s function language n(r,t) is given by the

FIG. 1. Schematic description of a TR and angle-resolved PE
experiment.
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off-diagonal (in the basis of Bloch states) equal-time lesser
Green’s function G<(t,t). The effects of virtual excitons are
therefore encoded in this quantity. It is well known that virtual
excitons emerge already when the equation of motion for
G<(t,t) is solved at the Hartree-Fock (HF) level [45,46].
To lowest order in the perturbing field the HF G<(t,t)
can alternatively be obtained from the equilibrium density
response function which solves the Bethe-Salpeter equation
(BSE) with a HF kernel [45–49]. In more refined state-of-the-
art first-principles calculations the HF kernel is replaced by a
Hartree plus screened exchange [50] (HSEX) kernel [51–59].
The theory of excitons in photoabsorption spectra is today very
well established.

Conceptually different is the TR-PE spectrum since it is
proportional to the probability of finding an electron with
a certain momentum and energy. In the Green’s function
language this probability is given by the Fourier transform
of the diagonal (in the basis of Bloch states) lesser Green’s
function G<(t,t ′) ∼= G<(t − t ′) (the exact equality holds for
stationary states and it is otherwise a good approximation
for quasistationary states decaying on a time scale longer
than the probing time). It could be tempting to calculate
the quasistationary G<(t − t ′) in the HSEX approximation
since the equal-time HSEX G<(t,t) contains the physics
of virtual excitons. However, earlier results on the spectral
function of an eh plasma show that real excitons do not
emerge from the HSEX self-energy but rather from a T -matrix
self-energy [60,61]. Building on these previous findings, the
purpose of the present work is to provide a first-principles dia-
grammatic approach to the removal part of the nonequilibrium
spectral function, i.e., G<, thus enabling accurate predictions
of the impact of real excitons on the TR-PE spectrum of real
materials.

The paper is organized as follows. In Sec. II we briefly
discuss a simple picture of the exciton problem in TR-PE
spectroscopy. In Sec. III we derive a general formula of the
TR photocurrent valid for arbitrary intensities and shapes of
the probe field and involving a single time integral of the
lesser Green’s function. The inadequacy of the HF, HSEX,
and GW approximations to G<(t − t ′) is revisited in Sec. IV.
In Sec. V we discuss the relevant diagrams to calculate the
dressed Green’s function. The (self-energy) vertex should
satisfy a nonequilibrium BSE with a HSEX kernel evaluated
at excited quasiparticle (qp) Green’s functions. In Sec. V A we
generalize the solution of the nonequilibrium BSE of Ref. [62]
to arbitrary momenta and show how to extract the lesser and
greater component of the eh propagator. This part of the theory
is also useful to calculate photoluminescence spectra [63].
From the lesser and greater eh propagators we construct the
(self-energy) vertex and subsequently the spectral function;
see Sec. V B. Taking into account the quasistationarity of the
system, we finally obtain a simple and intuitive expression for
the (dressed) lesser Green’s function. The proposed treatment
is benchmarked in a minimal model with only one valence
band and one conduction band. For the case of a single eh pair
the model can be solved analytically and our diagrammatic
treatment is shown to be exact; see Sec. VI A. In Sec. VI B
we consider a finite eh density, discuss possible scenarios and
highlight some universal features of the excitonic features. A

summary of the method and the main conclusions are drawn
in Sec. VII.

II. A SIMPLE PHYSICAL PICTURE

Let us briefly illustrate a simple physical picture of TR-PE
in systems with real excitons [34]. After absorption of a pump
photon the system makes a transition, from the ground state
of energy Eg to an excited state of energy E characterized
by one electron in the conduction band. Subsequently, the
conduction electron absorbs a (probe) photon of energy ω0

and it is expelled as a photoelectron of momentum k and
energy εk > 0 (we set the continuum threshold to zero). Energy
conservation and conservation of the momentum parallel to the
surface imply that ω0 + E = E−

k‖ + εk, where E−
k‖ is the energy

of the original system without a valence electron of momentum
k‖ and energy εvk‖ . Approximating E−

k‖ � Eg − εvk‖ one finds
the momentum-resolved photocurrent

I (k) ∝ δ(ω0 + E − Eg + εvk‖ − εk), (1)

from which it follows that the energy-resolved photocurrent
perpendicular to the surface is

I (ε) ∝ δ(ω0 + E − Eg + εv0 − ε). (2)

If the eh pair of the excited state does not bind, then E − Eg

is no smaller than the optical gap � and the photocurrent is
nonvanishing for ε > ω0 + � + εv0. If, on the other hand, the
eh pair binds, then the lowest excited state splits off from the
continuum by an amount equal to the exciton binding energy
bX and the photocurrent is nonvanishing also at the discrete
energy values ε = ω0 + � + εv0 − bX. Thus, the formation of
an exciton manifests as a photocurrent peak below the onset
of the continuum.

Although this picture captures the qualitative aspects of the
problem, it lacks a quantitative description of the phenomenon.
In reality, after the action of the pump pulse the system is
not in a pure state characterized by a single eh pair but
in an admixture of excited states with a certain distribution
of eh pairs and the exciton binding energy depends on this
distribution in a far-from-obvious manner. The above picture
is also inadequate to determine the proportionality constant
in Eq. (1), thus preventing a quantitative comparison with the
experiment.

The failure of the HF or HSEX (or any other qp for
that matter) approximation is also evident. Due to Coulomb
attraction with the valence hole, the bare conduction electron
splits into a conduction qp of roughly the same energy and a qp
bound to the valence hole. In other words, every bare electron,
characterized by a well-defined energy, is transformed into two
qps of different energies. By construction, a qp approximation
assigns a single energy to every qp and it is therefore
inadequate to study real excitons in TR-PE. A more technical
discussion of this point can be found in Sec. IV, while in
Sec. V we propose a diagrammatic solution to the problem.
Preliminarily, however, we derive a formula which relates the
TR photocurrent to the lesser Green’s function.
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III. NONEQUILIBRIUM PHOTOCURRENT

In this section we derive and discuss the formula for
the time-dependent photocurrent induced by a laser pulse
impinging on a solid out of equilibrium. By definition the
photocurrent of electrons with momentum k = (k‖,k⊥) is
given by the rate of change of the occupation of the time-
reversed low-energy electron-diffraction (LEED) state [64–66]
with momentum k, i.e.,

I (k,t) ≡ d

dt
〈f̂ †

Hk(t)f̂Hk(t)〉 = −i
d

dt
G<

ff,k(t,t), (3)

where f̂k annihilates an electron in the LEED state of
momentum k and the subindex H signifies that operators
evolve according to the Heisenberg picture in the presence of
the pump and probe fields. In the second line of Eq. (3) appears
the lesser component of the free-electron Green’s function,
which is defined according to [48]

Gff,k(z,z′) ≡ 1

i
〈T {f̂Hk(z)f̂ †

Hk(z′)}〉, (4)

where z and z′ are times on the Keldysh contour and T is the
contour ordering operator. Denoting by εf k = k2/2 > 0 the
free-electron energy, the LEED states are linear combinations
of Bloch states with energy εf k [65]. We refer to Refs. [67,68]
for the description of an efficient numerical algorithm to
calculate these states. We work in the dipole approximation
(which is accurate for photon energies below 10 keV) and
consider the vector potential of the probe field A(t) = η̂ a(t)
parallel to some unit vector η̂. As we are interested in the
photocurrent generated by a pulse, the function a(t) vanishes
for t → ±∞. Let Dνk ≡ 〈fk|(p · η̂)/c|νk‖〉 be the matrix
element of the light-matter interaction operator between a
LEED state of momentum k = (k‖,k⊥) and a bound Bloch
state (of energy below zero) with band index ν and parallel
momentum k‖ (parallel momentum is conserved). Neglecting
the Coulomb interaction between LEED electrons and bound
electrons in the solid, the equations of motion for Gff,k read

[
i

d

dz
− εf k

]
Gff,k(z,z′) −

∑
ν

D∗
νka(z)Gνf,k(z,z′)

= δ(z,z′), (5)
[

− i
d

dz′ − εf k

]
Gff,k(z,z′) −

∑
ν

Dνka(z′)Gf ν,k(z,z′)

= δ(z,z′), (6)

where Gf ν,k(z,z′) and Gνf,k(z,z′) are defined mutatis mutandis
as in Eq. (4). Equations (5) and (6) and all subsequent equations
of motion have to be solved with Kubo-Martin-Schwinger
boundary conditions [48]. Setting z = t− and z′ = t+ and
subtracting Eq. (6) from Eq. (5), we find

i
d

dt
G<

ff,k(t,t) = −2 Re

[ ∑
ν

Dνka(t)G<
f ν,k(t,t)

]
. (7)

We can express the right-hand side of Eq. (7) in terms of the
Green’s function Gν ′ν,k‖(z,z

′) ≡ 1
i
〈T {ĉνk‖(z)ĉ†ν ′k‖(z

′)}〉 with
both indices in the bound Bloch sector. The equation of motion

for Gf ν,k reads[
i

d

dz
− εf k

]
Gf ν,k(z,z′) −

∑
ν ′

D∗
ν ′ka(z)Gν ′ν,k‖(z,z

′) = 0.

(8)

If we define the unperturbed (probe-free) Green’s function as
the solution of[

i
d

dz
− εf k

]
gff,k(z,z′) = δ(z,z′),

then Eq. (8) can be solved for Gf ν,k, yielding

Gf ν,k(z,z′) =
∑
ν ′

∫
dz̄gff,k(z,z̄) D∗

ν ′ka(z̄)Gν ′ν,k‖(z̄,z
′).

Substituting this result into Eq. (7), we see that it is convenient
to define the embedding self-energy:

�emb
νν ′,k(z,z′) ≡ Dνka(z)gff,k(z,z′)a(z′)D∗

ν ′k. (9)

The embedding self-energy accounts for the fact that electrons
can escape from the solid [69–71]. A similar quantity is used
in the context of quantum transport where the electrons of
a molecular junction can move in and out of the junction
by tunneling from and to the leads [72–74]. The complex
absorbing potential in quantum mechanics can be seen as a
time-local approximation to �emb. It is worth noticing that
the embedding self-energy is independent of the electron-
electron and electron-phonon interactions and it is completely
determined by the matrix elements Dνk and by the pulse
shape a(t).

Using the Langreth rules [48] and taking into account
that �

emb,<
νν ′,k ∝ g<

ff,k ∝ f (εf k) = 0 since there are no LEED
electrons in the initial state [here f (ε) is the Fermi function],
we can rewrite Eq. (7) as

I (k,t) = 2
∑
νν ′

∫
dt̄ Re

[
�

emb,R
νν ′,k (t,t̄)G<

ν ′ν,k‖(t̄ ,t)
]
, (10)

where

�
emb,R
νν ′,k (t,t̄) = −iθ (t − t̄)DνkD

∗
ν ′ka(t)a(t̄)e−iεf k(t−t̄).

This is our formula for the time-dependent photocurrent and
it constitutes the main result of this section. The formula
is valid for systems in arbitrary nonequilibrium states and
for any temporal shape and intensity of the probe field, the
only approximation being that LEED electrons do not interact
with bound electrons. We observe that Eq. (10) reduces to the
formula derived in Ref. [75] provided that one approximates
d
dt

〈f̂ †
Hk(t)f̂Hk(t)〉 � |k|〈f̂ †

Hk(t)f̂Hk(t)〉 and discards the effect
of the probe field on Gν ′ν,k‖ . A practical numerical advantage
of Eq. (10) is that it contains a single time integral.

To make contact with the discussion of the introductory
section, we consider the special case of a system left in a
stationary excited state after the action of the pump pulse [76]
and take a probe pulse sharply peaked at frequency ω0,
i.e., a(t) = θ (t)(a0e

iω0t + c.c.). If we are interested in the
photocurrent for t → ∞, only the terms depending on the
time-difference contribute to the embedding self-energy. If we
further assume (as in the introductory section) that electrons
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are expelled from the conduction band ν = c, then we can
restrict the sum in Eq. (10) to ν = ν ′ = c using

�
emb,R
cc,k (t,t̄) = −iθ (t − t̄)|a0Dck|2e−iεf k(t−t̄)

×(eiω0(t−t̄) + c.c.). (11)

To lowest order in the probe field, G<
cc,k‖ depends on the time

difference only (the system is in a stationary state). Inserting
Eq. (11) into Eq. (10) we then find

I (k,t) = −2|a0Dck|2
∫

dω

2π
iG<

cc,k‖ (ω)

× Re

[ ∫ t

0
dt̄ (e−i�−(t−t̄) + e−i�+(t−t̄))

]
,

where we used that iG<
cc,k‖ (ω) is real and we defined �± =

εf k ± ω0 − ω. Performing the time integral and taking into
account that limt→∞ sin �t

�
= πδ(�), the long-time limit of the

photocurrent is given by

I (k) ≡ lim
t→∞ I (k,t)

= −i|a0Dk|2
[
G<

cc,k‖ (εf k − ω0) + G<
cc,k‖ (εf k + ω0)

]
.

(12)

Comparing this result with Eq. (1) we see that a proper
selection of Feynman diagrams evaluated with an excited qp
Green’s function are required to capture excitonic features
in the energy-resolved photocurrent. In fact, G<

cc,k‖ (ω) is
nonvanishing at the removal energies of the excited solid. In
the next two sections we develop a diagrammatic treatment to
tackle this problem.

IV. FAILURE OF QUASIPARTICLE AND GW
APPROXIMATIONS

In order to avoid the numerically expensive implementation
of the two-times Kadanoff-Baym equations [48,70,77–83],
the lesser Green’s function is usually calculated from the
generalized Kadanoff-Baym ansatz [84–90] (GKBA),

G<(t,t ′) = iGR(t,t ′)G<(t ′,t ′) − iG<(t,t)GA(t,t ′), (13)

where GR(t,t ′) = [GA(t ′,t)]† is the retarded Green’s function
in some qp approximation, e.g., HF or HSEX. It is well
established that the equal-time HSEX G< accurately describes
virtual excitons in photoabsorption [the photoabsorption spec-
trum is proportional to

∫
dteiωtG<(t,t)] [58]. Real excitons,

however, arise from the Fourier transform of G<(t,t ′) with
respect to the relative time (t − t ′); therefore, real excitons
hide in GR(t,t ′) and not in G<(t,t). In any qp approximation
GR(t,t ′) is a single oscillatory exponential with frequency
given by the qp energy. Thus, the Fourier transform G<(ω) is
peaked only at the qp energy and does not contain information
on the exciton peak. The very same approximation which
accurately describes virtual excitons (in photoabsorption) fails
to describe real excitons (in TR-PE). The situation does
not improve at the GW level. In fact, in insulators and
semiconductors the main effect of the GW self-energy is to
renormalize the qp energies. Dynamical effects (due to the
dependence on frequency) appear at very high energy and are
associated to plasmonic excitations, not to excitons. Hence, the

retarded Green’s function in the GW approximation maintains
a qp character.

To make progress one must abandon the qp approximation
and calculate GR using a many-body self-energy � with
vertex corrections, as it has been pointed out in Refs. [60,61].
We emphasize that � is distinct from the embedding self-
energy defined in Eq. (9): The former is a functional of
the Green’s function and Coulomb interaction, whereas the
latter is an explicit functional of the probe pulse. Hence,
� is nonvanishing even without a probe, whereas �emb is
nonvanishing even without the Coulomb interaction.

V. DIAGRAMMATIC TREATMENT

To find the most relevant many-body self-energy diagrams,
we argue as follows. In a metal the plasmon peak in photoab-
sorption is captured by a two-particle Green’s function G2

evaluated from the BSE with Hartree kernel KH = −δ�H/δG.
However, in PE the plasmon peak does not emerge from
a Green’s function calculated with Hartree self-energy �H.
Rather, the plasmon peak emerges from the GW self-energy
�GW ≡ −ivG2G

−1, where v is the Coulomb interaction and
G2 is the two-particle Green’s function which solves the BSE
with kernel KH. By analogy we expect that real excitons
emerge from a self-energy � = −ivG2G

−1, where G2 solves
the BSE with kernel KHSEX = −δ�HSEX/δG, �HSEX being
the HSEX self-energy. The conclusion of this reasoning is in
agreement with earlier studies on an eh plasma [60,61]. In fact,
this G2 contains the T -matrix diagrams in the particle-hole
sector which we know to describe the physics of excitons in
photoabsorption. The twist with respect to the plasmon case
is that in PE plasmons are seen also in equilibrium, whereas
excitons are not. As we shall see, this aspect is not related
to the selection of self-energy diagrams but to the qp Green’s
function chosen to evaluate them.

On the basis of this discussion we calculate the Green’s
function appearing in Eq. (10) using the self-energy in Fig. 2(a)

FIG. 2. (a) Diagram for the self-energy. (b) Diagram for L.
Wiggly lines denote the bare interaction v and doubly wiggly lines
denote the statically screened interaction W .
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where the two-particle correlation function

L(1,2; 3,4) ≡ −G2(1,2; 3,4) + G(1; 3)G(2; 4)

is given in Fig. 2(b) and is evaluated with excited qp Green’s
functions. The latter are calculated by performing numerical
simulations of the dynamics of the system in the presence of the
pump field. This can be done in a first-principles manner using,
e.g., the YAMBO code [91], which implements a one-time
Kadanoff-Baym evolution for the electronic populations
[84–89]. Previous studies on bulk silicon [44,92,93] have
shown that the polarization dies off a few femtoseconds
after the pump pulse due to inelastic scattering and that
the pumped electrons reach a Fermi-Dirac distribution
f (ε) = 1/(eβ(ε−μ) + 1) with band-dependent temperature
1/β and chemical potential μ. Electron-hole recombination
and hence relaxation toward the ground state does instead
occur on a picosecond time scale. Thus, the solid is well
described by an admixture of stationary excited states on the
(femtosecond) time scale of the probe pulse [59]. It is the
purpose of this section to develop a first-principles approach
to nonequilibrium PE in such regime.

A. Excited two-particle correlation function

As the screened interaction W in Fig. 2(a) is static, the
vertices (1,3) and (2,4) have the same time argument. It is
therefore sufficient to evaluate

Lx1x3
x2x4

(z,z′) ≡ L(x1z,x2z
′; x3z,x4z

′),

where x = (rσ ) is a collective index for the position and spin
coordinate, whereas z is a contour time. We mention that the
inclusion of dynamical screening in W has a negligible effect
on the excitonic oscillator strength [94]. The Green’s function
lines in Fig. 2(b) describe qp propagators in some admixture
of stationary excited states,

gx1x4 (z,z′) =
∑

j

ϕi(x1)ϕ∗
j (x4)gj (z,z′), (14)

where ϕj is the qp wave function and j is a collective index
for the band, spin, and momentum. Expanding L according to

Lx1x3
x2x4

(z,z′) =
∑
ij

mn

L ij

mn

(z,z′)ϕi(x1)ϕ∗
j (x3)ϕm(x2)ϕ∗

n(x4), (15)

the BSE of Fig. 2(b) takes the form

Lij

mn

(z,z′) = δinδjm gi(z,z
′)gj (z′,z) + i

∑
pq

∫
dz̄

× gi(z,z̄)gj (z̄,z)Kij

qp

Lpq

mn

(z̄,z′), (16)

where Kij

qp

≡ Wiqjp − viqpj . Here the four-index statically

screened interaction is defined according to

Wijmn =
∫

dx1dx2 ϕ∗
i (x1)ϕ∗

j (x2)ϕm(x2)ϕn(x1)W (x1,x2).

(17)

The definition of the four-index bare interaction is analogous
and is obtained by replacing W with v in Eq. (17).

To take advantage of the conservation of momentum, we
write every label i,j, . . . in terms of a collective greek index
that specifies band and spin and a latin bold index that specifies
the value of the momentum, e.g., i = αk, j = βp, etc. Since
we are describing electrons bound to the solid, all momenta
have a vanishing component perpendicular to the surface.
Momentum conservation implies that the sum of the momenta
of the indices (i,q) in Kij

qp

is the same as the sum of the

momenta of the indices (j,p). Therefore,

Kμk + q,νk
αk′′ + q − q′′,βk′′ + q

= δqq′′K
q
μνk
αβk′′

, (18)

which implicitly defines the tensor on the right-hand side. For
a tensor K with the property in Eq. (18) the solution of Eq. (16)
is a tensor L with the same property. Thus, the BSE reduces to

L
q
μνk
ρσk′

(z,z′) = δμσ δνρδkk′gμk+q(z,z′)gνk(z′,z)

+ i
∑
αβk′′

∫
dz̄gμk+q(z,z̄)gνk(z̄,z)

×K
q
μνk
αβk′′

L
q
βαk′′
ρσk′

(z̄,z′). (19)

Introducing the superindices I = (μνk), J = (σρk′), etc., and
using the convention that lower superindices have swapped
band-spin indices, e.g., AI

J

= Aμνk
ρσk′

, we can rewrite Eq. (19)

in the compact form

L
q
I

J

(z,z′) = δI

J

�
q
I (z,z′) + i

∑
M

∫
dz̄ �

q
I (z,z̄)Kq

I

M

L
q
M

J

(z̄,z′),

(20)

where δI

J

= δμνk
ρσk′

≡ δμσ δνρδkk′ and

�
q
I (z,z′) = �

q
μνk(z,z′) ≡ gμk+q(z,z′)gνk(z′,z)

is the free eh propagator. The Green’s function g is an
excited qp Green’s function and therefore the lesser and greater
components are given by

g<
μk(ω) = 2πifμkδ(ω − εμk), (21a)

g>
μk(ω) = −2πif̄μkδ(ω − εμk), (21b)

where fμk is the qp occupation of level μk with energy εμk,
whereas f̄μk = 1 − fμk. Since the solid is in an admixture
of excited states, the occupations do not follow a thermal
distribution. It is straightforward to extract the lesser/greater
component of �q,

�
q,>

μνk(ω) =
∫

dω′

2π
g>

μk+q(ω + ω′)g<
νk(ω′)

= 2πf̄μk+qfνkδ(ω − εμk+q + ενk), (22)

and similarly,

�
q,<

μνk(ω) = 2πfμk+qf̄νkδ(ω − εμk+q + ενk). (23)
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Therefore,

�
q,R/A
μνk (ω) = i

∫
dω′

2π

�
q,>

μνk(ω′) − �
q,<

μνk(ω′)

ω − ω′ ± iη

= i
fνk − fμk+q

ω − εμk+q + ενk ± iη
. (24)

Again, to keep the notation as light as possible, we define

f
q
I = f

q
μνk ≡ fνk − fμk+q, (25)

and

ω
q
I = ω

q
μνk ≡ εμk+q − ενk,

so that Eq. (24) takes the following compact form:

�
q,R/A
I = i

f
q
I

ω − ω
q
I ± iη

. (26)

We now proceed to the calculation of the various Keldysh
components of L.

1. Retarded component

Extracting the retarded component of Eq. (20), Fourier
transforming and using Eq. (26) we get

(
ω − ω

q
I

)
L

q,R
I

J

(ω) = if
q
I δI

J

− f
q
I

∑
M

K
q
I

M

L
q,R
M

J

(ω). (27)

Since f
q
I = 0 implies L

q,R
I

J

= 0, we can solve Eq. (27) in the

subspaceSq of superindices I such that f q
I �= 0 and restrict the

sum over M to this subspace. Notice that if I ∈ Sq and J /∈ Sq,
then δI

J

= 0, and therefore Eq. (27) becomes a homogeneous

system of equations. Consequently, L
q,R
I

J

is nonvanishing only

for I,J ∈ Sq. Let us split the superindices into two classes,
one class with f

q
I > 0 and the other class with f

q
I < 0. We

order all vectors and matrices in such a way that the first
entries correspond to superindices in the first class. Defining
the matrices L̃q and K̃q according to [62]

L
q,R
I

J

≡
√∣∣f q

I

∣∣ L̃q
I

J

√∣∣f q
J

∣∣, K̃
q
I

J

≡
√∣∣f q

I

∣∣Kq
I

J

√∣∣f q
J

∣∣, (28)

we can rewrite Eq. (27) as[
(ω − ωq)σ q

z + K̃q]L̃q = i1, (29)

where 1 is the identity matrix, ωq is the diagonal matrix with
entries ω

q
I , and (

σ q
z

)
I

J

= sgn
(
f

q
I

)
δI

J

.

Since K̃q is Hermitian, we see from Eq. (29) that L̃q is anti-
Hermitian, i.e., L̃q

I

J

= −L̃
q∗
J

I

, as it should. Let us denote by �λq

the values of ω for which the matrix in the square brackets of
Eq. (29) is singular and by Ỹ λq the vector belonging to the null
space of the singular matrix:(

σ q
z ωq − K̃q)Ỹ λq = �λqσ q

z Ỹ λq. (30)

For systems in equilibrium, ω
q
I ≶ 0 implies that f

q
I ≷ 0. This

property guarantees that the �λq’s are all real and can be
arranged in pairs with entries of opposite sign. The reality
of the �λq’s is no longer guaranteed in stationary excited
states (or in admixtures of them). However, if the pump is
weak, as it is the case of two-photon photoemission (2PPE)
experiments [95–97], then the qp occupations differ from their
equilibrium values by a small amount and the �λq’s continue to
be real (although they cannot be arranged in pairs any longer).
Under the assumption of reality we can normalize the Ỹ vectors
according to

Ỹ
λq∗
I

(
σ q

z

)
I

J

Ỹ
λ′q
J = [Ỹ λq]†σ q

z Ỹ λ′q = sλδλλ′ , (31)

where sλ can be either 1 or −1. From Eq. (30) and from the
normalization condition in Eq. (31) it is easy to show that the
solution of Eq. (27) with I,J ∈ Sq can be written as

L
q,R
I

J

(ω) = i
∑

λ

Y
λq
I

sλ

ω − �λq + iη
Y

λq∗
J , (32)

where Y
λq
I ≡

√
|f q

I | Ỹ
λq
I . The advanced component can be

obtained similarly and differs from Eq. (32) only for the sign
of the infinitesimal imaginary part of the denominator. Notice
that the matrices Lq,R/A are manifestly anti-Hermitian for real
ω ± iη, as they should be. It is also easy to verify that in the
noninteracting case Eq. (32) reduces to δI

J

�
q,R/A
I [see Eq. (26)].

2. Lesser and greater component

Let us define the diagonal matrix �I

J

= δI

J

�I . Extracting the

greater/lesser component of Eq. (20) and Fourier transforming
one finds (omitting the dependence on frequency)

[1 − i�q,RKq]Lq,≶ = �q,≶[1 + iKqLq,A]. (33)

We emphasize that this is an equation in the full space
of superindices; i.e., matrix multiplication involves also
superindices not belonging to Sq. With the help of Eq. (27)
we can solve for Lq,≶ and find

Lq,≶ = (1 + iLq,RKq)�q,≶(1 + iKqLq,A).

At difference with the retarded/advanced components, the
lesser/greater components are nonvanishing also for indices
I,J /∈ Sq. For instance, the lesser two-particle correlator is
given by

L
q,<

I

J

= δI

J

�
q,<

I , I,J /∈ Sq,

L
q,<

I

J

= i�
q,<

I (KqLq,A)I

J

, I /∈ Sq,J ∈ Sq,

L
q,<

I

J

= i(Lq,RKq)I

J

�
q,<

J , I ∈ Sq,J /∈ Sq,

L
q,<

I

J

= −
∑

M /∈Sq

(Lq,RKq) I

M

�
q,<

M (KqLq,A)M
J

+ 2η
∑

αβp∈Sq

L
q,R
I

βαp

fαp+qf̄βp(
f

q
αβp

)2 L
q,A
αβp
J

, I,J ∈ Sq,

(34)
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where in the second term of the last equality we used

�
q,<

αβp = 2η �
q,R
αβp

fαp+qf̄βp(
f

q
αβp

)2 �
q,A
αβp, (35)

as it follows from the explicit expressions in Eqs. (23) and (26)
and from the identity η/(ω2 + η2) = πδ(ω).

Although every term can be explicitly calculated, we here
make an approximation that is well justified in the physical
regime in which we are working, i.e., the regime of weak
pumps. In this regime the qp occupations fμk are either close
to zero or close to 1. If I = (μνk) /∈ Sq, then [see Eq. (25)]
f

q
I = fνk − fμk+q = 0, which implies that both fνk and fμk+q

are either close to zero or close to 1 and hence that both
products fνkf̄μk+q and f̄νkfμk+q are close to zero. Taking into

account Eqs. (22) and (23), we then see that �
q,≶
I is small for

I /∈ Sq. Approximating

�
q,≶
I � 0 for I /∈ Sq,

we can write for all I and J

L
q,<

I

J

(ω) = −2η
∑

αβp∈Sq

L
q,R
I

βαp

(ω)
fαp+qf̄βp(

f
q
αβp

)2 L
q,A
αβp
J

(ω). (36)

We now insert in Eq. (36) the spectral decomposition for the
retarded/advanced two-particle correlator; see Eq. (32). The
resulting double sum over λ,λ′ can be split into a sum over
λ = λ′ and a sum over λ �= λ′. In the limit η → 0 the latter is
finite, whereas the former yields a sum of δ functions. We can
then restrict the sum to λ = λ′ and get

L
q,<

I

J

(ω) = 2π
∑

λ

F λq Y
λq
I δ(ω − �λq) Y

λq∗
J , (37)

where we have defined

Fλq ≡
∑

αβp∈Sq

Y
λq∗
αβp

fαp+qf̄βp(
f

q
αβp

)2 Y
λq
αβp,

and introduced the convention Y
λq
I = 0 for I /∈ Sq. A similar

expression can be derived for the greater component,

L
q,>

I

J

(ω) = 2π
∑

λ

F̄ λq Y
λq
I δ(ω − �λq) Y

λq∗
J , (38)

where we have defined

F̄ λq ≡
∑

αβp∈Sq

Y
λq∗
αβp

f̄αp+qfβp(
f

q
αβp

)2 Y
λq
αβp.

We have verified that Eqs. (37) and (38) reduce to �q,≶(ω) in the
noninteracting case and that in equilibrium we recover the fluc-
tuation dissipation theorem. A similar expression to L≶ was
derived in Ref. [98] and later implemented in Refs. [99–101]
for a two-band model. Our derivation differs from the one of
Ref. [98] as it is only based on having qp occupations close to
either zero or unity; in this way the eh occupations F and F̄

are given in terms of a closed analytic formula.

B. Excited self-energy and Green’s function

Let us evaluate �x1x4 (z,z′) in Fig. 2(a). Expanding the self-
energy analogously to the Green’s function [see Eq. (14)], i.e.,

�x1x4 (z,z′) =
∑
pq

ϕp(x1)ϕ∗
q (x4)�pq(z,z′),

and taking into account the expansion of L in Eq. (15) as
well as the definition of the four-index screened interaction in
Eq. (17), it is a matter of simple algebra to find

�pq(z,z′) = −i2
∑
ijmnk

gk(z,z′) Wpk

ji

L ij

mn

(z,z′)Wnm

kq

,

where Wpk

ji

≡ Wpjki [in analogy with the definition of the

kernel K in Eq. (16)]. Extracting the lesser/greater component,
Fourier transforming, and using Eqs. (21) we find

�<
pq(ω) = i

∑
ijmnk

fk Wpk

ji

L<
ij

mn

(ω − εk)Wnm

kq

, (39a)

�>
pq(ω) = −i

∑
ijmnk

f̄k Wpk

ji

L>
ij

mn

(ω − εk)Wnm

kq

. (39b)

We make explicit the dependence on the band-spin indices
and momenta. Due to momentum conservation, �μpνp′ =
δpp′�μνp. After some algebra the lesser self-energy takes the
form

�<
μνp(ω) = i

∑
IJ,γ q

fγ p−qW
q
μγ p − q
I

L
q,<

I

J

(ω − εγ p−q)W q
J

γ νp − q

,

(40)

with a similar expression for the greater self-energy. In Eq. (40)
the sum is restricted to I,J ∈ Sq due to the approximation in
Eq. (36), according to which L

q,<

I

J

vanishes if I and/or J do

not belong to Sq. Inserting the expansion in Eq. (37) we get

�<
μνp(ω) = 2πi

∑
λ

∑
IJ,γ q

fγ p−qF
λqW

q
μγ p − q
I

Y
λq
I

× δ(ω − εγ p−q − �λq) Y
λq∗
J W

q
J

γ νp − q

.

Following similar steps the greater self-energy reads

�>
μνp(ω) = −2πi

∑
λ

∑
IJ,γ q

f̄γ p−qF̄
λq W

q
μγ p − q
I

Y
λq
I

× δ(ω − εγ p−q − �λq) Y
λq∗
J W

q
J

γ νp − q

,

and hence the retarded/advanced self-energy follows from the
Hilbert transform

�R/A
μνp (ω) =

∑
λ

∑
IJ,γ q

W
q
μγ p − q
I

Y
λq
I

× f̄γ p−qF̄
λq + fγ p−qF

λq

ω − εγ p−q − �λq ± iη
Y

λq∗
J W

q
J

γ νp − q

. (41)

Equation (41) does not contain any empirical parameter; it
provides the nonequilibrium self-energy in terms of quantities
that can all be obtained from first-principles simulations.
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As the self-energy is diagonal in momentum space the
dressed Green’s function G is diagonal too. Therefore, it is
convenient to manipulate matrices with indices only in the
band-spin sector. We define (�k)αβ ≡ �αβk, (εk)αβ ≡ δαβεαk,
and (Gk)αβ ≡ Gαβk. Then, the retarded Green’s function can
be calculated from

G
R/A
k (ω) = 1

ω − εk − �
R/A
k (ω)

. (42)

Experiments [17,19–21] and numerical simulations [44,93]
indicate that the electron occupations in the quasistationary
excited state follow a Fermi-Dirac distribution with tem-
peratures Tα and chemical potentials μα depending on the
band-spin index α. Of course, Tα and μα vary on a picosecond
time scale but they can be considered as constant on the
time scale of the probe pulse. From this evidence we infer
that the recombination of electrons with different band-spin
index α is severely suppressed and that the lesser Green’s
function fulfills the approximate fluctuation-dissipation
relation

G<
αβk(ω) = −δαβfα(ω)

[
GR

ααk(ω) − GA
ααk(ω)

]
, (43)

where fα(ω) = 1/(e(ω−μα )/Tα + 1). The α-dependent tempera-
ture and chemical potential can be extracted by a best fitting of
the electronic populations as obtained from, e.g., the one-time
Kadanoff-Baym propagation [44]. Using the Green’s function
of Eq. (43) in Eq. (10) the photocurrent follows.

This concludes our first-principles diagrammatic approach
to deal with excitonic features in TR-PE spectra. In the next
section we study excitonic features in a minimal model and
assess the accuracy of the proposed theory.

VI. APPLICATION TO A MINIMAL MODEL

We consider a one-dimensional insulator of length L with
one valence band and one conduction band separated by
a direct gap of strength � [102]. Since the formation of
excitons is due to the attraction between a valence hole and
a conduction electron, we discard the Coulomb interaction
between electrons in the same band. For simplicity we also
discard spin. Thus, the Hamiltonian of the insulator reads

Ĥins =
∑

k

(εvkv̂
†
kv̂k + εckĉ

†
kĉk) − U (0)

Nv

L
∑

k

ĉ
†
kĉk

+ 1

L
∑
k1k2q

U (q) v̂
†
k1+q ĉ

†
k2−q ĉk2 v̂k1 , (44)

where v̂k (ĉk) annihilates an electron of momentum k in
the valence (conduction) band and W (q) ≡ U (q)/L is the
statically screened interaction. The last term in the first
row represents the interaction of a conduction electron with
the positive background in the valence band, Nv being the
number of protons (which is also equal to the number
of valence electrons in the ground state). For this model
the ground state is obtained by filling all single-particle
valence states with one electron. Hence, the interaction
between the valence background and the conduction electrons
vanishes.

A. Analytic treatment for a single bound exciton

The insulator Hamiltonian commutes with the total number
of conduction electrons N̂c = ∑

k ĉ
†
kĉk and with the total

number of valence electrons N̂v = ∑
k v̂

†
kv̂k . We consider

the special case of a stationary excited state of vanishing
total momentum with one electron in the conduction band
(and hence with one hole in the valence band). Denoting by
|�g〉 = ∏

k v̂
†
k|0〉 the ground state of energy Eg we write this

excited state as

|�〉 =
∑

k

Ykĉ
†
kv̂k|�g〉 =

∑
k

Yk|�k〉, (45)

where we introduced the eh states |�k〉 ≡ ĉ
†
kv̂k|�g〉. It is a

matter of straightforward algebra to show that Ĥins|�〉 is again
a linear combination of the |�k〉’s. The possible excited-state
energies E = Eg + � are found by solving the eigenvalue
problem

(ωk−q − �)Yk = 1

L
∑

q

U (q)Yk−q, (46)

with ωk ≡ εck − εvk > � = εc0 − εv0. For a momentum-
independent interaction U (q) = U > 0, the expansion coef-
ficients have the form

Yk =
√

R

ωk − �
, (47)

where the positive constant R is fixed by the normalization∑
k |Yk|2 = 1. Equation (46) has a continuum of solutions � =

� − b, with b < 0 and one split-off solution �X = � − bX

with binding energy bX > 0. The latter corresponds to a bound
eh state or exciton. Notice that for any arbitrary small but finite
U the excitonic amplitude Yk ∼ 1/

√
L for L → ∞, whereas

bX converges to a finite positive value.
By definition, the lesser Green’s function of the system in

the exciton state |�〉 = |�X〉 is

G<
cc,k(t,t ′) = i〈�X|ĉ†kH (t ′)ĉkH (t)|�X〉

= i〈�X|ĉ†ke−i(Ĥ−Eg−�X)(t ′−t)ĉk|�X〉.
The only many-body states having a nonvanishing overlap with
ĉk|�X〉 are the states v̂p|�g〉, which are also eigenstates of Ĥins

with eigenvalue Eg − εvp. Inserting a completeness relation to
the right of ĉ

†
k and Fourier transforming we find the exact result

G<
cc,k(ω) = 2πi|Yk|2δ(ω − �X + εvk). (48)

In the following we show that our diagrammatic approach
yields precisely Eq. (48). Before, however, we observe that
substitution of Eq. (48) into Eq. (12) leads to the photocurrent

I (k) = 2π |Yka0Dk|2δ(ω0 + �X + εvk − εf k), (49)

where, without any loss of generality, we took ω0 > 0 [in
this case G<

cc,k(εf k + ω0) does not contribute]. Equation (49)
agrees with Eq. (1), as it should.

To calculate the (dressed) excited lesser Green’s function
diagrammatically, we need an excited qp Green’s function g.
Here we evaluate g in the HF approximation. The excited
noninteracting Green’s function g(0) with one conduction
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electron and one valence hole in the lowest energy state reads

g
(0),<
vv,k (ω) = 2πiδ̄k0δ(ω − εvk), (50a)

g
(0),>
vv,k (ω) = −2πiδk0δ(ω − εvk), (50b)

g
(0),<
cc,k (ω) = 2πiδk0δ[ω − εck + U (0)Nv/L], (50c)

g
(0),>
cc,k (ω) = −2πiδ̄k0δ[ω − εck + U (0)Nv/L], (50d)

and g
(0),≶
cv,k = g

(0),≶
vc,k = 0. In Eqs. (50) we defined δ̄k0 = 1 −

δk0. The HF potential contains only the Hartree part since the
interaction preserves the band-spin index and g(0) is diagonal.
Using Eqs. (50) one finds

VHF,ααk = δαc

U (0)

L Nv + O(1/L). (51)

Accordingly, the excited HF Green’s function is

g<
vv,k(ω) = 2πi δ̄k0 δ(ω − εvk), (52a)

g>
vv,k(ω) = −2πi δk0 δ(ω − εv0), (52b)

g<
cc,k(ω) = 2πi δk0 δ(ω − εc0), (52c)

g>
cc,k(ω) = −2πi δ̄k0 δ(ω − εck). (52d)

We observe that if we used the HF g<
cc,k to evaluate the

photocurrent in Eq. (12), we would find

I (k) = 2π |a0Dk|2δk0δ(ω0 + εc0 − εf k),

which coincides with the noninteracting limit of Eq. (49), i.e.,
Yk = δk0 and bX = 0. As expected, the HF approximation (and
any other qp approximation) does not capture the exciton peak
in the energy-resolved and angle-resolved photocurrent.

For the model Hamiltonian in Eq. (44) the self-energy dia-
grams of Fig. 2(a) that contain a polarization insertion vanish.
Thus, we only need to evaluate the self-energy diagrams in
Fig. 3, with the exception of the first (Hartree) diagram. Since
we are interested in Gcc and since the self-energy has vanishing
cv and vc components, we only calculate the cc compo-
nent. For simplicity we also consider the case of vanishing
momentum k = 0 and a momentum-independent interaction
U (q) = U . We have �cc,0(z,z′) ≡ �(z,z′) − �H(z,z′), where
� is the full series of Fig. 3 and �H is the first diagram of the
series. Introducing the averaged eh propagator

�p(z,z′) = 1

L
∑

q

gcc,q(z,z′)gvv,p+q(z′,z), (53)

we can write the full series as

�(z,z′) = − i

L
∑

p

Tp(z,z′)gvv,p(z,z′), (54)

FIG. 3. Self-energy diagrams for the model Hamiltonian of
Eq. (44).

where we have defined the T matrix

Tp(z,z′) ≡ Uδ(z,z′) + iU

∫
dz1�p(z,z1)Tp(z1,z

′). (55)

To calculate the lesser and greater components of � (which
are necessary to calculate G<

cc,0), we need the lesser and greater
components of Tp. This can be achieved without going through
the spectral decomposition of Sec. V A since the system is in
a pure (excited) state, which is simple enough. The spectral
decomposition will be used in the next section, where we
consider the system in an admixture of excited states. Using
the Langreth rules in Eq. (55) we get

T ≶
p (ω) = i

U 2∣∣1 − iU�R
p(ω)

∣∣2 �≶
p (ω). (56)

From the definition of the eh propagator in Eq. (53) and
using the excited HF Green’s functions in Eqs. (52) we find
�<

p (ω) = (2π/L)δp0 δ(ω − �). Therefore, T <
p (ω) ∝ δp0 and

consequently the lesser self-energy,

�<(t,t ′) = − i

LT <
0 (t,t ′)g<

vv,0(t,t ′) = 0.

Thus, we only need to evaluate the greater self-energy. From
Eq. (54),

�>(ω) = − i

L
∑

p

∫
dω′

2π
T >

p (ω − ω′)g>
vv,p(ω′)

= − 1

LT >
0 (ω − εv0). (57)

It is important to emphasize that if we had used a ground
state g, then also �> = 0 since there would be no holes in
the valence band, and hence g>

vv,p = 0. The calculation of T >
0

requires the explicit form of �>
0 and �R

0 . These follow from
Eq. (53):

�>
0 (ω) = 2π

L
∑

q

δ(ω − ωq) + O(1/L) (58)

and

�R
0 (ω) = 1

L
∑

q

i

ω − ωq + iη
+ O(1/L). (59)

Substitution of these results into Eq. (56) yields

T >
0 (ω) = 2iU

y(ω)

[1 − x(ω)]2 + y2(ω)
,

where we have defined x(ω) ≡ Re[iU�R
0 (ω)] and y(ω) ≡

Im[iU�R
0 (ω)] = (U/2)�>

0 (ω). The quantity y(ω) vanishes for
ω < �; see Eq. (58). However, this does not imply that T >

0 (ω)
vanishes in the same region. In fact,

lim
y→0+

y

(1 − x)2 + y2
= πδ(1 − x),

and hence T >
0 (ω) is nonvanishing for ω < � if in this

frequency region 1 − x(ω) = 0. From Eq. (59) we have

1 − x(ω) = 1 + U

L
∑

q

1

ω − ωq

= 0.
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This equation is identical to Eq. (46) after the renaming ω = �.
Thus, 1 − x(ω) = 0 has a continuum of solutions for ω > �

and one split-off solution at ω = �X < �. Therefore, T >
0 (ω)

can be conveniently rewritten as

T >
0 (ω) = 2πiU

|∂x(ω)/∂ω|ω=�X

δ(ω − �X)

+ 2iU Reg

{
y(ω)

[1 − x(ω)]2 + y2(ω)

}
, (60)

where Reg denotes the nonsingular part of the function.
We can now evaluate �> from Eq. (57), as well as the

retarded self-energy,

�R
cc,0(ω) = − i

L

∫
dω′

2π

T >
0 (ω′ − εv0)

ω − ω′ + iη
. (61)

The Hartree part does not contribute to �> and it is therefore
correctly removed in Eq. (61). Using Eq. (60) we find

�R
cc,0(ω) = RX

ω − �X − εv0 + iη
+ �R

reg(ω), (62)

where

RX = U/L
|∂x(ω)/∂ω|ω=�X

is the excitonic residue of the singular part, whereas �R
reg is the

regular (nonsingular) part. Both RX and �R
reg scale like 1/L and

are therefore infinitesimally small in the thermodynamic limit.
Interestingly, RX is exactly the same constant that appears in
the normalized excitonic amplitude of Eq. (47).

From the retarded self-energy the retarded Green’s function
follows:

GR
cc,0(ω) = 1

ω − εc0 − �R
cc,0(ω)

.

For ω � εX ≡ �X + εv0 = εc0 − bX the self-energy is domi-
nated by the first term in Eq. (62). Thus, for frequencies in the
neighborhood of εX we can write

GR
cc,0(ω ∼ εX) � 1

εX − εc0 − RX

ω−εX+iη

= RX/b2
X

ω − εX + iη
+ O(1/L),

where we took into account that RX ∼ 1/L. In the same
neighborhood the spectral function A = i[GR

cc,0 − GA
cc,0] reads

A(ω � εX) � 2πZX δ(ω − εX),

where we have defined the excitonic qp weight as

ZX ≡ RX

b2
X

.

The physical meaning of ZX is the amount of spectral weight
that a bare excited electron transfers to the electron in the
bound eh pair. We further observe that ZX is precisely the
excitonic amplitude |Y0|2; see Eq. (47).

To calculate the excited lesser Green’s function, we use
Eq. (43), i.e., G<

cc,0(ω) = ifc(ω)A(ω), where fc(ω) is the Fermi
function for the conduction band. To find the temperature Tc

and chemical potential μc, we observe that the occupations

of the excited state are fck = δk0; see Eq. (52c). Therefore,
Tc = 0 and μc is just above εc0. From the previous analysis we
know that the spectral function has a δ-like peak in ω = εX <

εc0 and it is otherwise smooth and nonvanishing for ω > εc0.
More precisely, the self-energy is responsible for moving the
noninteracting spectral peaks to the right by an amount �1/L.
Therefore, only the exciton peak is below μc and the excited
lesser Green’s function reads

G<
cc,0(ω) = 2πiZXδ(ω − εX).

Since ZX = |Y0|2 our diagrammatic approach yields the exact
result of Eq. (48).

The analysis of this section supports the validity of the
proposed theoretical framework. In the next section we
consider stationary excited states with a smooth distribution of
electrons in the conduction band and investigate the behavior
of the exciton peak in different regimes.

B. Numerical results at finite eh density

In this section we study the PE problem for finite eh

densities. We implement the scheme developed in Sec. V,
which assumes the system in a quasistationary state and
it neglects the effects of dynamical screening between the
electron and the hole (in Ref. [94] these effects have been
shown to be small). From Eq. (44) and the definition in Eq. (18)
with K → W we see that

W
q

μνk

αβk′
= W

q

μk + q νk

αk′ βk′ + q

= Wμk+q,αk′,νk,,βk′+q

= δμβδαν[δμcδαv + δμvδαc]U/L. (63)

Inserting this result into Eq. (40) and the analogous for the
greater self-energy we obtain

�<
p (ω) ≡ �<

cc,p(ω) = iU 2
∑

q

fvp−qL
q,<(ω − εvp−q), (64a)

�>
p (ω) ≡ �>

cc,p(ω) = −iU 2
∑

q

f̄vp−qL
q,>(ω − εvp−q ),

(64b)

where we defined

Lq,≶(ω) ≡ 1

L2

∑
p1p2

L
q,≶
cvp1
vcp2

(ω). (65)

In the calculations we solve Eq. (30) for different inter-
action strengths U and occupations fαp. We consider a
valence band with energies in the interval [−w/2,w/2] and
dispersion εvk = (w/2) cos k and a conduction band with
energies in the interval [w/2 + �,3w/2 + �] and dispersion
εck = −(w/2) cos k + w + �; w > 0 is the bandwidth of
both bands. The insulator has a direct gap of strength � at

245303-10



FIRST-PRINCIPLES APPROACH TO EXCITONS IN . . . PHYSICAL REVIEW B 94, 245303 (2016)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.1

0.2

0.5

1.0

2.0

5.0

10.0

20.0

Ω eV

L

nc 10 2

q 0

U 2 eV

T 4000K

0 1 2 3
0.1

0

L

0.1

exact
approx

FIG. 4. Log plot of Lq,< (in arbitrary units) at q = 0 according
to Eq. (37) (dashed black line) and Eq. (34) (solid red line). The inset
shows the difference between the two curves.

k = 0. The electron occupations fαk in the excited state are
Fermi-Dirac distributions with the same temperature T and
different chemical potentials μα:

fαk = 1

e(εαk−μα)/T + 1
, α = v,c. (66)

Let us start by assessing the accuracy of the two-particle
correlation functions in Eqs. (37) and (38). In Fig. 4 we
compare the numerical outcome of Lq,< in Eq. (65) obtained
by using the approximation of Eq. (37) and the exact result
of Eq. (34). The system parameters are L = 80, � = w/4 =
1 eV, T = 4000 K, μv = 2.35 eV, μc = 2.65 eV, U = 2 eV,
and η = w/(4L). With these parameters the number of
conduction electrons per unit cell is nc = 1

L
∑

k fck ≈ 10−2

and the solution of Eq. (30) for q = 0 yields an exciton
state with binding energy bX ≈ 0.42 eV. The accuracy of our
approximation is excellent in the entire frequency domain.
In particular, both the exciton structure at ≈0.56 eV and
the continuum of eh excitations above � = 1 eV are well
reproduced; the relative error never exceeds 0.5% and reaches
its maximum at the exciton energy.

According to Eq. (12) the energy-resolved photocurrent
perpendicular to the surface is proportional to G<

cc,0(ε − ω0).
In Fig. 5 (left panel) we show G<

cc,0(ω) for different carrier
densities nc. At very low density nc � 10−4 the system is
essentially in equilibrium and the photocurrent is vanishingly
small (not shown). At density nc ≈ 10−3 a qp peak at ω ≈ 3 eV
appears. This corresponds to the removal energy of an excited
electron from the bottom of the conduction band. This peak
was absent for the singular occupation of the previous section,
i.e., fck = δk0, since in that case T = 0. At nc ≈ 10−3 the
exciton peak at εX = εc0 − bX ≈ 2.5 eV is still not visible
because the exciton weight ZX = ∫ εc0

−∞
dω
2π

A(ω) is still too
small. The dependence of ZX on the density of conduction
electrons is shown in the right panel of Fig. 5 and it is by and
large linear. At higher density both the qp peak and the exciton
peak become more pronounced. However, the latter acquires an
asymmetric shape and an intrinsic broadening. The broadening
is not related to the lifetime of the exciton (which is infinite
in our model) but originates from the fact that an electron
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FIG. 5. (Left) Lesser Green’s function −iG<
cc,0(ω) (in arbitrary

units) for different densities of the conduction electrons nc. (Right)
Dependence of the exciton weight ZX on nc.

with momentum k participates in the formation of excitons of
different total momentum. Of course, the probability of finding
an electron with k = 0 in an exciton with total momentum
q decreases with increasing |q| and hence with increasing
the binding energy of the exciton. Thus, the broadening is
asymmetric and proportional to the exciton bandwidth.

In Fig. 6 we illustrate the evolution of G<
cc,0(ω) by varying

the interaction strength U (top panel) and the effective
temperature T (bottom panel) at fixed density nc = 10−2.
In the first case, we clearly observe how the excitonic state
develops. Starting from U = 0 the exciton peak splits off
from the qp peak and moves toward lower energies acquiring
spectral weight and spreading over a finite energy window.
If we lower the temperature at fixed U , the bottom panel
indicates that the exciton peak shrinks and raises. However, the
spectral weight ZX remains essentially constant (not shown).
This suggests that the exciton peaks in TR-PE experiments
should become more pronounced with increasing the delay
between the pump and probe pulses since the excited electron
liquid in the conduction band (initially very hot) has more time
to cool down before getting probed.

We have also calculated G<
cc,k(ω) for different momenta k

of the conduction electron. This quantity is relevant to address
angle-resolved experiments. In Fig. 7 we plot −iG<

cc,k(ω) in the
range 0 < k < π/8. For k > π/8 the lesser Green’s function is
strongly suppressed by the Fermi function fc(ω); see Eq. (43).
It is interesting to observe that the angle-resolved photocurrent
gives, in principle, access to the dispersion of the qp bound in
an exciton. In order to better appreciate this point, we show
in Fig. 8 the spectral function Ak(ω) = i[GR

cc,k(ω) − GA
cc,k(ω)]

for the same parameters of Fig. 7. From Eqs. (41) and (42) we
expect that the peaks in Ak(ω) occur at the bare energy εck

and at εvk−q + �Xq , where λ = X labels the energy needed
to excite an exciton of momentum q. In the quasistationary
regime the residue f̄vk−qF̄

λq + fvk−qF
λq of Eq. (41) is largest

for q � k and hence the self-energy is dominated by the
pole in εv0 + �Xk . The superimposed dashed line in Fig. 8
corresponds to the value of εv0 + �Xk , as obtained from
an equilibrium calculation. More precisely, we have solved
Eq. (30) with equilibrium occupations and then identified
�Xk as the lowest (split-off) positive energy. If we write
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FIG. 6. Lesser Green’s function −iG<
cc,0(ω) (in arbitrary units)

for different interaction strength U (top) and temperatures T (bottom).

�Xk = εck − εv0 − b
eq
X,k (where εck − εv0 is the noninteracting

excitation energy), then εv0 + �Xk = εck − b
eq
X,k . From Fig. 8

we see that −iG<
cc,k(ω) is peaked in εck and in the neighbor-

hood of εck − b
eq
X,q , thus confirming the physical picture that

the bare conduction electron splits into a dressed conduction qp
and into a bound qp. The discrepancy between the low-energy
peak in Ak(ω) and the equilibrium calculation (dashed line) is

Π
8

0

k

2 3 4 5
Ω eV

nc 10 2

U 2 eV
T 4000K

FIG. 7. Lesser Green’s function −iG<
cc,k(ω) (in arbitrary units)

for different momenta k of the conduction electron. The (red) curve
in the background is the integrated quantity −i

∫
dkG<

cc,k(ω).

FIG. 8. Momentum-resolved and energy-resolved excited spec-
tral function Ak(ω) in arbitrary units. The dashed line corresponds to
the exciton dispersion of the system in equilibrium.

due to the finite population of electrons in the conduction band.
In general, the larger is nc, the more the bound qp dispersion
differs from the one obtained by performing an equilibrium
calculation. This points to the importance of solving the BSE
with proper populations, as discussed in Sec. V A. It is worth
noting that the bound qp dispersion depends on the band
structure of the solid and can differ substantially from the
one of Fig. 8. Nevertheless, our theory is not limited to the
minimal model of Eq. (44), and it can be applied to make
predictions on real materials.

VII. SUMMARY AND CONCLUSIONS

We developed a first-principles many-body diagrammatic
approach to address TR and angle-resolved PE experiments
in insulators and semiconductors with a low-energy spectrum
dominated by exciton states. The time-dependent photocurrent
can be calculated from a single-time convolution of the
nonequilibrium lesser Green’s function and embedding self-
energy. The latter is independent of the interaction and it is
completely determined by the shape of the probe pulse and
by the dipole matrix elements. The calculation of the lesser
Green’s function does, in general, require the solution of the
two-time Kadanoff-Baym equations [48,70,77–83]. However,
if we are interested in probing the excited system after the
pumped electrons have reached a thermal distribution (in the
conduction band), then a quasistationary picture applies. In this
regime one can solve the simpler one-time Kadanoff-Baym
equations for the populations and then use these populations
as inputs for the many-body approach presented in this work.
The take-home message is that excitonic features in TR-PE
emerge provided that (1) the self-energy diagram contains the
HSEX vertex and (2) excited qp Green’s functions are used to
evaluate the self-energy diagrams.
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The proposed theoretical framework has been applied to
a minimal model Hamiltonian. We demonstrated that if the
system is in a pure state with just one exciton, then the many-
body solution for the lesser Green’s function coincides with
the exact solution. At finite temperatures we studied several
features of the exciton peak. In addition to the intuitive redshift
with increasing the strength of the screened interaction, we
highlighted an asymmetric broadening which becomes more
pronounced with increasing the density of electrons in the
conduction band. Let us emphasize that these findings refer
to the lesser Green’s function. As the photoemission spectrum
follows from the product between G< and the dipole matrix
elements D [see Eq. (12)], the possibility of observing
the aforementioned features depend on the specific material
considered. Finally, we showed that angle-resolved TR-PE
spectroscopy can be used to calculate the bound qp dispersion
and that this dispersion is, in general, different from the one
obtained by solving the equilibrium BSE.

The proposed many-body approach is not the only first-
principle method to tackle TR-PE spectra. Another popular
method is time-dependent density functional theory (TDDFT),
which has already been applied to finite systems [103–105]
and, as it was recently shown, could be used for solids as
well [106]. However, in practical applications TDDFT is
implemented with local functionals of time and space and the

resulting spectrum is peaked at the Kohn-Sham single-particle
energies. This is not always satisfactory and the only remedy
consists in developing ultranonlocal functionals, as discussed
in Ref. [107]. Our work clearly shows that local functionals
cannot describe exciton peaks in TR-PE.

Finally, we wish to point out that a first-principles approach
to TR-PE experiments is crucial for the correct physical
interpretation of the behavior of the spectral features as the
intensity and envelope of the pump field are varied. Our work
represents a first step in this direction and paves the way toward
a more general theory and numerical approach to access the
far-from-relaxed regime of the system during and shortly after
the action of the pump.
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Persson, H. Siegbahn, S. Lunell, and N. Mårtensson, Nature
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[45] W. Schäfer and J. Treusch, Z. Phys. B 63, 407 (1986).
[46] M. Lindberg and S. W. Koch, Phys. Rev. B 38, 3342 (1988).
[47] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-

Particle Systems (McGraw-Hill, New York, 1971).
[48] G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-

Body Theory of Quantum Systems: A Modern Introduction
(Cambridge University Press, Cambridge, UK, 2013).

[49] K. Ullrich, Time Dependent Density Functional Theory:
Concepts and Applications (Oxford University Press, Oxford,
UK, 2012).

[50] L. Hedin, Phys. Rev. 139, A796 (1965).
[51] G. Strinati, Riv. Nuovo Cimento 11, 1 (1988).
[52] G. Strinati, H. J. Mattausch, and W. Hanke, Phys. Rev. B 25,

2867 (1982).
[53] G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601

(2002).
[54] S. Albrecht, L. Reining, R. Del Sole, and G. Onida, Phys. Rev.

Lett. 80, 4510 (1998).
[55] L. X. Benedict, E. L. Shirley, and R. B. Bohn, Phys. Rev. Lett.

80, 4514 (1998).
[56] M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 81, 2312 (1998).
[57] G. Pal, Y. Pavlyukh, W. Hübner, and H. C. Schneider, Eur.
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[70] M. Schüler, J. Berakdar, and Y. Pavlyukh, Phys. Rev. B 93,

054303 (2016).
[71] E. Perfetto, A.-M. Uimonen, R. van Leeuwen, and G.

Stefanucci, J. Phys.: Conf. Ser. 696, 012004 (2016).
[72] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512

(1992).
[73] A.-P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50,

5528 (1994).
[74] G. Stefanucci and C.-O. Almbladh, Phys. Rev. B 69, 195318

(2004).
[75] J. K. Freericks, H. R. Krishnamurthy, and Th. Pruschke, Phys.

Rev. Lett. 102, 136401 (2009).
[76] The discussion can easily be generalized to situations where

the system is left in an admixture of excited states.
[77] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics

(Benjamin, New York, 1962).
[78] N.-H. Kwong and M. Bonitz, Phys. Rev. Lett. 84, 1768

(2000).
[79] N. E. Dahlen and R. van Leeuwen, Phys. Rev. Lett. 98, 153004

(2007).
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G. Röpke, Phys. Status Solidi B 90, 175 (1978).

[95] A. Stolow, A. E. Bragg, and D. M. Neumark, Chem. Rev. 104,
1719 (2004).

[96] M. Weinelt, A. B. Schmidt, M. Pickel, and M. Donath,
Dynamics at Solid State Surfaces and Interfaces: Current
Developments (Wiley, New York, 2010), Vol. 1.

[97] H. Ueba and B. Gumhalter, Prog. Surf. Sci. 82, 193
(2007).

[98] P. Danielewicz, Ann. Phys. 197, 154 (1990).
[99] Th. Bornath, D. Kremp, W. D. Kraeft, and M. Schlanges, Phys.

Rev. E 54, 3274 (1996).
[100] D. O. Gericke, S. Kosse, M. Schlanges, and M. Bonitz, Phys.

Status Solidi B 206, 257 (1998).

[101] D. O. Gericke, S. Kosse, M. Schlanges, and M. Bonitz, Phys.
Rev. B 59, 10639 (1999).

[102] Z. Yang, Y. Li, and C. Ullrich, J. Chem. Phys. 137, 014513
(2012).

[103] U. De Giovannini, G. Brunetto, A. Castro, J. Walkenhorst, and
A. Rubio, ChemPhysChem. 14, 1363 (2013).

[104] A. H. Larsen, U. De Giovannini, and A. Rubio, Top. Curr.
Chem. 368, 219 (2016).

[105] J. Walkenhorst, U. De Giovannini, A. Castro, and A. Rubio,
Eur. Phys. J. B 89, 1 (2016).

[106] J. Braun, R. Rausch, M. Potthoff, and H. Ebert, Phys. Rev. B
94, 125128 (2016).

[107] A.-M. Uimonen, G. Stefanucci, and R. van Leeuwen, J. Chem.
Phys. 140, 18A526 (2014).

245303-15

https://doi.org/10.1002/pssb.2220900119
https://doi.org/10.1002/pssb.2220900119
https://doi.org/10.1002/pssb.2220900119
https://doi.org/10.1002/pssb.2220900119
https://doi.org/10.1021/cr020683w
https://doi.org/10.1021/cr020683w
https://doi.org/10.1021/cr020683w
https://doi.org/10.1021/cr020683w
https://doi.org/10.1016/j.progsurf.2007.03.002
https://doi.org/10.1016/j.progsurf.2007.03.002
https://doi.org/10.1016/j.progsurf.2007.03.002
https://doi.org/10.1016/j.progsurf.2007.03.002
https://doi.org/10.1016/0003-4916(90)90204-2
https://doi.org/10.1016/0003-4916(90)90204-2
https://doi.org/10.1016/0003-4916(90)90204-2
https://doi.org/10.1016/0003-4916(90)90204-2
https://doi.org/10.1103/PhysRevE.54.3274
https://doi.org/10.1103/PhysRevE.54.3274
https://doi.org/10.1103/PhysRevE.54.3274
https://doi.org/10.1103/PhysRevE.54.3274
https://doi.org/10.1002/(SICI)1521-3951(199803)206:1<257::AID-PSSB257>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1521-3951(199803)206:1<257::AID-PSSB257>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1521-3951(199803)206:1<257::AID-PSSB257>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1521-3951(199803)206:1<257::AID-PSSB257>3.0.CO;2-L
https://doi.org/10.1103/PhysRevB.59.10639
https://doi.org/10.1103/PhysRevB.59.10639
https://doi.org/10.1103/PhysRevB.59.10639
https://doi.org/10.1103/PhysRevB.59.10639
https://doi.org/10.1063/1.4730031
https://doi.org/10.1063/1.4730031
https://doi.org/10.1063/1.4730031
https://doi.org/10.1063/1.4730031
https://doi.org/10.1002/cphc.201201007
https://doi.org/10.1002/cphc.201201007
https://doi.org/10.1002/cphc.201201007
https://doi.org/10.1002/cphc.201201007
https://doi.org/10.1007/978-3-319-22081-9
https://doi.org/10.1007/978-3-319-22081-9
https://doi.org/10.1007/978-3-319-22081-9
https://doi.org/10.1007/978-3-319-22081-9
https://doi.org/10.1140/epjb/e2016-70064-0
https://doi.org/10.1140/epjb/e2016-70064-0
https://doi.org/10.1140/epjb/e2016-70064-0
https://doi.org/10.1140/epjb/e2016-70064-0
https://doi.org/10.1103/PhysRevB.94.125128
https://doi.org/10.1103/PhysRevB.94.125128
https://doi.org/10.1103/PhysRevB.94.125128
https://doi.org/10.1103/PhysRevB.94.125128
https://doi.org/10.1063/1.4868114
https://doi.org/10.1063/1.4868114
https://doi.org/10.1063/1.4868114
https://doi.org/10.1063/1.4868114



