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Tunable optical bound states in the continuum beyond in-plane symmetry protection
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The formation of tunable bound states in the continuum (BICs) within photonic crystal (PC) slabs has been
investigated by using a semianalytical coupled-wave theory framework. An analytic expression of the radiative
wave has been derived in order to depict the condition of BICs. As a result, in addition to well-known symmetry-
protected BICs, a novel type of vertical-cancellation BIC can be realized through continuously varying a given
parameter to eliminate radiative waves at the boundaries. We investigated one-dimensional and two-dimensional
(2D) periodic structures, and found that such tunable BICs can occur for a wide range of wave vectors by the
selection of appropriate slab thicknesses. For a 2D PC slab, a ring of high-Q modes is predicted and confirmed
by numerical simulation.
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I. INTRODUCTION

Bound states in the continuum (BICs) have attracted much
attention since they were first proposed by von Neumann and
Wigner [1]. Researchers have expended significant effort to
construct BICs by artificially designing quantum potentials;
however, owing to the difficulties in manipulating atoms,
they cannot be readily realized [2,3]. Alternatively, photonic
systems have come to be promising candidates to demonstrate
such physical phenomena, according to the analogy between
quantum mechanics and electrodynamics [4–9]. In particular,
there is great interest in using photonic crystal (PC) slabs [10],
the band structures of which are analogous to electronic band
structures, to realize BICs [6,8,11–13]. Recently, BICs within
PC slabs have been experimentally observed [11,13].

The occurrence of BICs was first interpreted as the interfer-
ence of resonances in different channels [2]. It is a very general
effect in wave physics [14–20]. In PC slabs, the Bloch waves
the optical fields of which are well confined within the slab are
recognized as “closed channels,” whereas the leaky radiative
waves are referred to as “open channels” because they transport
energy away from the slab. The photonic system thus becomes
non-Hermitian. When the radiation is completely canceled
by the destructive interference of resonances, anomalously
narrow resonances, namely, BICs, occur in the continuum.

It is well known that symmetries play an important role
in achieving BICs [11–13,21]. When the structure of the PC
slab and the electromagnetic fields possess mirror symmetries,
complete destructive interference results in a symmetry-
protected BIC at the � point. Experimental observations of
BICs of this type have been reported [11]. Another type of BIC
was observed in PC slabs at some seemingly unremarkable
wave vectors without symmetry protection [12,22]. This was
attributed to the weighted destructive interference in the
vicinity of accidental symmetry of certain off-� wave vectors
[23], and was investigated from the perspective of conserved
topological charges [13,24,25]. In this case, symmetries
constrain the topological charges as well as their generation,
evolution, and annihilation.

*pengchao@pku.edu.cn

Friedrich and Wintgen’s early results on the quantum
system indicated that, if we have the freedom of varying
the separation of two noninterfering resonances as a function
of a continuous parameter, the leaky radiative wave can be
eliminated for a given parameter value, and thus one of the
interfering resonances becomes a BIC state [2,3]. During this
process, it is noteworthy that the symmetries are beneficial but
not necessary. It has been demonstrated that the occurrence of
BICs can be continuously tuned by varying the refractive index
of the upper/lower cladding [23]. Owing to their topological
nature, this type of BIC robustly appears somewhere in the
parameter space. We notice that the occurrence of BICs is
actually quite a general and stable phenomenon within PC
slabs. Although the primary focus in our previous works was on
TM-like modes, BICs can also be found on TE-like bands [13]
when the leaky radiative wave is canceled out by continuously
varying structural parameters.

In recent years, we developed a coupled-wave theory
(CWT) framework to realize accurate and efficient analysis
of the detailed wave interaction within the PC slab [26–28].
The framework is capable of analyzing finite [29] or infinite
PC slabs with different crystalline geometries and arbitrary
tilted sidewalls [27] on both TE- and TM-like modes [30–33].
The CWT depicts the analogous physics of BICs within the
photonic system in great detail, as did Friedrich’s theory for the
quantum system. As a result, CWT provides a comprehensive
tool to investigate BICs within a PC slab.

In this paper, we extend the CWT formulation by inducing
the Ez component, in order to model the potential TE-
TM coupling effect within the TE-like mode. Further, we
investigate the cancellation of radiative waves according to
vertical geometries, and a closed-form expression is derived.
Compared with the topological perspective [13], such an
expression provides an explicit and localized indicator to study
the conditions of eliminating radiative waves, i.e., realizing
BICs, or more specifically, achieving zero amplitude of the
radiative waves on the boundaries between the PC slab and
upper/lower claddings. The CWT indicates that BICs can be
achieved not only in the TM-like mode [23] but also in the
TE-like mode, by continuously varying the slab thickness
regardless of conventional in-plane symmetry protection. A
ring of off-� high-Q states has been demonstrated within a
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FIG. 1. Schematic illustration of a 1D diffraction grating and a
2D PC slab and their band structures. They are both symmetric along
the z axis, normally immersed in air or a certain type of liquid. (a) The
1D diffraction grating consists of dielectric bars that extend infinitely
along the y axis, and are distributed periodically along the x axis. The
filling factor is defined as 1 − w/a. (b) The 2D PC slab is a dielectric
slab with circular air holes distributed periodically in a square lattice.
The air holes have vertical sidewalls, and the filling factor is defined
as πr2/a2, where r is the radius of the air holes.

two-dimensional (2D) PC slab of a proper thickness, which
may be promising to generate tailored beams for PC laser
applications [34,35].

The remainder of this paper is organized as follows.
In Sec. II, we derive the CWT formulation with the Ez

component. In Sec. III, we present the analytic expression of
the radiative wave and discuss the condition to form BICs in a
one-dimensional (1D) PC structure, i.e., a diffraction grating.
In Sec. IV, we discuss tunable BICs within a 2D PC slab. In
Sec. V, we conclude with our findings.

II. THEORY AND FORMULATION

A PC slab is a dielectric slab with periodic permittivity.
For simplicity, we still assume the structure possesses infinite
periodicity, and the vertical direction is defined as normal to
the slab plane.

A typical 1D diffraction grating and 2D PC slab are shown
in Fig. 1. The structural parameters are listed in Table I.
Here, the refractive index contrast between the dielectric
slab and the cladding is assumed as “low-contrast,” and
thus the perturbation assumption is valid. For the case of

TABLE I. Structural parameters.

Name εa(SiO2) εb(Si3N4) Filling factor

1D diffraction grating 2.1141 4.0800 0.1781
2D PC slab 2.1141 4.0800 0.1781

“high-contrast,” in which the stronger confinement of optical
fields within the slab significantly increases the coupling
strength, certain iteration techniques are required to obtain
self-consistent results [28,32].

For the TE-like modes we are focusing on, the electric
field is given as (Ex,Ey,Ez). The Ez component was formerly
neglected because of the transverse nature of the TE mode.
However, since Ez = 0 is rigorously true only at the center
cross section when the structure has vertical mirror symmetry,
the existence of the Ez component in TE-like mode may cause
some potential coupling between TE- and TM-like modes.
This is because they share the same radiative wave polarization
[23,30]. Hence, Ez is included in the formulation to improve
accuracy.

For an infinite xy plane, the E field with a Bloch
wave vector of β = (�xex + �yey)β0 is formed as Ei(r) =∑

Ei,mn(z)e−imxβ0x−inxβ0y , where i refers to x, y, or z and
mx = m + �x , ny = n + �y . Meanwhile, within the PC
slab (|z| < h/2), permittivity can be expanded as ε(r) =∑

εmne
−imβ0x−inβ0y . In this paper, we elaborate on the major

difference incurred by the introduction of Ez into the formu-
lation. For detailed derivations please refer to our previous
works [26,30]. Therefore, the CWT equations become

(
d2

dz2
+ε0k

2−n2
yβ

2
0

)
Ex,mn+mxnyβ

2
0Ey,mn+imxβ0

d

dz
Ez,mn

= −k2
∑

m′ �=m,n′ �=n

εm−m′
n−n′

Ex,m′n′ , (1)

(
d2

dz2
+ε0k

2−m2
xβ

2
0

)
Ey,mn+mxnyβ

2
0Ex,mn+inyβ0

d

dz
Ez,mn

= −k2
∑

m′ �=m,n′ �=n

εm−m′
n−n′

Ey,m′n′ , (2)

[
ε0k

2 − (
m2

x + n2
y

)
β2

0

]
Ez,mn + iβ0

d

dz
(mxEx,mn + nyEy,mn)

= −k2
∑

m′ �=m,n′ �=n

εm−m′
n−n′

Ez,m′n′ . (3)

For m2
x + n2

y > 0, rotate the coordinate system:

(
Ex ′,mn

Ey ′,mn

)
=

(
cos θ sin θ

− sin θ cos θ

)(
Ex,mn

Ey,mn

)
(4)

where cos θ = mx/
√

m2
x + n2

y , sin θ = ny/
√

m2
x + n2

y . For
m2

x + n2
y = 0, Eq. (4) still holds as long as we let θ = 0. Thus,

Eqs. (1) and (2) are rearranged as

(
d2

dz2
+ ε0k

2

)
Ex ′,mn + iβ0

√
m2

x + n2
y

d

dz
Ez,mn

= −k2
∑

m′ �=m,n′ �=n

εm−m′
n−n′

Ex ′,m′n′ , (5)

[
d2

dz2
+ ε0k

2 − (
m2

x + n2
y

)
β2

0

]
Ey ′,mn

= −k2
∑

m′ �=m,n′ �=n

εm−m′
n−n′

Ey ′,m′n′ . (6)
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Further, let the right-hand side of Eq. (3) be zero and denote
� =

√
�2

x + �2
y . Following Eqs. (5), (6), and (3), the zeroth-

order radiative waves (denoted as Ei,0) have the following
form:

(
d2

dz2
+ ε0k

2

)
Ex ′,0 + i�β0

d

dz
Ez,0

= −k2
∑

m′ �=0,n′ �=0

εm−m′
n−n′

Ex ′,m′n′ , (7)

(
d2

dz2
+ ε0k

2 − �2β2
0

)
Ey ′,0

= −k2
∑

m′ �=0,n′ �=0

εm−m′
n−n′

Ey ′,m′n′ , (8)

(
ε0k

2 − �2β2
0

)
Ez,0 + i�β0

d

dz
Ex ′,0 = 0. (9)

By eliminating Ez,0 from Eqs. (7) and (9), we obtain
(

d2

dz2
+ ε0k

2 − �2β2
0

)
Ex ′,0 = i�β0Ez,0

ε0

dε0

dz

− k2

(
1 − �2β2

0

ε0k2

) ∑
m′,n′ �=m,n

εm−m′
n−n′

Ex ′,m′n′ . (10)

The Ez terms have been taken into account in the above
equations. Otherwise, the operator on the left-hand side of
Eq. (10) would be dominated by (d2/dz2 + ε0k

2) instead of
(d2/dz2 + ε0k

2 − �2β2
0 ), indicating that the radiative wave

is propagating along the z direction regardless of the in-
plane wave vector �, which is obviously counterintuitive in
physics.

Eliminating the energy leakage requires zero amplitude
of the radiative wave at the PC slab’s boundaries, that is,
Ex ′,y ′,0(z)|z=±h/2 = 0. The first term on the right-hand side
of Eq. (10) concerns the derivative of the permittivity dε0/dz,
which is always zero within the PC slab because we assume
the air holes have vertical sidewalls. Only at the boundaries
between the PC slab and the upper/lower claddings, dε0/dz

is nonzero owing to the discontinuous permittivity. However,
for the nonradiation case, Ex ′,0 and Ez,0, which represent the
transversal and nontransversal parts of the radiative wave,
simultaneously approach zero. This result may be confirmed
by the finite-difference time-domain (FDTD) simulation [36].
Therefore, the influence of the first term on the right-hand
side of Eq. (10) is quite limited and can be neglected as an
approximation.

In Eqs. (8) and (10), denoting Ĝ = (d2/dz2 + ε0k
2 −

�2β2
0 )−1, the radiative wave can be written as

Ei ′,0 = −k2Ĝ
∑

m′ �=0,n′ �=0

ε −m′
−n′

Ei ′,m′n′

= −k2Ĝfi ′ (z) (11)

where i = x,y. Notice that εmn(z) is nonzero only within the
PC slab, and so are fx ′ (z) and fy ′ (z), and hence the radiative
wave, though it spans the z axis, can only be excited within
the PC slab. Using Eq. (11), the BIC condition is equivalent to
Ĝfx ′ (z)|z=±h/2 = 0 and Ĝfy ′ (z)|z=±h/2 = 0.

For a 1D periodic structure, we can obtain similar CWT
equations in comparison with the 2D case:

[
d2

dz2
+ ε0k

2 − m2
xβ

2
0

]
Em(z) = −k2

∑
m′ �=m

εm−m′Em′(z), (12)

E0(z) = −k2Ĝ
∑
m′ �=0

ε−m′Em′ (z) = −k2Ĝf (z). (13)

Notice that Ex ≡ 0 and Ez ≡ 0 for the TE modes in the 1D
diffraction grating, and Em represents the electric field of the
mth-order Bloch wave polarized in the y direction. To calculate
the radiative waves at the boundaries, a proper Green’s function
with boundary reflection taken into account is required (see
Appendix A for details).

As a perturbation method, we choose a set of Bloch waves
V as the basis to depict the wave interaction within the PC
slab, which we denote as “basic waves.” For the second-order
� point, the basic waves are given by m2 + n2 = 1. Namely,
they are [1,0],[−1,0],[0,1],[0, − 1]-order waves for a 2D PC
slab, and ±1-order waves for a 1D diffraction grating. After
solving the zeroth-order and high-order waves, the coupling
strengths between the basic waves follow the coupling matrix
C [26], as

kV = CV (14)

where V = (Rx,Sx,Ry,Sy)T for a 2D PC slab and V = (R,S)T

for a 1D diffraction grating. The complex frequencies ω can
be obtained from the eigenvalues by solving Eq. (14) as
ω = ck, and the Q factors can be calculated as Re(ω)/2Im(ω)
accordingly.

III. CLOSED-FORM RADIATIVE WAVE
AND CONDITION OF BICS

A. Radiative waves and vertical profiles

We start with 1D periodic structure to investigate the
tunability of BICs. For such a structure, there exist two
band-edge modes, which we refer to as modes A and B as
shown in Fig. 1, in the order of increasing frequency. Moreover,
the phase-matching condition can be fulfilled at any order
of waveguide mode (TE0, TE1..., and TM0, TM1...) on any
order of � point (β = nβ0). In this paper, we focus on the
second-order � point and TE-like modes. Typically, mode A
is recognized as antisymmetric with respect to the x direction,
and thus the destructive interference makes mode A become a
symmetry-protected BIC at the � point. Conventionally, mode
B is a symmetric and low-Q mode.

For TEA
0 , TEA

1 , TEA
2 , i.e., mode A under phase matching

with TE0∼2 waveguide modes, their frequencies as functions
of varying slab thickness h are calculated with both CWT and
FDTD by assuming off-� deviation � = 0.04, as shown in
Fig. 2. The mode frequencies and Q factors obtained from
CWT and FDTD agree well with each other. It is well known
that symmetry ensures the Q factor at the � point to be
infinity [11–13,21,37,38]. However, for a certain off-� wave
vector (� = 0.04) that does not fulfill the symmetry-protection
condition, the Q factors also quasiperiodically approach
infinity for a varying slab thickness, as shown in Fig. 2(b). This
indicates that there might be some BIC states occurring at off-�
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FIG. 2. (a) Mode frequency and (b) Q factor versus varying slab
thickness, for mode TEA

0∼2 in 1D diffraction grating structure at off-�
deviation � = 0.04, calculated by CWT (solid lines) and FDTD
(circles). (c) Vertical profiles of Bloch wave m = ±1 and radiative
waves (m = 0) for mode TEA

0 at the first slab thickness, where
the Q factor approaches infinity [red box in (b)], with h = 1.1696
given by CWT and h = 1.1564 given by FDTD. Vertical profiles are
normalized to slab thickness h.

points, and the underlying physics is beyond conventional
in-plane symmetry protection.

We also calculate the vertical profiles of the electric field
for the mode TEA

0 , at the slab thickness for which the first
BIC occurs, as illustrated in Fig. 2(c). It is noticed that
the amplitude of the radiative wave approaches zero at the
boundaries, resulting in no energy leakage out of the slab and
forming a BIC state at the off-� point.

B. Analytic conditions of BICs

Tunable BICs can be realized by continuously scanning
various parameters, including slab thickness, filling factor,
dielectric constants, lattice geometry, among others, as long
as the boundary condition E0(z)|z=±h/2 = 0 is satisfied. For

simplicity, we focus on slab thickness (h) as a parameter to
fulfill the BIC condition. Equation (13) shows that E0 is excited
by other Bloch waves, that is, E0(z) = −k2Ĝf (z). We rewrite
the source function f (z) as

f (z) =
∑
m′ �=0

ε−m′Em′ (z). (15)

As Eq. (15) shows, f (z) is a linear combination of the vertical
profiles of all Bloch waves except for the zeroth order. f (z)
physically represents the source that excites the zeroth-order
Bloch wave. For simplicity, we assume in this paper that the
zeroth-order wave is the only radiative wave, namely, the
only “open channel.” Thus the BIC condition is equivalent
to E0(z)|z=±h/2 = 0, or Ĝf (z)|z=±h/2.

A conventional symmetry-protected BIC requires f (z) ≡ 0
and E0(z) ≡ 0. For instance, the BIC occurs at the � point
when ε is symmetric and E is antisymmetric along the x

axis, and the radiative wave is canceled out due to such in-
plane symmetry. For a 2D PC slab, BICs occurring at off-�
points have been reported [12], in which the radiative wave
cancellation may be achieved by certain accidental symmetries
[23].

However, the in-plane symmetry of the electromagnetic
field is not necessary for Ĝf (z)|z=±h/2 = 0. We denote the
vertical-cancellation BIC condition as Ĝf (z)|z=±h/2 = 0.
Such a condition can still be realized when in-plane symmetry
of the electromagnetic field is absent. For a certain in-plane
propagation constant �, it can be satisfied by varying h.
Taking the Green’s function presented in Appendix A, a
more specific form of Ĝf (z)|z=h/2 can be written as (for
the z = −h/2 boundary, the condition is the same since the
geometry possesses vertical symmetry)

Ĝf (z)|z=h/2 = ite−iβrh

2βr (1 − r2e−2iβrh)

∫ h/2

−h/2
[eiβr (h/2+z)

+ re−iβr (h/2+z)]f (z)dz (16)

where r and t represent the reflection and transmission
coefficient at the boundary, respectively, and βr is the vertical
wave vector of the radiative wave within the PC slab. From
Eq. (16), we define I0 as

I0=
∫ h/2

−h/2
eiβr zf (z)dz. (17)

As shown in Appendix B, I0 can be chosen as real, and
I0 = 0 is equivalent to Ĝf (z)|z=h/2 = 0. For a system without
symmetry protection, I0 can be regarded as an indicator for
vertical-cancellation BICs. For a 1D diffraction grating, the
I0 of mode TEA

0 obtained by varying h at the off-� deviation
� = 0.04 is presented in Fig. 3(a). I0 crosses zero periodically,
which leads to E0|z=±h/2 = 0, and forms of BIC.

The physical interpretation for I0 is the coherent super-
position of the zeroth-order Bloch wave excited by other
Bloch waves at the PC boundary. I0 = 0 means that the waves
interfere destructively, and do not permit radiative energy. The
phenomenon of I0 = 0 is different from symmetry-protected
BICs, because it does not require the in-plane wave vector to
be zero, which guarantees ε−mEm = εmE−m for any mth-order
Bloch wave.
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points on the radiative waves (|E0|z=h/2|2) are presented.

It is noteworthy that the phenomenon of I0 = 0 is also
different from the Fabry-Perot (FP) effect, which is caused by
the interference of multiple light reflections on two reflecting
surfaces. The phenomenon of I0 = 0 is actually due to the
interference of radiative waves excited by multiple transverse
Bloch waves. Unlike the FP effect, the free spectral range
of which is exactly periodic, the periodicity of I0 = 0 with
slab thickness is not exactly the same. Moreover, there is no

constraint of the reflection coefficient to achieve I0 = 0, which
can be sufficiently low whereas the BIC still survives.

For a better understanding of I0 varying with h, we
adopt some approximations to further simplify the expression.
Within the PC slab, energy is dominated by basic waves. In
the case of a 1D diffraction grating, they occupy 99.98%
of the whole energy. The contribution of high-order waves
can be neglected, owing to their trivial amplitudes, and basic
waves are assumed to share an identical profile 	0 to that
of the guide mode. Therefore, f (z) can be simplified as
(ε−1A1 + ε1A−1)	0,PC(z), where Am represents the amplitude
of the mth-order wave, m ∈ {1, − 1}, and I0 is obtained as

I0 ≈ (ε1A−1 + ε−1A1)I g

0 (18)

where I
g

0 is

I
g

0 =
∫ h/2

−h/2
eiβr z	0,PC(z)dz. (19)

The guide-mode profile 	0 is sinusoidal within the PC
slab, and decays exponentially in the cladding. Within the PC
slab, 	0 can be either cos(βz) or sin(βz), corresponding to
even or odd modes, respectively, where β is the propagation
constant of the guide mode along the z axis. Therefore, taking
	0 = cos(βz) and 	0 = i sin(βz) into Eq. (19), I g

0 is rewritten
as a closed-form expression:

I
g

0 = h
√

κ2 cos2 u + sin2 u

u(κ2 − 1)
sin

(
κu − arctan

tan u

κ

)
, (20)

I
g

0 = h
√

κ2 cos2 u + sin2 u

u(κ2 − 1)
cos

(
κu + arctan

cot u

κ

)
(21)

where κ = βr/β and u = βh/2.
Using βr = [ε0k

2 − �2β2
0 ]1/2 (Appendix A) and β =

(ε0k
2 − β2

0 )1/2 (Appendix C), we have κu = βrh/2 = [u2 +
(1 − �2)β2

0h2/4]1/2. As discussed in Appendix C, u increases
monotonically with h, and as a result, κu increases mono-
tonically with h. Moreover, the value of [arctan(tan u/κ)] and
[arctan(cot u/κ)] is between zero and π/2. Therefore, with
increasing h, the phase in sin or cos goes all the way up to
infinity, indicating that there are infinite strict zero points for
I

g

0 in both equations.
I

g

0 provides a simple and analytic form of I0 based on
the assumption that basic waves are dominant. As shown in
Fig. 3(a), I g

0 and I0 agree well with each other, which confirms
the accuracy of I

g

0 under moderate perturbation.

C. Results and discussion

A comparison between the CWT and FDTD results clearly
validates the physics and theory mentioned above. Taking the
mode TEA

0 of a 1D periodic structure as an example, the
Q factor, electric field on the boundary |E0|z=h/2|2, and I0

under varying slab thickness h are illustrated in Fig. 3(a).
Apparently, the Q factor quasiperiodically becomes infinitely
high, although the period is not absolutely constant. E0 varies
consistently with the Q factor, sharing the same zero points
with respect to slab thickness. When the Q factor approaches
infinity or |E0|2 reaches zero, I0 equals zero as well. Therefore,
the derived analytic expression for I0 is an effective indicator
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to depict the physical nature of BICs, and I0 = 0 can be used
as a criterion for the appearance of vertical-cancellation BICs.

Furthermore, the slab thickness h that supports BICs under a
varying kx is illustrated in Fig. 3(b), representing modes of TEA

0
and TEB

0 , respectively. This result is obtained by both CWT and
FDTD, confirming the high reliability of our CWT calculation.
It is noteworthy that, although the mode TEB

0 is conventionally
a low-Q mode at the � point owing to its in-plane symmetry,
it can become a BIC at a proper slab thickness that fulfills the
vertical-cancellation BIC condition.

The calculation of I
g

0 above has assumed that f (z) ≈
(ε−1A1 + ε1A−1)	0,PC(z), where 	0 = cos βz or 	0 =
i sin βz. In fact, perturbations from high-order waves may
affect I0, especially for high-contrast structures. However,
as discussed in Appendix B, I0 can be chosen as real, and
I0 = 0 is equivalent to E0|z=±h/2 = 0 as long as the structure
is symmetric along the z axis. As an approximation of I0,
I

g

0 , depicted in Fig. 3(a), retains high accuracy by assuming
basic waves are dominant. It is noteworthy that the energy
concentration ratios of the basic waves to the whole mode
energy are 0.9998 and 0.9929 for a 1D diffraction grating and
a 2D PC slab, respectively, which strongly supports the basis
of the CWT analysis, that the dominance of basic waves is
valid.

IV. TUNABLE BICS WITHIN A TWO-DIMENSIONAL
PHOTONIC CRYSTAL SLAB

BICs within a 2D PC slab are more sophisticated be-
cause they require destructive interference in two polarized
directions. As discussed above, the symmetry-protected and
vertical-cancellation conditions can suppress radiative waves
independently and simultaneously. For a 2D PC slab, the
vertical-cancellation BIC condition can be mathematically
described as Ĝfx ′ (z)|z=h/2 = 0 and Ĝfy ′ (z)|z=h/2 = 0. Ne-
glecting high-order waves, we have

fx ′ (z) ≈
∑
m,n

ε−m−n
Ax ′,mn	0,mn(z), (22)

fy ′ (z) ≈
∑
m,n

ε−m−n
Ay ′,mn	0,mn(z) (23)

where (m,n) ∈ {(1,0),(0,1),(−1,0),(0, − 1)}, 	0,mn are the
vertical profiles of the four basic waves, and Ax ′,mn and Ay ′,mn

are the projections of the amplitudes of basic waves onto the
x ′ and y ′ axes, respectively.

	0,mn of four individual basic waves are usually different
at an arbitrary wave vector in reciprocal-lattice space. As a
result, Ĝfx ′ (z)|z=h/2 = 0 and Ĝfy ′ (z)|z=h/2 = 0 cannot hold
simultaneously in general, since fx ′ (z) and fy ′ (z) are different
depending on the wave vector. That is, one continuously
varying parameter (slab thickness h) can only support the
vertical-cancellation condition in one direction. To form BICs
in a 2D PC slab, either of the symmetry-protected and
vertical-cancellation conditions can be individually fulfilled
in either of two orthogonal directions.

A symmetry analysis is presented in Fig. 4, in which the
eigenvectors of mode A, B, C, and D, at three wave vectors
(at �, on �-X, and on �-M) are illustrated. Since in-plane
geometric symmetries are assumed, we have ε0,±1 = ε±1,0,

0x,0E

Mode A Mode B Mode C Mode D

Γ-M

Γ-X

at-Γ

'x'y 'x'y 'x
'y 'x'y

0x,0E
0y,0E

0x,0E
0y,0E

k- xGfx,0E 2

0y,0E k- yGfy,0E 2

0x,0E
k- yGfy,0E 2

0x,0E
k- yGfy,0E 2

k- xGfx,0E 2

0y,0E
0x,0E
k- yGfy,0E 2

0x’,0E
k- y’Gfy’,0E 2

k- x’Gfx’,0E 2

0y’,0E
k- x’Gfx’,0E 2

0y’,0E
0x’,0E
k- y’Gfy’,0E 2

FIG. 4. Symmetry analysis for modes in a 2D PC slab. Three k

points (at �, on �-X, and on �-M) are each presented for modes A,
B, C, and D. The blue arrows indicate the wave vectors of the basic
waves, while the arrows normal to them indicate their amplitude. The
coupling coefficients from the basic waves to the radiative wave are
identical, owing to the geometric symmetry. Therefore, the vector sum
of the magnitude arrows determines the amplitude of the radiative
wave. The dashed box indicates conventional symmetry-protected
BICs at the � point, whereas the others are tunable BICs based on
both symmetry protection and vertical cancellation.

and the overall radiative wave can be represented by the
vector sum of Amn	0,mn(z), where Amn = Ax ′ex ′ + Ay ′ey ′ .
The dashed box shows the conventional symmetry-protected
BICs at the � point, in which the radiative waves in both
the x,y directions are eliminated owing to symmetry. In
addition, the other cases show that the radiative waves can be
canceled out due to symmetry protection in one direction and
vertical cancellation in the other direction. For wave vectors
on �-X and �-M in the reciprocal-lattice space, the in-plane
symmetry ensures that the basic waves have identical vertical
profiles as well as amplitudes with respect to the symmetric
axis. Taking mode A on the �-X direction, for example (in
Fig. 4), the in-plane symmetry leads to Ex,0 = 0 and leaves
Ey,0 = −k2Ĝfy . According to the discussion above, we can
find a proper slab thickness h to fulfill the vertical-cancellation
condition, and hence, −k2Ĝfy |z=±h/2 = 0. As a result, the
radiative wave was completely eliminated to form a BIC state.
A similar principle can be applied to both the �-X and �-M
directions and mode A ∼ D. Interestingly, the conventional
low-Q modes, C and D, can also become BICs under the
vertical-cancellation condition.

The Q factor, electric field on the boundary |Es |2, |Ep|2,
and I0 under varying slab thickness h are illustrated in Fig. 5
for the TEA

0 mode of a 2D PC slab at kx = 0.20,ky = 0.00
on the �-X direction, kx = 0.20,ky = 0.20 on �-M , and
arbitrary direction kx = 0.20,ky = 0.10, with respect to two
polarizations, as shown in Fig. 1. Apparently, for a wave vector
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FIG. 5. Q factor, electric field (|Es |z=h/2|2 and |Ep|z=h/2|2), and I0 versus slab thickness h, for mode TEA
0 within a 2D PC slab, at

reciprocal-lattice vector kx,ky = (0.20,0.00),(0.20,0.20),(0.20,0.10), calculated by CWT (solid lines) and FDTD (circles). Es |z=h/2 and
Ep|z=h/2 are the radiative waves with s and p polarizations at the PC slab upper boundary, where directions s and p are defined in Fig. 1.
I0i′ = ∫ h/2

−h/2 eiβr zfi′ (z)dz, where i ′ represents x ′ or y ′. The vertical dashed lines indicate BICs.

along �-X and �-M , the radiative wave in one direction is
always zero (red line) due to the in-plane symmetry, whereas
the radiative wave in the orthogonal direction periodically
reaches zero with respect to the varying slab thickness (blue
line). According to the analysis above, along the �-X and �-M
directions, BICs can be rigorously constructed.

As mentioned above, the vertical-cancellation condition
Ĝfx ′ (z)|z=h/2 = 0 and Ĝfy ′ (z)|z=h/2 = 0 cannot hold simul-
taneously, since one continuously varying parameter (slab
thickness h) cannot support the vertical-cancellation condition
in both directions. Therefore, BICs cannot be rigorously
achieved for an arbitrary in-plane wave vector without sym-
metry protection. However, notice that the basic waves occupy
more than 99% of the whole energy in a 2D PC slab, and 	0,mn

of the four basic waves are only slightly different. As a result,
fx ′ (z) and fy ′ (z) are almost degenerate and the zero points of
I0,x ′ and I0,y ′ are quite close.

As the results of kx = 0.20,ky = 0.10 in Fig. 5 show, the
red and blue lines of |E0|z=h/2|2 and I0 vary accordingly
with respect to the slab thickness, because the kx = 0.20,ky =
0.10 direction is beyond symmetry protection. However, the
vertical cancellation in two orthogonal directions occurs at
nearly degenerate zero points, indicating that a high-Q mode
(although not a rigorous BIC) can be realized.

We calculate the Q factors of TEA
0 for the wave vector

kx,ky ∈ [π/a, − π/a], with slab thickness h = 1.50a by both
FDTD and CWT, as shown in Fig. 6. Here, Qp and Qs

are defined as the Q factors corresponding to the electric
components Ep and Es , as illustrated in Fig. 1. Owing to

the quasidegeneracy of the zero points of I0,x ′ and I0,y ′ , a ring
of high-Q modes appears in the reciprocal-lattice space, which
may be promising for photonic crystal surface emitting lasers
to generate tailored vector beams [21,35]. The shape of this
ring is almost the same as the interception of the plane ω = ω0

with the 2D band structure ω(kx,ky); therefore, the modes lying
on the ring have close frequencies. This ω0 makes the basic

 ∞
Q

kx

C
W

T

−π/a 0 π/a

0

−π/a

π/a

ky

Q
p

Q
s

10

10

10   to

6

4

8

F
D

T
D

FIG. 6. Q factor distribution in reciprocal-lattice space for mode
TEA

0 within a 2D PC slab of slab thickness h = 1.50. Q is the overall
Q factor whereas Qs and Qp are calculated according to the radiative
waves Es or Ep , respectively, where s and p are defined in Fig. 1. A
ring of high-Q modes is predicted and confirmed by FDTD, among
which rigorous BICs marked by small circles lie on high-symmetric
directions.
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wave profile 	0,mn(z) close to identical, and hence benefits
the degeneracy of fx ′ (z) and fy ′ (z) to form a ring of high-Q
modes. The ring will expand or shrink according to different
slab thickness. Strictly speaking, at the � point as well as
along the �-X and �-M directions, BICs can be rigorously
constructed.

It is noteworthy that the occurrence of BICs has also been
explained by topological singularities in far-field polarization
[13]. At the singularities where there is no way to assign a
far-field polarization that is consistent with the neighboring
wave vector, the radiative wave achieves zero amplitude, which
is the same principle as our CWT derivation. The topological
perspective provides an overall picture to identify whether
the BICs exist in a given set of structural parameters, by
numerically calculating the radiative wave within the 2D
Brillouin zone. Actually, one can perform a similar calculation
more efficiently by using the analytic expression of the
radiative wave given by the CWT. The indicator I0 derived
in this paper is more like a “localized” indicator at a given k

point, to find out how much divergence there is from the BIC
condition in a set of parameters (filling factor, slab thickness,
etc.), without scanning the whole Brillouin zone. We believe
this feature is promising for finding BICs in the system over a
wide range of parameters.

V. CONCLUSION

In this paper, we presented an investigation of the formation
of BICs within PC slabs, based on a semianalytical CWT
framework for TE-like modes in both a 1D diffraction grating
and 2D PC slab. We first improved the CWT model by taking
Ez into account, and then derived an analytic expression to
depict the condition of BICs, i.e., the amplitude of the radiative
wave being zero at the upper and lower PC boundaries.

According to the analytic expression of radiation, there
are two different ways to realize BICs. One is by utilizing
in-plane symmetry to completely cancel out the radiative wave
within the whole space, which is well known as symmetry-
protected BICs. The other way is by continuously varying a
given parameter (for instance, slab thickness) to eliminate the
radiative wave at boundaries, which we refer to as vertical-
cancellation BICs.

For 1D diffraction gratings, a criterion to indicate vertical-
cancellation I0 has been proposed. We proved that I0 can be
chosen as real, and has infinite zero points to support BICs.
Such a condition does not require the electromagnetic field to
possess any in-plane symmetries. As a result, by continuously
varying structural parameters, either conventional in-plane
antisymmetric modes or symmetric modes can become BICs
at either the � point or an off-� wave vector. The structural
parameter could be the slab thickness, filling factor, or
dielectric constant.

The formation of BICs becomes more sophisticated for a 2D
PC slab because it requires the radiative waves to be eliminated
in two polarized directions. We found that either of the
symmetry-protected and vertical-cancellation conditions can
be individually fulfilled in either of two orthogonal directions.
Along some directions in reciprocal-lattice space (� point,
�-X direction, and �-M direction), symmetry protection
cancels out the radiative wave in one polarization, and vertical

cancellation eliminates the other polarization via a varying
slab thickness. As a result, along these directions, BICs can
be rigorously constructed. For an arbitrary wave vector, one
varying parameter, such as the slab thickness, usually cannot
support vertical cancellation in two directions when symmetry
protection is absent. However, owing to the quasidegenerate
nature of the zero points of I0x ′ and I0y ′ , a ring of high-Q modes
can still be found in reciprocal-lattice space for a proper slab
thickness.

The analytic expression of the radiative wave presents an
effective interpretation of the formation of tunable BICs. It
indicates that photonic BIC states are actually quite general
phenomena within a PC slab, which can occur for both
TE-like and TM-like modes at a wide range of reciprocal-
lattice vectors, by continuously varying structural parameters.
Tunable BICs provide a novel way of trapping light and can
be essentially important.
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APPENDIX A: THE GREEN’S FUNCTION

In this paper, we only derive the solution of a three-layered
structure. For a multilayered structure, the Green’s function
can be derived similarly but in a matrix form, as elaborated in
our previous work [27].

We assume the source is located at the origin, and z1 and z2

are the coordinates of the boundaries, z1 � 0 and z2 � 0. The
Green’s function satisfies[

∂2

∂z2
+ β2

z (z)

]
G(z) = δ(z) (A1)

where βz(z) = [ε0(z)k2 − m2
xβ

2
0 ]1/2. Particularly, the vertical

wave vector of the zeroth-order Bloch wave inside the PC slab
has the form βr = [ε0k

2 − �2β2
0 ]1/2.

If βz = βz(z)|PC, and r1 and r2 are the refection coefficients
of the boundaries, the Green’s function can be expressed as

G+(z) = A2e
−iβzz + B2e

iβzz = A2e
−iβzz + r2A2e

−2iβzh2eiβzz,

(A2)

G−(z) = A1e
iβzz + B1e

−iβzz = A1e
iβzz + r1A1e

−2iβzh1e−iβzz

(A3)

where G− and G+ refer to the Green’s function for z ∈
[z1,0] and z ∈ [0,z2], respectively, and h1 = −z1, h2 = z2.
According to the boundary conditions G+(0) = G−(0) and
G′

+(0) − G′
−(0) = 1, we obtain

A1 = i

2βz

1 + r2e
−2iβzh2

1 − r1r2e−2iβzh
, (A4)

A2 = i

2βz

1 + r1e
−2iβzh1

1 − r1r2e−2iβzh
(A5)
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where h = z2 − z1. Moreover, the amplitudes for the Green’s
function outside the PC slab, C1 and C2, have the following
expressions:

C1 = t1A1e
−iβzh1 , (A6)

C2 = t2A2e
−iβzh2 (A7)

where t1 = 1 + r1 and t2 = 1 + r2.
When applied to a more general situation in which the

source is located at an arbitrary point z′, the Green’s function
can be obtained by making the substitution z → z − z′, h1 =
z′ − z1, h2 = z2 − z′, h = z2 − z1 in Eqs. (A2)–(A7).

APPENDIX B: DISCUSSION OF I0

We first present the proof that I0 = 0 is equivalent to
Ĝf (z)|z=h/2 = 0. Since the geometry of the PC structure is
symmetric along the vertical direction, f (z) is either even
symmetric or odd symmetric in the z direction. If f (z) is an
even function, then

I0 =
∫ h/2

−h/2
eiβr zf (z) =

∫ h/2

−h/2
cos(βrz)f (z). (B1)

The first and second terms of the integral in Eq. (16) can be
obtained:

I1 = eiβrh/2
∫ h/2

−h/2
eiβr zf (z) = eiβrh/2I0, (B2)

I2 = re−iβrh/2
∫ h/2

−h/2
e−iβr zf (z)dz

=
∫ h/2

−h/2
cos(βrz)f (z) = re−iβrh/2I0. (B3)

Similarly, if f (z) is an odd function, then

I0 =
∫ h/2

−h/2
eiβr zf (z) = i

∫ h/2

−h/2
sin(βrz)f (z). (B4)

Moreover, the first and second terms of the integral in
Eq. (16) can be calculated in a similar manner. As a result,
Eq. (16) is rearranged as follows:

Ĝf (z)|z=h/2 = it

2βr (eiβrh/2 ∓ re−iβrh/2)
I0 (B5)

where ∓ represents the even or odd symmetric f (z), respec-
tively. Equation (B5) indicates that Ĝf (z)|z=h/2 is propor-
tional to I0. We can conclude that I0 = 0 is equivalent to
Ĝf (z)|z=h/2 = 0 if the structure is symmetric along the z axis.

Subsequently, we prove that I0 can be chosen as a real
function. Owing to the arbitrary selection of the initial phase
in the eigenproblem of the electromagnetic field, f (z) can
be multiplied by an arbitrary phase factor and still satisfy
the coupled equation, i.e., f (z) = eiθf0(z), and hence, I0 =
eiθ

∫ h/2
−h/2 eiβzf0(z)dz. Consequently, it can be concluded that

I0 can always be a real function by the adjustment of the initial
phase θ .

More specifically, considering f (z) = u(z) + iv(z), for an
even symmetric f (z), we obtain

I0 =
∫ h/2

−h/2
cos(βrz)u(z)dz + i

∫ h/2

−h/2
cos(βrz)v(z)dz. (B6)

The initial phase should be chosen as
∫ h/2

−h/2
cos(βrz)v(z)dz = 0 and

∫ h/2

0
u(z)dz > 0.

For an odd symmetric f (z), a similar formulation can be
derived.

APPENDIX C: THE GUIDED MODE

The calculation of the guided mode profile is quite similar
to solving the wave function of an electron in a finite potential
well. The average permittivity is ε0 within the PC slab
[−h/2,h/2], and ε1 for the outside region. Since the structure
is mirror symmetric with respect to the z axis, the guided mode
profile 	0(z) is either even or odd. For instance, the even mode
follows the equations at z � 0 [	0(z) = 	0(−z) for z < 0]:

[
∂2

∂z2
+ (

ε0k
2 − β2

0

)]
	0 = 0, 0 � z < h/2, (C1)

[
∂2

∂z2
+ (

ε1k
2 − β2

0

)]
	0 = 0, z � h/2. (C2)

We denote β0 = (ε0k
2 − β2

0 )1/2 and γ = (β2
0 − ε1k

2)1/2, both
of which are real and positive. We have 	0 = cos βz(0 � z �
h/2) and Ce−γ z(z > h/2). Owing to the continuity of 	0(z)
and 	0

′(z) at the boundary z = h/2, we obtain

cos βh/2 = Ce−γ h/2, (C3)

β sin βh/2 = γCe−γ z, (C4)

then

β tan β
h

2
= γ. (C5)

Denoting u = βh/2 and v = γ h/2, Eq. (C5) is rewritten as

u tan u = v. (C6)

uv-curves

-5
u

-6

-4

-2

0

2

4

6

v

u2/U2+v 2/V2=1
u tan(u)=v
u cot(u)=-v

0 5

TE0 TE1

TE2 TE3

FIG. 7. uv curves to solve β, with the average permittivity within
the PC slab ε0 = 3.7299, the permittivity outside the PC slab ε1 =
2.1141, and the PC slab thickness h = 1.1.
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From the expression of β and γ , u and v also follow

u2

U 2
+ v2

V 2
= 1 (C7)

where U = [(ε0 − ε1)/ε1]1/2β0h/2 and V = [(ε0 − ε1)/ε0]1/2

β0h/2, respectively.
The odd mode can be solved similarly, by assum-

ing 	0(z) = sin βz within the PC slab, and Eq. (C6)
becomes

u cot u = −v. (C8)

Equations (C7) and (C6) and Eqs. (C7) and (C8) give the
solutions for even and odd modes, respectively. For example,
if ε0 = 3.7299, ε1 = 2.1141, and h = 1.1, the uv curves are
shown in Fig. 7. For a given u, we have β = 2u/h.

Note that u and v are both positive, and each of the
intersections of the black ellipse and the colored lines (red or
blue) in the first quadrant gives one solution of β. As shown
in Fig. 7, as h increases, U and V increase correspondingly,
which leads to a series of intersections and solutions. These
solutions are labeled TE0, TE1, TE2, etc. For a given solution,
for example, TE0, u increases monotonically with h, as shown
in Fig. 7.
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