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We study the ground-state magnetism of the half-filled Hubbard model on the anisotropic triangular lattice,
where two out of three bonds have hopping t and the third one has t ′ in a unit triangle. Working in a spin-rotating
frame and using the density matrix renormalization group method as an impurity solver, we provide a proper
description of incommensurate magnetizations at zero temperature in the framework of the dynamical mean-field
theory (DMFT). It is shown that the incommensurate spiral magnetic order for t ′/t � 0.7 survives the dynamical
fluctuations of itinerant electrons in the Hubbard interaction range from the strong-coupling (localized-spin) limit
down to the insulator-to-metal transition. We also find that when the anisotropy parameter t ′/t increases from the
Néel-to-spiral transition, the magnitude of the magnetic moment exhibits a maximum at the isotropic triangular
lattice point t ′/t = 1 and then rapidly decreases in the range of larger t ′/t . This work gives a solid foundation
for further extension of the study including nonlocal correlation effects neglected at the standard DMFT level.
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I. INTRODUCTION

The interplay of geometrical frustration and quantum
fluctuations of itinerant electrons has drawn much at-
tention because of its essential role for the realization
of spin liquid (SL) states in organic compounds such
as κ-(BEDT-TTF)2Cu2(CN)3, EtMe3Sb[Pd(dmit)2]2, and
κ-H3(Cat-EDT-TTF)2 [1–3]. In these compounds, dimerized
molecules form layered anisotropic triangular lattices spaced
by insulating nonmagnetic layers. Many theoretical efforts
aimed at understanding the quantum magnetism of anisotropic
triangular-lattice systems have been made with the Heisenberg
model of localized spins in both semianalytical [4–13] and
numerical [14–23] manners. These studies have shown that
the spatial anisotropy in spin exchange interactions gives rise
to an incommensurate spiral magnetic order. It has been also
found that strong quantum fluctuations are induced in the
anisotropy parameter range where the competition between
the commensurate Néel and incommensurate spiral orders
takes place or where the low dimensionality is enhanced by
large anisotropy. These strong fluctuation effects could lead to
quantum nonmagnetic states including SLs, although different
approaches have given different conclusions [5–21] about the
anisotropy parameter range where the SL states appear.

The Hubbard model describes additional fluctuation effects
that come from the itinerancy of electrons, which may also
play an important role on the magnetism of the organic
compounds and other strongly correlated electron systems.
However, the theoretical studies on the anisotropic triangular
Hubbard model [24–38] remain far from consensus due to
the difficulty in dealing with itinerant electron systems with
frustration. In order to reach full understanding of the itinerant
frustrated magnetism on the anisotropic triangular lattice, it is
crucial to properly treat the strong fluctuation effects between
itinerant electrons and the incommensurability of magnetic
orders [7–24,39]. Furthermore, the consistency with the known
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results for the Heisenberg model of localized spins has to be
achieved in the large Hubbard-interaction limit.

In this paper we study the magnetic properties, including
the incommensurability of magnetic orders, of the half-filled
Hubbard model on the anisotropic triangular lattice by means
of the dynamical mean-field theory (DMFT) [40–42]. The
DMFT treats local correlation effects between electrons in a
nonperturbative fashion by mapping the original many-body
problem onto an effective impurity model, which becomes
exact in the limit of lattices with an infinite coordination.
Therefore, the spirit of the approximation is similar to those of
the Weiss molecular field theory for localized spins [43] and
the Gutzwiller approximation for lattice bosons [44,45]. These
“single-site” approximations have offered a good starting
point for understanding the role of fluctuations in quantum
many-body systems. Based on the single-site approximations,
the neglected nonlocal correlations can be taken into account
by, e.g., their cluster extensions [46–52] and perturbative
expansions with collective-mode excitations (such as the
spin-wave theory [53]).

Although several cluster extensions of the DMFT and
the related approaches [32–38] have been already applied to
the Hubbard model on the anisotropic triangular lattice, the
incommensurate magnetic order has not been properly treated
in those studies. Here we describe fully incommensurate
orders by applying a local gauge transformation on the spin
space of the electron operators. Dealing with an effective
impurity model in the spin-rotating frame by means of a solver
based on the density matrix renormalization group (DMRG)
[54–56], we study the effects of dynamical fluctuations on
the incommensurate spin spiral states in the framework of the
DMFT. The zero-temperature phase diagram determined by
our DMFT shows that the incommensurate magnetic order
in insulating states survives the dynamical fluctuations of
electrons in the interaction range from the strong-coupling
(localized-spin) limit down to the insulator-to-metal transition.
This indicates that it is crucial for the study of anisotropic
triangular lattice to properly treat the incommensurability of
the magnetic order. The role of the local, dynamic fluctuations
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FIG. 1. Square-lattice geometry that is topologically equivalent
to the triangular lattice with spatially anisotropic hoppings −t (solid
bonds) and −t ′ (dashed bonds).

in realizing quantum SL states in strongly correlated electron
systems [1,2] will be also discussed.

This paper is organized as follows. In Sec. II we introduce
the Hamiltonian of the model considered here and provide the
procedure of the DMFT calculations in the spin-rotating frame.
In Sec. III we present the phase diagram of the model and show
the behaviors of the magnetic moment and the ordering wave
vector as a function of the system parameters. The role of
the dynamical fluctuations in realizing the SL state is also
discussed. Conclusions are given in Sec. IV.

II. DYNAMICAL MEAN-FIELD THEORY FOR
INCOMMENSURATE SPIRAL ORDERS

A. Model Hamiltonian and the strong-coupling limit

We study the half-filled Hubbard model on a spatially
anisotropic triangular lattice:

H =
∑
ijσ

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓ − μ
∑
iσ

niσ , (1)

where ciσ is an annihilation operator of an electron at site i

with spin σ , U is the on-site Hubbard interaction, μ is the
chemical potential, and niσ = c

†
iσ ciσ . The spin index σ takes

two values, ↑= 1/2 or ↓= −1/2. The spatially anisotropic
triangular lattice is equivalent to the square lattice with one
additional set of diagonal bonds (see Fig. 1). We assume the
hopping integral tij as

tij =
⎧⎨
⎩

−t < 0 (rj − r i = ±e1, ± e2),
−t ′ � 0 [rj − r i = ±(e1 + e2)],
0 (otherwise),

(2)

with e1 = (1,0), e2 = (0,1), and r i being a position vector
of site i. The geometry of the lattice can be viewed as
an interpolation between the square lattice and the one-
dimensional chain by varying t ′/t from 0 to ∞ through the
isotropic triangular lattice at t ′/t = 1.

In the strong coupling limit of U � t,t ′ at half-filling, the
charge degrees of freedom are frozen out, and the Hubbard
model is mapped onto the Heisenberg model with exchange
couplings J = 4t2/U and J ′ = 4(t ′)2/U for solid and dashed
bonds in Fig. 1, respectively. The classical-spin analysis on
the anisotropic triangular Heisenberg model has shown that
the local spins form a magnetic order with the ordering vector

Q = (q,q) where [7,8]

q =
{

arccos(−J/2J ′) (J ′/J > 1/2),
π (J ′/J � 1/2). (3)

Increasing the value of J ′/J from 0 leads to a commensurate-
incommensurate transition occurs at J ′/J = 1/2 (t ′/t =
1/

√
2 ≈ 0.707) from the Néel to incommensurate spiral state.

When J ′/J is increased further, the ordering vector takes
(2π/3,2π/3), which corresponds to a commensurate 120◦
order, at J ′/J = 1 and approaches (π/2,π/2) in the one-
dimensional limit of J ′/J → ∞.

B. Dynamical mean-field theory

Let us now turn to the discussions away from the strong
coupling limit to consider the effects of charge degrees of
freedom on the magnetic orders. In order to deal with the Néel
and spin spiral orders within the framework of DMFT, we
rotate the local phase of the electron operators as

c̃iσ = ciσ eiσ ( Q·r i+φ), (4)

where φ is an arbitrary phase shift. Under this local gauge
transformation, the Hamiltonian becomes

H̃Q =
∑
ijσ

tij e
iσ [ Q·(r i−rj )]c̃

†
iσ c̃jσ + U

∑
i

ni↑ni↓ − μ
∑
iσ

niσ ,

(5)

where niσ = c
†
iσ ciσ = c̃

†
iσ c̃iσ . Each component of spin opera-

tor is transformed as

Sx
i = 1

2
(c†i↑ci↓ + c

†
i↓ci↑)

= 1

2
(c̃†i↑c̃i↓ei( Q·r i+φ) + c̃

†
i↓c̃i↑e−i( Q·r i+φ))

≡ S̃x
i cos( Q · r i + φ) − S̃

y

i sin( Q · r i + φ), (6)

S
y

i = − i

2
(c†i↑ci↓ − c

†
i↓ci↑)

= − i

2
(c̃†i↑c̃i↓ei( Q·r i+φ) − c̃

†
i↓c̃i↑e−i( Q·r i+φ))

≡ S̃x
i sin( Q · r i + φ) + S̃

y

i cos( Q · r i + φ), (7)

Sz
i = 1

2
(c†i↑ci↑ − c

†
i↓ci↓) = 1

2
(c̃†i↑c̃i↑ − c̃

†
i↓c̃i↓) ≡ S̃z

i . (8)

Therefore a magnetically ordered spiral state in the xy plain
can be described by a uniform magnetization 〈S̃x

i 〉 = M

and 〈S̃y

i 〉 = 〈S̃z
i 〉 = 0 in the spin-rotating frame, which is

convenient for the DMFT formulation of the system with
incommensurate spiral orders [57,58].

It is expected for finite U that due to the charge fluctuation
effects, the magnetization M is reduced and the ordering vector
Q = (qx,qy) is shifted from the classical-spin result in Eq. (3).
The local Green’s function for c̃iσ is given by

G(ω) =
(

〈〈c̃i↑; c̃†i↑〉〉ω 〈〈c̃i↑; c̃†i↓〉〉ω
〈〈c̃i↓; c̃†i↑〉〉ω 〈〈c̃i↓; c̃†i↓〉〉ω

)

= 1

N

∑
k

1

(ω + μ)1 − ε Q(k) − �(k,ω)
, (9)
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where N is the number of lattice sites and ε Q(k)
is a diagonal matrix whose component εQσσ (k) =
−2t

∑
ν=x,y cos (kν + σqν) − 2t ′ cos [

∑
ν=x,y (kν + σqν)] is

the single-particle dispersion of c̃iσ . The effects of spatial
and dynamical fluctuations induced by the interactions U

are taken into account through the momentum k = (kx,ky)
and frequency ω dependencies of the self-energy �(k,ω).
In the simple DMFT, the self-energy is approximated as
�(k,ω) ≈ �(ω) to study the local fluctuation effects. Under
the approximation, the problem is mapped onto the single
impurity Anderson model (SIAM) [42], whose Hamiltonian is
given by

HSIAM = Un↑n↓ − μ
∑

σ

nσ +
Nb∑

lσσ ′
(Vlσσ ′a

†
lσ c̃σ ′ + H.c.)

+
Nb∑
lσ

εla
†
lσ alσ , (10)

where c̃σ is an annihilation operator of an electron at impurity
site with spin σ , nσ = c̃†σ c̃σ , alσ is an annihilation operator of
an electron at lth bath orbital with spin σ , and Nb is the number
of bath orbitals. The bath parameters Vlσσ ′ and εl should be
optimized so that the impurity Green’s function

Gimp(ω) = 1

(ω + μ)1 − �(ω) − �(ω)
(11)

is equal to the local Green’s function G(ω) of the original
lattice problem [Eq. (9)] with the replacement of �(k,ω) by
�(ω). Here the hybridization function �(ω) is given by

�(ω) =
∑

l

V l V
†
l

ω − εl

, (12)

where V l is a two-by-two matrix whose component is Vlσσ ′ .
The spin-flip couplings Vl↑↓ and Vl↓↑ are required to describe
the in-plane magnetization M = 〈S̃x〉.

In order to compute the impurity Green’s function Gimp(ω),
we employ the imaginary-time matrix product state solver
[59] based on the DMRG technique, which can treat dozens
of bath orbitals and access zero temperature. In the DMRG
calculations, which provide the ground state of the system,
the SIAM Hamiltonian is arranged in the star geometry
[60], and the truncation error is set to lower than 10−8. The
imaginary-time Green’s function Gimp(τ ) can be computed
from a one-electron (one-hole) excited state [59], which is
obtained by applying a creation (annihilation) operator to the
ground state. For an efficient Fourier transformation of the
Green’s function with respect to τ , we perform the fitting
of each component of Gimp(τ ) in the form

∑
i αie

−βiτ with
the matrix pencil method [61]. This procedure gives the
impurity Green’s function Gimp(ω) on the imaginary axis for
a given set of the bath parameters Vlσσ ′ and εl . The details of
the optimization of the bath parameters under the condition
Gimp(ω) = G(ω) are given in Appendix A.

In addition to the self-consistent optimization of the bath
parameters, one has to determine spin spiral ordering vector Q
so that the energy of the system can be minimized with respect
to Q. The energy of the system E( Q) as a function of Q is

given by the Galitskii-Migdal formula [62]

E( Q) = 1

N

∑
k

∫
C

dω

2πi
Tr

[(
ε Q(k) + 1

2
�(ω)

)
Glatt(k,ω)

]
.

(13)

Here C denotes a contour which surrounds the negative real
axis counterclockwise and Glatt(k,ω) is the lattice Green’s
function of the DMFT which is given by

Glatt(k,ω) = 1

(ω + μ)1 − ε Q(k) − �(ω)
. (14)

This contour integration can be transformed into an integration
over the positive imaginary axis [63]. Note that the minimiza-
tion of the energy function E( Q) with respect to Q can be
also obtained by the stability condition

∂

∂qν

〈H̃Q〉 = 〈jν Q〉 = 0 (ν = x,y), (15)

where jν Q ≡ ∂H̃Q

∂qν
= ∑

ijσ iσqνtij (νi − νj )c̃†iσ c̃jσ is the spin
current operator in the ν direction. Here νi is the ν component
of the vector r i = (xi,yi).

The local quantities including the filling
∑

σ 〈nσ 〉 and the
spin moments 〈S̃〉 can be directly calculated from the local
Green’s function G(ω) with the optimized values of the bath
parameters and the ordering vector Q. In order to consider the
half-filled case, the chemical potential μ has to be numerically
tuned so that

∑
σ 〈nσ 〉 = 1 since the system for t,t ′ �= 0 does

not possess the particle-hole symmetry.
Using the above-mentioned DMFT procedure in the spin-

rotating frame, one can describe the insulating state with an
incommensurate spiral magnetic order and the commensurate
Néel and 120◦ antiferromagnetic states, as well as metallic
states. In the following, we will mainly discuss the charge
fluctuation effects on the magnetic properties of the insulating
states in the region of large but finite values of U . The
possibility of the d-wave superconducting state [32] for
intermediate U/t is out of the scope of this paper since spatial
correlations are neglected.

III. MAGNETIC ORDERS AND METAL-INSULATOR
TRANSITIONS

A. Magnetic phase diagram

In Fig. 2 we show the ground-state phase diagram
obtained by the DMFT calculations in the spin-rotating
frame. The phase diagram consists of three phases: the
Néel-antiferromagnetic and spin-spiral insulators as well as a
nonmagnetic-metal phase. The magnetic orders of the former
two are characterized by the ordering vector Q = (π,π ) and
Q = (q,q) with π/2 < q < π , respectively. In Fig. 3 we show
the chemical potential dependence of the filling

∑
σ 〈nσ 〉 for a

typical spin-spiral insulator and metallic states. It can be seen
that the slope is zero in a finite range of μ in the spin spiral
state, which indicates the opening of a charge gap.

Figure 4 shows how the anisotropy t ′/t affects the magnetic
orders in the insulator phases at strong interactions. When
t ′/t = 0, the system is reduced to the simple square-lattice
Hubbard model, which is well known to exhibit a robust
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FIG. 2. Magnetic phase diagram of the half-filled Hubbard model
on the anisotropic triangular lattice. The line with blue circles (green
squares) represents a first-order (second-order) transition boundary.
The spin spiral phase has an incommensurate magnetic order except
at t ′/t = 1 (dashed line)

Néel order due to the perfect nesting of the itinerant electron
Fermi surface. As shown in the lower panel of Fig. 4, even if
the lattice geometry is changed by finite t ′/t , the Néel order
with commensurate wave vector (π,π ) persists up to a certain
critical value (t ′/t)c. For t ′/t > (t ′/t)c, the minimum of the
energy function E( Q) is shifted from (π,π ) to an incommen-
surate momentum (q,q) as shown in Fig. 5, which indicates a
transition to a state with an incommensurate magnetic order. As
t ′/t increases, the value of q continuously moves away from
π and reaches 2π/3 at the isotropic triangular-lattice point
t ′/t = 1. The wave vector Q = (2π/3,2π/3) corresponds
to a commensurate (three-sublattice) 120◦ order expected
in triangular-lattice antiferromagnetic systems [64–67]. For
a dominant diagonal hopping t ′ > t , the value of q further
decreases and approaches π/2 in the one-dimensional limit of
t ′ > t → ∞.

This behavior of magnetic order as a function of the
anisotropy t ′/t for large U/t is consistent with the classical-
spin analysis of the antiferromagnetic Heisenberg model on

FIG. 3. Chemical potential μ dependencies of filling
∑

σ 〈nσ 〉 at
t ′/t = 0.9. The line with blue circles (green squares) corresponds to
spin spiral (metal) phase at U/t = 9.0 (U/t = 8.0). Here μhalf is the
value of the chemical potential when

∑
σ 〈nσ 〉 = 1.

2/3

FIG. 4. Upper panel: Diagonal hopping t ′ dependence of energy
per site at U/t = 10. Middle panel: The hopping dependence of
magnetic moment M . Lower panel: The hopping dependence of
ordering vector parameter q.

the anisotropic triangular lattice [7,8,11]. In fact, the ordering
vector (q,q) and the magnetic moment M approach the
classical-spin results Eq. (3) with J ′/J = (t ′/t)2 and M =
S = 1/2 in the limit of the infinite Hubbard interaction U/t →
∞. This agreement is not surprising since the DMFT neglects
the spatial fluctuations (the k dependence) in the self-energy
�(k,ω) as in classical-spin systems. Therefore, the reduction
of the magnetic moment M shown in the middle panel of
Fig. 4 is purely the result of the local, dynamical fluctuations
that stem from the itinerant charge degrees of freedom. The
magnetic moment M exhibits a dip at the transition point
between the commensurate Néel and incommensurate spiral
phases, although the reduction from M = S is at most only
∼10%. In the spiral phase, the curve of M shows a peak (at
t ′/t ∼ 0.8 in the case of Fig. 4), and then decreases as t ′/t

increases.

FIG. 5. The ordering vector dependence of the energy function
E(q,q) at U/t = 10.0 and t ′/t = 0.75. The bath parameters are
optimized for each value of q.
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FIG. 6. Upper panel: Hubbard interaction U dependence of
energy per site at t ′/t = 0.9. The vertical dashed line represents the
first-order transition point. Middle panel: The interaction dependence
of magnetic moment M . Lower panel: The interaction dependence of
ordering vector parameter q.

On decreasing the interaction U/t , the system with t ′/t > 0
undergoes a first-order transition from a magnetic insulator to
a metallic state at a certain value of U/t . This is because
the perfect nesting condition of the half-filled square lattice
is violated for t ′/t �= 0, and finite U/t is required to stabilize
magnetic orders. As shown in Fig. 6, the magnetic moment
M suddenly vanishes at the metal-insulator transition point.
In our DMFT analysis, no magnetic metal state is found
between the magnetic insulator and nonmagnetic metal phases
in the parameter range of the phase diagram in Fig. 2. This is
consistent with the previous studies in Refs. [25–35,37,38,68],
although several works including the Hartree-Fock mean-
field analysis [24] and the variational cluster approach [36]
have predicted the existence of magnetic metal phases for
intermediate interactions.

B. Dynamical property: Density of states

By fitting the self-energy on the imaginary axis, we can
derive the lattice Green’s functions on the real axis (see
Appendix B), which allow for accessing dynamical properties
of the system, e.g., density of states (DOS). Figure 7(a) shows
the U/t dependence of the ground-state DOS for t ′/t = 1 (the
isotopic triangular lattice). Reflecting the band structure of the
triangular lattice, the single-particle (U/t = 0) DOS does not
possess the particle-hole symmetry even at half-filling and one
can see a van Hove singularity in the particle excitations. When
the Hubbard interaction U/t is finite but still small, the DOS
has a finite value at the Fermi level, which indicates that the
systems remains in the nonmagnetic metallic phase. Once the

FIG. 7. (a) Density of states at the triangular point t ′/t = 1.0 for
different values of the Hubbard interaction U/t = 0 (free electrons),
U/t = 4.0 (nonmagnetic metal), U/t = 9.0 (120◦ antiferromagnetic
insulator), and U/t = 20.0 (120◦ antiferromagnetic insulator). (b)
Density of states at U/t = 9.0 for different values of the anisotropic
parameter t ′/t = 0 (Néel insulator), t ′/t = 0.5 (Néel insulator),
t ′/t = 0.8 (incommensurate spiral insulator), and t ′/t = 1.2 (incom-
mensurate spiral insulator).

interaction gets strong enough to induce the phase transition
to the anitiferromagnetic insulating phase, the spectral gap
opens at the Fermi level and the weights around ω = ±U/2
get larger. The enhancement of the weights around ω = ±U/2
becomes more pronounced for U/t � 1 [see the bottom panel
of Fig. 7(a)], which indicates the formation of upper and lower
Hubbard bands.

In Fig. 7(b) we show the change in the DOS shape as
the value of t ′/t increases when the system is in magnetic
insulating phase at U/t = 9. For the isotropic square lattice
(t ′/t = 0), the DOS possesses the particle-hole symmetry and
has large weights at the edge of the spectral gap reflecting the
van Hove singularity in the bare DOS at the Fermi level. Once
the diagonal hopping element t ′ is introduced, the system loses
the particle-hole symmetry since the lattice structure becomes
no longer bipartite. As the value of t ′/t increases from 0, the
position of the van Hove singularity in the bare DOS shifts
toward the ω > 0 side, and, as a result, the DOS weights of
particle excitations become higher and thinner compared to
the hole-excitation (ω < 0) side.

C. Possible spin liquid: Spatial and dynamical fluctuations

The possibility of quantum SLs on anisotropic triangular
lattice has been discussed in both localized-spin systems
[5–21] and insulating yet barely itinerant electrons [25–38,68].
In those strongly correlated electron systems, two types of
quantum fluctuation effects play a key role for “quantum
melting” of conventional magnetic long-range order: strong
spatial fluctuations due to the frustrated lattice geometry and
dynamical charge and spin fluctuations due to the itinerancy
of electrons.

The former effects have been studied in terms of the
Heisenberg model of localized spins with anisotropic exchange
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J and J ′ (or the half-filled Hubbard model in the large
U/t limit) [4–21,23]. Of particular interest is the anisotropy
range where the classical spin configuration changes from
the commensurate Néel to incommensurate spiral phase.
The linear spin-wave theory has shown that the spin-wave
velocity along the (k,k) direction vanishes at the Néel-spiral
transition [7,8], which indicates that the magnetic order is
destroyed by long-wavelength excitations. However, different
approximations including several types of spin-wave theories
[9], Schwinger-boson mean-field method [11], and series-
expansion approach [23] have led to different conclusions
on the search of SL phases in this anisotropy region, and
more sophisticated numerical studies [14,18] have been very
limited. In the region where the anisotropic triangular lattice
can be regarded as weakly coupled chains (J ′/J > 1), the
fate of the classical spiral state under the influence of
quantum fluctuations has been examined by various numerical
calculations, which have suggested the emergence of nontrivial
ground states including essentially one-dimensional (gapless)
SLs [5,6,16–20], a gapped SL close to the isotropic point
[16,17], and a collinear antiferromagnetically ordered state
[4,12].

On the other hand, the effects of the local, dynamical
fluctuations unique to itinerant electrons has been discussed
separately from the spatial fluctuations in our present DMFT
analysis on the Hubbard model with finite values of U/t . For
the Hubbard model, the previous study with a cellular DMFT
[32] has shown that a nonmagnetic SL state may appear in a
wide range of the anisotropy parameter, 0.9 � t ′/t < 1.2, for
large U/t . However, it should be noted that such real-space
cluster-based approximations [32,34–36] can describe only
a commensurate magnetic order allowed by the size of the
assumed cluster (four sites in Ref. [32]). The phase diagram
obtained by our DMFT in the spin-rotating frame (Fig. 2)
shows that the incommensurate spiral phase persists until it
undergoes a first-order transition to the metallic phase, and no
SL phase is formed only by the local quantum fluctuations due
to the itinerant change degrees of freedom.

It is noted that increasing the parameter t ′/t gives a larger
bandwidth as well as bigger anisotropy. In order to extract
only the anisotropy effects, here we renormalize the Hubbard
interaction U by the bandwidth

W =
{

8t (t ′/t < 1/2),
(2t ′ + t)2/t ′ (t ′/t � 1/2).

(16)

In Fig. 8 we present the same magnetic phase diagram as Fig. 2
but as a function of U/W . It can be seen that the metal-insulator
transition requires the strongest Hubbard interaction (in units
of W ) at the isotropic triangular-lattice point. However, it
should be noticed that this does not mean that the magnetic
long-range order is most fragile at t ′/t = 1 in the spiral phase.
Figure 9 shows the t ′/t dependence of the magnetization M

when U/W is fixed. One can see that as t ′/t increases, the
magnetization M shows a shallow dip around t ′/t ≈ 0.5 and
then exhibits a maximum at the isotropic triangular-lattice
point in the spiral phase. A similar suppression of fluctuations
at the isotropic triangular-lattice point has also been reported
in the studies of the Heisenberg model. The linear spin-wave
analysis [7,8], the Schwinger boson mean-field approach [11],

FIG. 8. The same as Fig. 2 but with the vertical axis in units of
the bandwidth W .

and the coupled cluster method [14] have all shown that
the spatial spin fluctuations on the spiral magnetic order
is most suppressed at the isotropic triangular-lattice point.
Surprisingly, Fig. 9 shows that the value of M for the triangular
lattice is even larger than that for the square lattice. Basically,
mean-field order in the large-U regime is more robust for the
lattice with a larger coordination number z. Nevertheless, it is
known that the spatial spin fluctuation on the antiferromagnetic
order is much stronger for the triangular lattice (z = 6) than
that for the square lattice (z = 4) since the effects of strong
geometric frustrations enhance the spatial fluctuations on the
120◦ order of the triangular lattice. On the other hand, the
DMFT results shown in Fig. 9 might indicate that this is
not the case for the local dynamic fluctuations of itinerant
electrons since nonlocal correlation effects are omitted from
the self-energy �(ω).

In order to reach the final conclusion on the ground-state
magnetic property of the Hubbard model for generic values
of t ′/t , it is required to take into consideration the interplay
of both the spatial and dynamical fluctuations and compare
the energies of incommensurate spiral state and SL (or the
other candidate) states. Given our DMFT results and the

FIG. 9. Magnetization M as a function of t ′/t for U/W = 2.0
(upper panel) and U/W = 1.0 (lower panel).
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previous studies on the Heisenberg model, we can conclude
that the commensurate 120◦ magnetic order at the isotropic
triangular-lattice point is most robust, compared to the other
incommensurate spiral states, against both the dynamic and
spatial fluctuations. Nevertheless, as seen in the phase diagram
of Fig. 8, it is most unstable against the transition into metallic
phase when the interaction strength U/W decreases. These
facts indicate that the realization of quantum SLs in the
Hubbard model is most unlikely when t ′/t = 1 in spiral
phases, although the above discussion cannot rule out the
possibility of a SL ground state [25–27,30–36] induced by
some synergistic effects of dynamic and spatial quantum
fluctuations.

On the other hand, our DMFT calculation shows that the
local, dynamic fluctuations strongly reduce the magnetization
M when the anisotropy parameter increases from t ′/t = 1,
which is attributed to the enhancement of low dimensionality.
In addition, the curve of M is slightly suppressed in the
vicinity of the transition point between the Néel and spiral
phases (see a dip around t ′/t ∼ 0.5 in Fig. 9), although the
reduction effect is very small. The magnetization reduction due
to the dynamic fluctuations in these two anisotropy parameter
regions could help the emergence of the SLs expected in the
studies on the same parameter regions of the Heisenberg model
[5–11,16–20].

IV. CONCLUSION

In this paper we studied the effects of the itinerant electron
degrees of freedom on the magnetic properties of the systems
on the anisotropic triangular lattice that interpolates from the
square lattice (t ′/t = 0) to decoupled one-dimensional chains
(t ′/t → ∞) via the isotropic triangular lattice (t ′/t = 1).
We performed a local gauge transformation that rotated the
spin-quantization axis into the direction of the magnetic
moment at each site to properly describe an incommensurate
spin spiral order. Working in the spin-rotating frame and using
the imaginary-time matrix product state solver [59] based on
the DMRG, we determined the magnetic phase diagram of
the half-filled anisotropic-triangular Hubbard model at zero
temperature in the framework of the DMFT. It was found
that the metal-insulator transition for t ′/t �= 0 takes place at a
nonzero value of U/t due to the lack of perfect nesting, and
in a discontinuous (first-order) fashion. When the anisotropy
parameter t ′/t increases from 0 in the insulating state at
a fixed value of U/t , the ordering vector of the magnetic
long-range order changes from the commensurate value (π,π )
to an incommensurate one (q,q) at t ′/t ∼ 0.7, and gradually
goes to (π/2,π/2) as t ′/t → ∞.

In the vicinity of the transition between the commensurate
Néel and incommensurate spiral states, the magnetic moment
reduction caused by the fluctuation effects is slightly pro-
nounced. Moreover, for large values of t ′/t , the magnetic
moment decreases rapidly with t ′/t due to the enhancement of
low dimensionality. Although no nonmagnetic insulating state
was formed only by the local, dynamic fluctuations considered
in the DMFT, these fluctuation effects could support the
emergence of quantum SL ground states in the Hubbard model
when taking into consideration the strong spatial fluctuations
in the same anisotropy parameter regions [5–11,16–20]. It

is noteworthy that in the isotropic triangular lattice the 120◦
magnetic insulator undergoes a sudden first-order transition
into nonmagnetic metal with relatively large interaction U/W

(compared to that of the other spiral magnetic states at
t ′/t �= 1), whereas the magnetic long-range order just before
the transition is still robust. This fact is disadvantageous to the
emergence of nonmagnetic insulating states in the isotropic
triangular-lattice Hubbard systems.

The inclusion of nonlocal fluctuation effects has been
partially carried out by real-space cluster extensions of DMFT
[32,33], which have, however, treated only commensurate
magnetic orders allowed within the assumed cluster shape.
As was pointed out in the present study, incommensurability
of magnetic order is essential for the magnetic property
of the anisotropic triangular-lattice systems, and moreover,
long-wavelength fluctuations are important for the breaking
of long-range magnetic orders according to linear spin-wave
predictions [7,8]. Our present DMFT calculations in the
spin-rotating frame provide a solid physical and mathematical
basis for further study in this direction, e.g., with diagrammatic
extensions of DMFT [69,70], which can include the effects
of long-range quantum correlations through diagrammatic
correction, or reciprocal space cluster extensions of DMFT
such as the dynamical cluster approximation [71], which does
not break the periodicity of original lattices.
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APPENDIX A: HOW TO OPTIMIZE BATH PARAMETERS

From Eqs. (11) and (12), the self-consistent condition of
the DMFT, Gimp(ω) = G(ω), can be rewritten as

∑
l

V l V
†
l

ω − εl

= ω + μ − �(ω) − G−1(ω). (A1)

Using Eq. (A1) we adjust the bath parameters Vlσσ ′ and εl in an
iterative manner: First, the SIAM in Eq. (10) is solved by the
DMRG technique given in Sec. II B, and the self-energy �(ω)
is extracted by the calculated Gimp(ω) via Eq. (11). Substituting
�(ω), one can evaluate the right-hand side of Eq. (A1). [Note
that the self-energy �(k,ω) in G(ω) should be replaced by
�(ω) in the DMFT.] Then a new set of Vlσσ ′ and εl is given
by fitting the evaluated right-hand-side value in the form of
the left-hand side as a function of ω. Using the updated bath
parameters we solve again the SIAM by the DMRG technique,
and the procedure is repeated until convergence is reached. The
convergence criterion used in this study is∑

ω

‖�(ω) − �′(ω)‖ < 5 × 10−3t, (A2)

where �(ω) and �′(ω) are the hybridization function∑
l(V l V

†
l )/(ω − εl) with the bath parameters before and after
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a single step of the DMFT iteration. Here we take the summa-
tion over a set of 200 sample points ω = (0.1it,0.2it, . . . ,20it)
on the imaginary axis.

The fitting of both sides of Eq. (A1) for updating the bath
parameters is performed by minimizing the distance function

d =
∑

ω

∥∥∥∥∥
∑

l

V l V
†
l

ω − εl

− [ω + μ − �(ω) − G−1(ω)]

∥∥∥∥∥. (A3)

Since the distance function is nonconvex, the minimization
by ordinary gradient methods is practically difficult (see the
Supplemental Material of Ref. [72]). Thus, to perform the
minimization in an efficient way, we use the vector fitting
(VF) method [73,74], which gives a fitting of the numerical
data for the right-hand side of Eq. (A1) with a rational
expression

∑
l Al/(ω − εl). The matrix V l can be obtained

by the Cholesky decomposition of the matrix Al . It should be
noted that if the number of the bath orbitals Nb (the number of
the bath parameters) is too large, the VF method may provide
a nonpositive definite matrix Al , which cannot be decomposed
by the Cholesky decomposition, and/or a complex value for εl

due to “overfitting.” To avoid it, we try the fittings with different
Nb (typically up to Nb ∼ 25 in the present study), and choose
the best fitting out of them. The value of the distance function
d for the 200 ω points is smaller than 10−4t throughout the
calculations.

APPENDIX B: LATTICE GREEN’S FUNCTIONS ON THE
REAL FREQUENCY AXIS

In order to numerically calculate the lattice Green’s func-
tions on the real frequency axis, we first fit the self-energy of
the DMFT �(ω) in the form

�(ω) =
n∑
i

θ iθ
†
i

ω − λi

+ �∞. (B1)

Here θ i is a two-by-two matrix, λi is a real pole of the self-
energy, and �∞ denotes the self-energy in the high-frequency
limit, which is given by [75]

�∞ =
(

U 〈n↓〉 −U 〈c̃†↓c̃↑〉
−U 〈c̃†↑c̃↓〉 U 〈n↑〉

)
. (B2)

Fitting the numerical data for �(ω) with the parameters θ i and
λi is performed in the similar way to that for the hybridization
function in Appendix A.

From the self-energy in the form of Eq. (B1), we can obtain
the Lehmann representation of the lattice Green’s function on

the real frequency axis as follows [76]. We introduce a matrix

A =
[

(ω + μ)1 − �∞ −
n∑
i

θ iθ
†
i

ω − λi

]−1

. (B3)

The matrix A is also given as the upper left block of a block
matrix⎡

⎢⎢⎢⎢⎢⎢⎣
ω1 −

⎛
⎜⎜⎜⎜⎜⎜⎝

�∞ − μ1 θ1 θ2 · · · θn

θ
†
1 λ11 0 · · · 0

θ
†
2 0 λ21

. . .
...

...
...

. . .
. . . 0

θ
†
n 0 · · · 0 λn1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

≡ [ω1 − U�U†]−1

= U
1

ω1 − �
U†, (B4)

where U and � are a unitary matrix and a diagonal matrix,
respectively. Therefore, the matrix A can be expressed as

A = θ ′ 1

ω1 − �
θ ′†, (B5)

with θ ′ being the first two rows of U .
From the definition of A in Eq. (B3), the lattice Green’s

function is given in the Lehmann representation as

Glatt(ω,k) = 1

(ω + μ)1 − ε Q(k) − �(ω)

= 1

A−1 − ε Q(k)

= 1(
θ ′ 1

ω1−�
θ ′†)−1 − ε Q(k)

= θ ′ 1

ω1 − (� + θ ′†ε Q(k)θ ′)
θ ′†

= θ ′ 1

ω1 − U ′
k�

′(k)U ′†
k

θ ′†

= θ ′U ′
k

1

ω1 − �′(k)
U ′†

k θ ′†, (B6)

where U ′ and �′ are a unitary matrix and a diagonal matrix,
respectively. Now one can numerically calculate the DOS

D(ω) = 1

2π

∑
k

lim
η→0

Tr ImGlatt(ω + iη,k)

= 1

2

∑
k,i

δ[ω − �′
ii(k)]Tr[θ ′u′

iku′†
ikθ

′†], (B7)

where u′
ik is the ith column of the matrix U ′

k.
In order to obtain Fig. 7, we expand the delta functions in

Eq. (B7) as the sum of 5 × 103 Chebyshev polynomials with
the Jackson kernel which damps the Gibbs oscillations [77].
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