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The high-temperature superconducting state in cuprates appears if charge carriers are doped into a Mott-
insulating parent compound. An unresolved puzzle is the unconventional nature of the normal state above
the superconducting dome and its connection to the superconducting instability. At weak hole doping, a
“pseudogap” metal state with signatures of time-reversal symmetry breaking is observed, which near-optimal
doping changes into a “strange metal” with non-Fermi-liquid properties. Qualitatively similar phase diagrams
are found in multiorbital systems, such as pnictides, where the unconventional metal states arise from a
Hund-coupling-induced spin freezing. Here, we show that the relevant model for cuprates, the single-orbital
Hubbard model on the square lattice, can be mapped onto an effective multiorbital problem with strong
ferromagnetic Hund coupling. The spin-freezing physics of this multiorbital system explains the phenomenology
of cuprates, including the pseudogap, the strange metal, and the d-wave superconducting instability. Our analysis
suggests that spin/orbital freezing is the universal mechanism which controls the properties of unconventional
superconductors.
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I. INTRODUCTION

Hund-coupling effects, in particular spin freezing [1],
produce remarkable phenomena in correlated multiorbital
systems [2]. The emergence of magnetic moments in the
correlated metal phase leads to characteristic non-Fermi-liquid
properties [1]. At low enough temperature, the fluctuating local
moments can trigger a symmetry breaking to unconventional
superconducting or excitonic states, which generically border a
magnetically ordered phase [3,4]. The spin-freezing crossover
occurs in a narrowly defined range of fillings and interaction
strengths, and the remarkable fact is that many unconventional
multiband superconductors fall into this parameter region.
Examples are iron pnictides [5–8], chromium-based super-
conductors [9], strontium ruthenates [1,2,4], and uranium-
based compounds [3]. In fulleride superconductors [10,11],
where the effective Hund coupling is negative [12] and the
roles of spin and orbital are in some sense exchanged, the
unconventional superconducting state is associated with an
orbital-freezing phenomenon [13]. A conspicuous exception
from this almost exhaustive list of unconventional supercon-
ductors is the cuprates, which are typically discussed in terms
of a single-band Hubbard model, where the Hund interaction
does not appear.

Here, we introduce a basis transformation which maps the
two-dimensional (2D) single-orbital Hubbard model onto a
two-orbital model with ferromagnetic Hund coupling. The
spin-freezing physics of this two-orbital system explains the
pseudogap and bad-metal state of the weakly doped Hubbard
model and the crossover to Fermi-liquid properties near
optimal doping. We will also show that the slow local moment
fluctuations associated with spin freezing provide the glue for
d-wave pairing.

II. MODEL AND METHOD

We consider the 2D Hubbard model with on-site interaction
U , nearest-neighbor hopping t , and next-nearest-neighbor

hopping t ′,

H =
∑

i

Uni↑ni↓ −
∑

i

μ(ni↑ + ni↓)

− t
∑

〈i,j〉,σ
(d†

iσ djσ + H.c.) − t ′
∑

〈〈i,j〉〉,σ
(d†

iσ djσ + H.c.).

(1)

Here, i and j are site indices, 〈i,j 〉 denotes nearest-neighbor
pairs, and 〈〈i,j 〉〉 next-nearest-neighbor pairs. The density
operator is nσ = d†

σ dσ and the chemical potential is μ.
This model is a fundamental model of cuprate supercon-
ductors, since it describes the physics of the copper-oxygen
plane. More specifically, the single band corresponds to
the strongly hybridized antibonding combination of Cu
dx2−y2 and O px and py orbitals. A typical parameter
choice is U ≈ 8t and t ′ ≈ −0.3t [14]. Since there is only
a single orbital per site, Hund-coupling effects such as
spin freezing have not been discussed in connection with
cuprates.

Instead, because of the strong antiferromagnetic
correlations and the d-wave nature of the superconducting
state, the physics of the plaquette, illustrated in the left-hand
panel of Fig. 1, plays a prominent role. This plaquette is the
building block for 4-site cluster dynamical mean field theory
(DMFT) calculations [15,16], which have been extensively
used to investigate the 2D Hubbard model and which have
produced phase diagrams in qualitative agreement with that
of cuprates [17].

To analyze the physics of the plaquette and the 2D Hubbard
model from a multiorbital perspective, we perform a basis
transformation to bonding/antibonding orbitals, as illustrated
in Fig. 1. If the sites are numbered in an anticlockwise fashion
starting from the bottom left, the transformed orbitals are

2469-9950/2016/94(24)/245134(9) 245134-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevB.94.245134


WERNER, HOSHINO, AND SHINAOKA PHYSICAL REVIEW B 94, 245134 (2016)

single site
approx.

t 2t

t’
G0,ij

c

f

U J~
U’~
U~

δ

basis
transf.

DMFT
embedding

FIG. 1. Illustration of the mapping of the plaquette with nearest-neighbor hopping t and diagonal hopping t ′ onto a coupled pair of
two-orbital models. If U is the on-site interaction on the plaquette, the two-orbital system has a Slater-Kanamori type interaction with
Ũ = Ũ ′ = J̃ = U/2. The diagonal hopping translates into a crystal-field splitting δ = 2t ′. The third panel shows the self-consistent embedding
of the two-orbital system into a noninteracting bath described by (G0)ij , and the rightmost panel the simplification to a single-site two-orbital
impurity problem.

defined as follows:

c1 = 1√
2

(d1 + d3), c2 = 1√
2

(d2 + d4), (2)

f1 = 1√
2

(d1 − d3), f2 = 1√
2

(d2 − d4). (3)

This transformation maps the plaquette onto a pair of two-
orbital systems, with a hopping of 2t between the antibonding
(c) orbitals and no hopping between the bonding (f ) orbitals.
The interactions between the two orbitals on a given site are
of the “Slater-Kanamori” type,

H̃loc =
∑

γ=c,f

{Ũnγ↑nγ↓ − [μ + (−1)γ t ′](nγ↑ + nγ↓)}

+
∑

σ

[Ũ ′ncσnf σ̄ + (Ũ ′ − J̃ )ncσnf σ ]

− J̃ [c†↓f
†
↑f↓c↑ + f

†
↑f

†
↓c↑c↓ + H.c.], (4)

but with unconventional parameters Ũ = Ũ ′ = J̃ = U/2 [18].
In particular, the ferromagnetic Hund-coupling parameter J̃ of
these two-orbital systems is very large. The effect of the diag-
onal hopping t ′ is to produce a chemical potential shift �μ =
±t ′ for the c and f orbitals, i.e., a crystal-field splitting of
δ = 2t ′ in the two-orbital model language. In H̃loc, (−1)γ = 1
for the c orbital and −1 for the f orbital.

In cluster DMFT (CDMFT) [15], the plaquette is coupled to
a self-consistently determined bath of noninteracting electrons,
which mimics the effect of the intercluster hopping processes.
The Weiss Green’s function G0 is the Green’s function of
the noninteracting embedded plaquette, and by virtue of
the DMFT construction [19] describes the propagation via
intracluster and intercluster hoppings. Due to the symmetries
of the plaquette (refer to the Appendix), the only nonzero
elements are (G0)cicj

(i 	= j ) and the on-site terms (G0)cici

and (G0)fifi
(i = 1,2), as shown in the third panel. [The

(G0)fifi
elements originate from the intracluster hopping in

the transformed basis.]
The structure of G0 suggests a single-site DMFT approx-

imation based on a two-orbital model, as sketched in the
right-hand panel of Fig. 1. We thus end up with an effective

description in terms of

H2orbital = − t̃c
∑

〈i,j〉,σ
(c†i,σ cj,σ + H.c.)

− t̃f
∑

〈i,j〉,σ
(f †

i,σ fj,σ + H.c.) +
∑

i

H̃loc,i , (5)

with the local part of the Hamiltonian defined in Eq. (4) and t̃c,
t̃f appropriate hopping amplitudes for the c and f electrons.
To obtain realistic values for the hopping parameters, we
calculated the local density of states (DOS) for the c and
f electrons from the CDMFT solution of the noninteracting
model; see Fig. 2. If t ′ = 0 [panel (a)], the square root of the
variance is 2.45t for the c-DOS and 1.41t for the f -DOS. For
t ′ = −0.3t [panel (b)], the f -DOS is shifted down, while the
c-DOS is shifted up.

Because single-site DMFT simulations produce the generic
behavior of a high-dimensional system irrespective of the
details of the DOS, we can further simplify the problem by
choosing semicircular DOS with the proper bandwidth (W )
ratio Wc/Wf = 1.74. For this choice of DOS, the DMFT self-
consistency condition becomes �γγ = (Wγ /4)2Gγγ (γ =
f,c), where the hybridization function � is related to the Weiss
Green’s function G0 by G−1

0,γ γ (iωn) = iωn + μ − �γγ (iωn)
[19]. We solve the DMFT equations using the matrix version
[20] of the hybridization expansion continuous-time Monte
Carlo technique [21] and use Wc ≡ W as the unit of energy.

III. SPIN FREEZING AND NON-FERMI-LIQUID METAL

The emergence of frozen local moments in multiorbital
models with Hund coupling profoundly affects the metal
state close to the half-filled Mott insulator [1]. It is therefore
interesting to explore the properties of model (5) as one dopes
this system away from the half-filled Mott insulator. We first
discuss the results obtained for the semicircular DOS and
δ = 0. To work in the relevant interaction regime of the two-
orbital system, we choose U/W = 1.25, which is somewhat
larger than the Mott critical value Uc/W = 0.98 (1.03) of the
half-filled system at inverse temperature βW = 200 (800).

Since spin-freezing physics leaves clear traces in the
frequency dependence of the self-energy [1] it is instructive to
analyze the doping evolution of the self-energies. Figure 3(a)
plots −Im�ff (iωn) for different fillings and temperatures.
Let us characterize the low-frequency behavior by the fit

245134-2



SPIN-FREEZING PERSPECTIVE ON CUPRATES PHYSICAL REVIEW B 94, 245134 (2016)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-6 -4 -2  0  2  4  6

ω/t

(a)

t’=0

c-DOS
semicircle

f-DOS
semicircle

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-6 -4 -2  0  2  4  6

ω/t

(b)

t’=-0.3t

FIG. 2. Noninteracting DOS for the c and f electrons extracted from a noninteracting plaquette CDMFT calculation (symbols) and
semicircular DOS with identical variance. (a) Model with t ′ = 0. Black lines show the fit functions used in the realistic-DOS simulations.
(b) Realistic DOS for the model with t ′ = −0.3t (symbols) and semicircular DOS with a crystal-field splitting δ = 0.075W . The arrows indicate
the centers of the bands at energy −0.34t and 0.26t , respectively.

Im �(iωn) = b(ωn)α . The doping-dependent exponents α,
displayed in Fig. 3(b), exhibit a minimum near half filling,
which we use to define the boundary of the spin-frozen
regime. The minimum appears because the self-energy in the
spin-frozen regime shows a more linear frequency dependence,
similar to a Mott insulator with chemical potential away from
the particle-hole symmetric value. At low temperatures, this
definition of the spin-frozen regime somewhat underestimates
its extent compared to the definition based on the fitting
function c + b(ωn)α [1], but this detail is not important for
the following discussion.

In the semicircle DOS calculations, the exponents extracted
from the c- and f -electron self-energies are similar, with
somewhat enhanced spin-freezing effects for f . Stable local
moments exist only in a rather narrow doping range of a few
percent. Within single-site DMFT, this doping range increases
slightly with increasing temperature. We can also roughly

determine the doping range associated with the bad-metal
state by using the criterion α < 0.5 for the incoherent region.
The spin-freezing and bad-metal crossover lines are indicated
by dashed black lines with open and full circles in the
temperature-filling phase diagram of Fig. 4(a), where we
assumed a bandwidth of 2 eV (relevant for La2CuO4 [22]),
to translate temperature into K.

The single-site DMFT analysis demonstrates that our ef-
fective 2-orbital model, despite the modified Slater-Kanamori
interaction with Ũ = Ũ ′, the unusually large value of J̃ = Ũ ,
and the different bandwidths for the c and f electrons, exhibits
the characteristic spin-freezing behavior and non-Fermi-liquid
properties expected for multiorbital systems in the vicinity
of the half-filled Mott insulator [1,4,7,23,24]. Going back
from the c/f - to the original d-fermion description, it follows
that the freezing of a composite spin formed on diagonally
opposite sites of the plaquette is a fundamentally important
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FIG. 3. Doping dependence of the self-energy revealing the non-Fermi-liquid behavior and spin-freezing crossover. (a) f -electron self-
energies for U/W = 1.25, δ = 0 and indicated inverse temperatures β. The low-frequency behavior of the self-energy indicates a crossover
to a spin-frozen state around filling n = 0.98 at the higher temperature. The black dashed line is proportional to (ωn)1/2. (b) Exponents α

extracted from the fits −Im�(iωn) = b(ωn)α at the lowest two Matsubara frequencies. Both the results for the f (full symbols) and c electron
(open symbols) are shown. For comparison, we also plot by dashed black lines the exponents obtained for the calculation with realistic DOS
at βW = 240. (c) Analogous exponents extracted from the CDMFT calculation.

245134-3



WERNER, HOSHINO, AND SHINAOKA PHYSICAL REVIEW B 94, 245134 (2016)

 0

 50

 100

 150

 200

 250

 300

 0.75  0.8  0.85  0.9  0.95  1

te
m

pe
ra

tu
re

 (
K

) 
[W

 =
 2

 e
V

]

filling

(a)

max. Δχloc

f

c

δ=0

frozen moments (pseudo-gap)
bad metal crossover
antiferromagnetism

 0

 50

 100

 150

 200

 250

 300

 0.75  0.8  0.85  0.9  0.95  1

te
m

pe
ra

tu
re

 (
K

) 
[W

 =
 2

 e
V

]

filling

(b)

CDMFT, t’=0

max. χstathalf-max. χstat

frozen spins (pseudo-gap)
bad metal crossover

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.2  0.4  0.6  0.8  1

co
rr

el
at

io
n 

fu
nc

tio
ns

τ/β

(c)

nn

nnn

nnn/nn

FIG. 4. Phase transitions and crossover lines in the doping-temperature phase diagram. Here, we assume a bandwidth of 2 eV to translate the
temperature into K. (a) Results from single-site DMFT simulations of the effective 2-orbital model with solid lines corresponding to δ = 0.075W

and dashed lines to δ = 0. (b) Crossover lines extracted from the behavior of the f -electron self-energy (black) and f -electron Sz-Sz correlation
function (light blue) in CDMFT. For three fillings near the spin-freezing line (pink symbols) we plot the ratio of next-nearest-neighbor (nnn)
and nearest-neighbor (nn) d-electron Sz-Sz correlations in (c). The nn and nnn curves are multiplied by a factor of 4 for better visibility.

phenomenon in the 2D single-band Hubbard model (1) and,
hence, in cuprates. As illustrated in Fig. 1, the formation of this
composite spin corresponds to the appearance of ferromagnetic
correlations on next-nearest-neighbor sites.

Let us comment on the quantitative effects of the realistic
DOS. As shown in Fig. 2, the realistic f -DOS has a sharp
peak at ω = 0, which enhances the relative number of holes
doped into the f orbitals, especially at larger dopings. It
also considerably increases the value of Uc/W from ≈1 in
the semicircle case to about 1.5. Despite these quantitative
changes, the spin-freezing behavior near the half-filled Mott
insulator is qualitatively the same as in the semicircle DOS
simulation. To demonstrate this, we also plot the exponents
α extracted from realistic-DOS simulations with U = 14t

(U = 1.75W ) and βt = 30 (βW = 240) in Fig. 3(b) (dashed
black lines).

We will next consider the model with t ′ = −0.3t . This
diagonal hopping translates into a crystal-field splitting δ = 2t ′
which pushes the f band down [see Fig. 2(b)]. Since 0.6t

corresponds to 0.075 times the bandwidth of the model
with t ′ = 0, we use such a splitting in the calculations with
semicircular DOS. The corresponding spin-freezing line is
shown in Fig. 4(a) by a solid black line with full dots, while
the bad-metal crossover defined by α = 0.5 is indicated by the
solid black line with open dots. It turns out that the crystal-field
splitting does not qualitatively change the crossover lines in
the temperature-filling phase diagram.

The bad-metal behavior originates from Hund-coupling-
induced local moments. In Fig. 5(a) we plot the dynam-
ical contribution to the local spin susceptibility, �χ

(c,f )
loc =∫ β

0 dτS
(c,f )
dyn (τ ) with

S
(c,f )
dyn (τ ) ≡ 〈

S(c,f )
z (τ )S(c,f )

z (0)
〉 − 〈

S(c,f )
z (β/2)S(c,f )

z (0)
〉
, (6)

for different temperatures and dopings. The local spin fluctua-
tions are strongly enhanced near the spin-frozen regime at low
temperature. The peak values define the crossover lines which
are plotted in red in Fig. 4(a). The comparison to the crossover
line derived from the self-energy suggests that the non-
Fermi-liquid properties are caused by the slowly fluctuating
local moments in the spin-freezing crossover regime. As

these moments freeze below a doping concentration of a
few percent, the low-energy single-particle spectral weight is
strongly reduced, and a narrow pseudogap opens [see Fig. 5(c)]
[25]. The size of the pseudogap appears to be related to the
characteristic energy of the local spin fluctuations. As shown
in Fig. 5(b), ImS

(c,f )
dyn (ω) exhibits a peak near ω ≈ 0.01W in

the low-doping regime.
Experimentally, it is known that the normal-state pseudogap

region in cuprates can be enhanced by adding magnetic
impurities [26]. Ellipsometry measurements showed that the
addition of Ni2+ impurities with spin S = 1 strengthen the
Cu spin correlations and induce a bulk spin-freezing transition
even at optimal doping. This points to an important role of
magnetic correlations in the formation of the pseudogap and
is consistent with our spin-freezing scenario, since the static
Ni2+ moments will influence the slowly fluctuating composite
spins in the spin-freezing crossover region and (at large enough
impurity concentration) lock them into a spin-frozen state.

IV. SYMMETRY BREAKING AND SHORT-RANGE
CORRELATIONS

It is interesting to consider also the instabilities to long-
range orders and the effect of short-range correlations.
Ordering instabilities can be detected by computing the corre-
sponding lattice susceptibilities, based on a DMFT estimate of
the local vertex and a solution of the Bethe-Salpeter equation
[3,4]. In the calculations with semicircle DOS and crystal-field
splitting, antiferromagnetic order is stable at low temperature
up to about 18% hole doping [Fig. 4(a)]. As expected, the order
is overestimated compared to CDMFT simulations, which
account for spatial fluctuations. For U = 8t and t ′ = −0.3t ,
4-site CDMFT yields antiferromagnetic order up to 13% hole
doping [27], but it was also shown that the stability region
depends sensitively on details of the band structure.

Recent studies of two-orbital models with crystal-field
splitting revealed an instability to spin-orbital order [4,28],
which is intricately connected to spin freezing. In models
with Ising-type interactions spin-orbital order characterized
by a nonzero expectation value of the operator oxx

i =
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FIG. 5. Local spin susceptibility and single-particle spectral function. (a) Dynamical contribution to χ
(c,f )
loc as a function of filling for

indicated values of the inverse temperature. (b) Spectral function of the dynamical contribution to the spin-spin correlation function, obtained
by maximum entropy analytical continuation [37,38], for βW = 400 and different fillings. (c) Doping evolution of the f -electron single-particle
spectral function at βW = 400. (2-orbital results for δ = 0.075W , CDMFT results for t ′ = 0 and βW = 480.)

∑
γ,γ ′=c,f

∑
σ,σ ′ γ

†
iσ σ x

γ γ ′σ
x
σσ ′γ

′
iσ ′ can exist beyond the stability

region of the antiferromagnet (σx denotes a Pauli matrix)
[4]. In the presence of spin-flip and pair-hopping terms,
our techniques do not allow us to search for this ordering
instability. Nevertheless, it is interesting to note that after the
transformation back to the d basis, oxx maps onto antifer-
romagnetic order with ordering vector q = (0,π ), represented
by

∑
σσ ′ σ

x
σσ ′(d

†
1σ d1σ ′ + d

†
2σ d2σ ′ − d

†
3σ d3σ ′ − d

†
4σ d4σ ′). It is de-

generate with the y,z components by SU(2) symmetry and
with the q = (π,0) ordering vector by 90◦ rotation symmetry.
Remarkably, short-ranged order of this type has been detected
experimentally in cuprates upon entering the pseudogap phase
[29,30].

There is also evidence from polarized neutron scattering
experiments for some kind of intraplaquette magnetic order
and time-reversal symmetry breaking in the pseudogap regime
[31,32]. While this observation has been mainly discussed in
connection with the possible appearance of current loops [33],
there are inconsistencies between the latter theory and the
experiments concerning the orientation of the moments. The
alignment and freezing of the spins on diagonally opposite
corners of the plaquette provides an alternative explanation,
since it breaks time-reversal symmetry on short time and
length scales, and reduces the 90◦ rotation symmetry to a
mirror symmetry. This mechanism does not a priori favor any
particular direction of the moments.

Of course, in the 2D Hubbard model, antiferromagnetic
correlations and nearest-neighbor singlet formation are im-
portant and change the single-site DMFT results to some
extent. To capture these effects one would have to implement
a 2-site CDMFT calculation of the 2-orbital system (see
second panel of Fig. 1). With a proper lattice embedding,
such a simulation would be exactly equivalent to the plaquette
CDMFT in the original d basis. Hence, in order to address the
effect of short-range correlations, we will now discuss CDMFT
simulation results transformed into the c/f basis, focusing on
U = 8t and t ′ = 0. The CDMFT simulations are performed
with improved Monte Carlo updates [34], in a single-particle
basis which diagonalizes the intraplaquette hopping. For better
statistics, the correlation functions are measured in the d basis
using a worm-sampling algorithm [35,36].

As illustrated in Fig. 3(c), the nonlocal correlations result
in a stronger differentiation between the c- and f -electron
self-energies, with the latter exhibiting much more pronounced
non-Fermi-liquid effects and a substantially lower “Kondo
screening” temperature. The second, quite expected, differ-
ence concerns the temperature dependence of the spin-freezing
and bad-metal crossover lines. In single-site DMFT, these
crossover lines have a negative slope in the temperature-filling
phase diagram, because disordered local moments have a large
entropy. If intersite correlations are taken into account, the
frozen moments can form singlet states with a low entropy.
As a result of this, the frozen moment regime (hashed region)
determined from the minimum of the f -electron exponent α

increases with decreasing temperature in the CDMFT solution.
Similarly, the bad-metal crossover line determined by the
exponent α = 0.5 is now almost vertical in the temperature-
filling phase diagram. The CDMFT crossover lines for t ′ = 0
are illustrated in Fig. 4(b).

The pseudogap regime of the CDMFT solution can still be
associated with frozen f moments, as evidenced by a max-
imum in χ

(f )
stat = β〈S(f )

z (β/2)S(f )
z (0)〉 near the spin-freezing

crossover line, while the bad-metal crossover near optimal
hole doping is related to the emergence of local moments [the
light blue line with solid triangles in Fig. 4(b) indicates the
doping where χ

(f )
stat reaches half of the maximum value].

The main qualitative difference to the single-site 2-orbital
simulations is that χ

(f )
loc decreases as one moves deeper into

the spin-frozen regime as a result of singlet formation (over-
estimated in the 2 × 2 geometry due to the dominance of the
“plaquette singlet state” [39]), and hence that �χloc ceases to
be a good measure of the fluctuations of the composite spin in
the underdoped regime. To directly demonstrate the presence
of robust ferromagnetic correlations along the diagonal of
the plaquette we plot the nearest-neighbor and next-nearest-
neighbor spin correlations near the spin-frozen regime in
the original d basis [see Fig. 4(c)]. While antiferromagnetic
nearest-neighbor correlations are dominant at short times, the
ferromagnetic next-nearest-neighbor correlations decay more
slowly and eventually exceed the antiferromagnetic ones.

We have also calculated S
(f )
dyn(ω) from the CDMFT solution

and found the same low-energy peak near ω ≈ 0.01W as
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FIG. 6. Illustration of the lowest-order diagram which generates an attractive interaction between (1,f, ↑) and (2,f, ↓).

in the single-site 2-orbital model [Fig. 5(b), black lines].
However, there is now also a second mode with an energy
≈0.04W , which is related to antiferromagnetic fluctuations.
In the spin-freezing crossover regime, both modes are present.
In the spin-frozen (pseudogap) regime, the lower-energy peak
associated with f -moment fluctuations disappears, while the
peak associated with antiferromagnetic fluctuations gains
weight.

V. SUPERCONDUCTIVITY

We finally address the question of superconductivity and
possible connections to spin freezing. The 4-site CDMFT
solution of the doped Hubbard model has been shown to
exhibit d-wave superconductivity [15], and we thus expect
to find this ordered state in a 2-site cluster DMFT simulation
of the 2-orbital model. Recent DMFT simulations on larger
clusters revealed a sharp low-energy peak at ω ≈ 0.013W in
the imaginary part of the anomalous self-energy [40]. This
energy agrees remarkably well with the characteristic energy
of the local spin fluctuations, observed in both the single-site
DMFT simulation of the effective 2-orbital model and in the
plaquette CDMFT solution [Fig. 5(b)]. This strongly suggests
that the enhanced local moment fluctuations in the crossover
regime to the spin-frozen state play a role in the formation of
the d-wave superconducting state.

To get some clues of the possible mechanism let us first
transform the d-wave order parameter (d†

1↑d
†
2↓ − d

†
1↓d

†
2↑) −

(d†
2↑d

†
3↓ − d

†
2↓d

†
3↑) + (d†

3↑d
†
4↓ − d

†
3↓d

†
4↑) − (d†

4↑d
†
1↓ − d

†
4↓d

†
1↑)

to the c/f basis. The resulting expression is remarkably
simple and suggestive:

2(f †
1↑f

†
2↓ − f

†
1↓f

†
2↑), (7)

where the indices 1 and 2 now refer to the two sites of
the two-orbital cluster in the second panel of Fig. 1. It thus
remains to be shown how local spin fluctuations can induce
an effective attraction between the f electrons with opposite
spins on neighboring sites.

In a weak-coupling picture [3,41] the effective interaction
Ũ eff

α,β between two flavors α,β = (i,γ,σ ), which takes into
account simple bubble diagrams, can be obtained from the
solution of the equation Ũ eff

αβ = Ũαβ − ∑
α1β1

Ũαα1χα1β1Ũ
eff
β1β

.
This indeed yields an attraction

Ũ eff
(1,f,↑),(2,f,↓) = 2Ũ 3χ

(f )
loc χ

(c)
12 + O(Ũ 5) (8)

between f1,σ and f2,σ̄ which becomes stronger with
increasing χ

(f )
loc ≡ �χ

(f )
loc (in the weak-coupling regime,

there are no frozen moments). Note that χ
(c)
12 =

− ∫ β

0 dτGc,12(τ )Gc,21(−τ ) < 0, while χ
(f )
loc > 0.

To understand the physical mechanism, it is instructive
to look at the lowest-order diagram which contributes to

Ũ eff
(1,f,↑),(2,f,↓) (Fig. 6). Because of Ũ ′ = J̃ , the interorbital

same-spin interaction vanishes on each site, so the c-f
interaction lines appearing in the diagram correspond to the
interactions (1,f,σ )-(1,c,σ̄ ) and (2,c,σ )-(2,f,σ̄ ) (see also
Fig. 1). Since the hopping between the sites conserves spin,
the interaction between the sites is mediated by a bubble χ

(c)
12 .

To connect (1,c, ↑) to (1,f, ↑), we have to insert a second
bubble χ

(f )
loc . This is how the local f -spin susceptibility enters

the calculation, and how the enhanced local spin fluctuations
increase the effective attraction between the f electrons in
the weak-coupling approach with bubble diagrams. We note
that the contributions to χloc include both the spin and charge
parts, but as the interaction strength is increased, the spin
contribution will dominate.

A numerical evaluation of the lowest-order diagram using
the CDMFT data shows that the attractive interaction grows
with decreasing temperature, and, even more interestingly, that
it starts to grow substantially with decreasing doping around
20% doping. This is in good agreement with the CDMFT
phase diagram [15], which exhibits a superconducting dome
up to about 20% doping, and provides further support for our
spin-freezing mechanism. Both the χ

(c)
12 and χ

(f )
loc fluctuations

contribute to this growing attractive interaction. While |�χ
(c)
12 |

grows more rapidly with decreasing doping, the value of �χ
(f )
loc

is roughly a factor of two larger.
Up to this point, our argument has only taken into account

the density-density interactions. To understand why the singlet
form of the order parameter is stabilized [Eq. (7)], we have to
consider the effect of the spin-flip term.

VI. DISCUSSION AND CONCLUSIONS

Starting from a transformation of the 4-site Hubbard
plaquette to a bonding/antibonding basis, we have derived
an effective description of the 2D Hubbard model in terms
of a two-orbital system with “Slater-Kanamori” interaction
and (for t ′ 	= 0) a crystal-field splitting. This model can be
solved approximately within single-site DMFT, which leads
to interesting new perspectives on the normal-state properties
of the Hubbard model, and hence cuprates. In particular,
the two-orbital model, which features a large ferromagnetic
Hund coupling, exhibits a spin-freezing crossover in the
vicinity of the half-filled Mott-insulating state. Our results
suggest that optimally doped cuprates, like essentially all
unconventional multiband superconductors, are located in a
filling and interaction regime where the normal-state properties
at elevated temperature are strongly influenced by the spin-
freezing phenomenon. Spin/orbital freezing thus appears to be
a universal mechanism underlying the physics of (at first sight)
very diverse families of unconventional superconductors,
including cuprates, pnictides, ruthenates, and fulleride- and
uranium-based superconductors. Specifically, for the case of
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cuprates, our analysis suggests that the enhanced fluctua-
tions of a composite spin, consisting of aligned moments
on diagonally opposite corners of a plaquette, produce the
non-Fermi-liquid properties above the superconducting dome,
while the freezing of these composite spins at weaker doping
results in the pseudogap phase. It is interesting to note
that the spin-freezing scenario does not involve a quantum
critical point since spin-freezing exists only above a certain
(doping-dependent) “Kondo screening” temperature.

Because the spin-frozen (pseudogap) state has suppressed
local spin fluctuations, it is not amenable to superconductivity.
In this sense, the freezing of the spins competes with
superconductivity. On the other hand, the strongly and slowly
fluctuating local moments in the spin-freezing crossover
regime induce the superconducting instability and provide the
glue for the d-wave pairing. It is also worthwhile to note
that spin-freezing only appears at interactions �Uc, i.e., in
doped Mott insulators [1,6,7,42]. Our proposed mechanism
thus requires that the parent compound, which in the case of
the cuprates is the half-filled system, is in or close to the Mott
regime.

Finally, let us comment on the relationship between our
work and previous studies which emphasized similarities in
the phase diagrams of cuprates and Hund metals such as
iron pnictides. Ishida and Liebsch [6,7] first pointed out
that if the “doping” of iron pnictides is measured relative
to the half-filled state, the phase diagram exhibits the same
sequence of paramagnetic phases as found in cuprates, namely
Mott insulator to bad metal to Fermi-liquid metal. In both
materials, the crossover to the Fermi-liquid state occurs at
roughly 20% doping [6]. They also noted that the 4-site
impurity problem of plaquette DMFT, if transformed into
the diagonal cluster momentum basis, becomes a complicated
multiorbital problem [43], which suggests a connection be-
tween Hund-coupling phenomena in multiband materials and
the momentum-differentiation found in CDMFT studies of the
2D Hubbard model [27,39,44,45].

The diagonal cluster momentum basis considered in the
work of Ishida and Liebsch, and also in related studies by
de’ Medici and co-workers [46], is complementary to the
bonding/antibonding basis considered in this paper. While
the numerical results of plaquette CDMFT do not depend
on the cluster basis, as long as the impurity model is solved
exactly and the lattice embedding is implemented correctly, a
suitable choice of basis helps to reveal the underlying physics
of correlation and crossover phenomena. The main advantages
of the bonding/antibonding basis introduced here are the
following: (i) The cluster problem is mapped to a multiorbital
system with a standard Slater-Kanamori interaction (albeit
with unusual parameters Ũ = Ũ ′ = J̃ ), which allows us to
discuss the physics in terms of the spin-freezing phenomena
that have been extensively investigated for such models
over the past years. (ii) The d-wave superconducting order
parameter maps to a simple nearest-neighbor singlet pairing

of the f electrons, which also allows us to connect the
superconducting instability to the spin-freezing crossover.
(iii) The structure of the two-site cluster impurity problem
enables the formulation of a single-site two-orbital DMFT
approximation, and thus to disentangle the effect of spin
freezing (local fluctuations of the composite spin) from the
effect of short-range antiferromagnetic fluctuations.

Working out the precise connection between the freezing
of composite spins on next-nearest-neighbor sites revealed by
the bonding/antibonding basis and the momentum-selective
behavior found in the diagonal basis is an interesting topic for
future investigations, as is the possible connection between our
single-site two-orbital description and the so-called valence-
bond DMFT [47].
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APPENDIX: STRUCTURE OF THE WEISS GREEN’S
FUNCTION AND THE HYBRIDIZATION FUNCTION

If the hybridization function and the Weiss Green’s function
of the standard plaquette CDMFT are transformed to the f /c

basis, the only nonzero off-diagonal elements are those shown
in the third panel of Fig. 1.

This may be understood as follows. The Green’s function
at each time and for each spin sector can be represented as a
4 × 4 matrix with the following structure:

⎛
⎜⎝

α β γ δ

β α β γ

γ β α β

β γ β α

⎞
⎟⎠, (A1)

where α, β, γ , δ are numbers. In the f /c basis, the above
matrix is transformed to

⎛
⎜⎝

α + γ 0 2β 0
0 α − γ 0 0

2β 0 α + γ 0
0 0 0 α − γ

⎞
⎟⎠, (A2)

where the order of the orbitals is {1c,1f,2c,2f }. In (A2) we
recognize the same structure as illustrated in the third panel
of Fig. 1. The same argument applies to the hybridization
function.
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