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Mott transition and magnetism on the anisotropic triangular lattice
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Spin-liquid behavior was recently suggested experimentally in the moderately one-dimensional organic
compound κ-H3(Cat-EDT-TTF)2. This compound can be modeled by the one-band Hubbard model on the
anisotropic triangular lattice with t ′/t � 1.5, where t ′ is the minority hopping. It thus becomes important to
extend previous studies, that were performed in the range 0 � t ′/t � 1.2, to find out whether there is a regime
where Mott insulating behavior can be found without long-range magnetic order. To this end, we study the
above model in the range 1.2 � t ′/t � 2 using cluster dynamical mean-field theory (CDMFT). We argue that
it is important to choose a symmetry-preserving cluster rather than a quasi-one-dimensional cluster. We find
that, upon increasing t ′/t beyond t ′/t ≈ 1.3, the Mott transition at zero temperature is replaced by a first-order
transition separating a metallic state from a collinear magnetic insulating state excluding the possibility to find a
quantum spin liquid for the physically relevant value t ′/t � 1.5. The phase diagram obtained in this study can
provide a working basis for moderately one-dimensional compounds on the anisotropic triangular lattice.
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I. INTRODUCTION

Organic superconductors of the BEDT family exhibit
fascinating phenomena due to the interplay between strong
electronic correlations and large magnetic frustration [1,2].
For instance, their rich phase diagram contains d-wave
superconducting, antiferromagnetic [3], and possibly quantum
spin liquid states at absolute zero [4,5]. At finite temperature, a
Mott metal-insulator transition has clearly been identified [3].
Recently, a moderately one-dimensional organic compound
has been synthesized [6]. This 2D organic Mott insulator,
κ-H3(Cat-EDT-TTF)2, does not exhibit magnetic order at very
low temperature (T = 50 mK), which makes it a serious
candidate for a quantum spin liquid. Microscopically, the
simplest model describing this organic compound is the two-
dimensional single-band Hubbard model on an anisotropic
triangular lattice [6]. This model is the same as that often used
for BEDT organic compounds [7–10].

Quantum spin liquids are unusual phases of matter char-
acterized by a nonmagnetic insulating ground state in which
spins continue to fluctuate even at zero temperature due to
quantum fluctuations. In crystals, these peculiar phases are
expected to appear for various reasons, the most prominent
one being lattice geometries, such as kagome or triangular
lattices [11], where near-neighbor magnetic interactions are
intrinsically frustrated. Spin liquids became an intense re-
search topic of research when P.W. Anderson proposed them
to be a building block for the physics of high-temperature
superconductors [12].

In order to focus our attention on κ-H3(Cat-EDT-TTF)2, we
study the phase diagram of this model in the moderately one-
dimensional (M1d) regime characterized by a ratio between the
hopping terms t ′ and t , defined in Fig. 1(a), larger than unity.
Since we are interested in the Mott transition and the possibility
of a spin liquid, we use cellular dynamical mean-field theory
(CDMFT) [13,14], a cluster extension of dynamical mean-
field theory (DMFT) that can treat both the metallic and the
insulating phases, the Mott transition between them as well as
magnetic phases [15].

Before we proceed, we briefly recall related studies, setting
aside superconductivity that we do not consider here [16].
Previous work focused mostly on the frustrated regime
0 � t ′/t � 1 (square lattice to triangular lattice) since these
anisotropy values, usually obtained from ab initio calcula-
tions [17–21], corresponded to all known BEDT organic
compounds. Theoretical investigations that were concerned
with the Mott transition in the interaction-frustration (U/t −
t ′/t) phase diagram used methods that included path-integral
renormalization group [22], variational methods [23,24], exact
diagonalization [25], variational cluster approximation [26],
CDMFT [27–30], and dual-fermion approaches [31]. Al-
though there are quantitative discrepancies between the dif-
ferent methods, metallic, insulating, nonmagnetic, and antifer-
romagnetic phases were found, generally in good agreement
with experiments [3–5]. A more detailed comparison between
experiment and some of the above theoretical calculations
appears in Ref. [17]. CDMFT was one of the most successful
approaches [28].

More recently, the M1d regime (1 � t ′/t � 2) has been
investigated [32,33]: For t ′/t ≈ 1, the Hubbard model exhibits
a spiral order and possibly a spin liquid phase. Different
theoretical lattice approaches seem to agree with the presence
of a spin liquid and a collinear magnetic state with an
associated ordering vector Q = (0,π ) for t ′/t � 1.2 [34,35],
even though they do not completely agree on the precise form
of the phase diagram, unlike for the case t ′/t < 1. In the
strong-interaction limit, i.e., for U � t,t ′, where the Hubbard
model in the insulating phase reduces to the Heisenberg model
with exchange interactions J = 4t2/U and J ′ = 4t ′2/U to
second order in perturbation theory [36] and, at higher order,
to models with more complicated spin interactions, such as the
two distinct ring exchange couplings K = 80t4/U 3 and K ′ =
80t2t ′2/U 3 [37]. The Heisenberg model corresponding to the
M1d regime, i.e., 1 � J ′/J � 2 has been extensively studied
using different methods such as linear spin-wave [38,39],
coupled cluster method [40], variational Monte-Carlo [41,42],
or density matrix renormalization group [43]. These methods
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FIG. 1. (a) Illustration of the anisotropic triangular lattice with
dashed green lines emphasizing the two mirror planes v and v′. (b)
While the first cluster geometry, called the symmetry-preserving (SP)
cluster, displays the same symmetries v and v′ as the infinite lattice,
the second cluster geometry, called the quasi-one-dimensional (Q1d)
cluster, does not.

show that a spiral state is present for J ′/J ≈ 1, but they
give different magnetic phases in the M1d regime, e.g., a
spiral phase, a collinear magnetic phase, or a spin liquid state.
More sophisticated Hamiltonians including the ring exchange
coupling K in the anisotropic triangular lattice give a rich phase
diagram where the presence of a Néel state, a spin liquid state,
or a spiral phase depends on the relative strength between K/J

and J ′/J [44].
This paper is organized as follows: The Hubbard model

and the cellular dynamical mean-field theory (CDMFT) on a
plaquette with an exact diagonalization (ED) impurity solver
are detailed in Sec. II. In Sec. III A, results for the normal
state, showing a first order Mott metal-insulator transition
are presented. Magnetic states are explored in Sec. III B. Our
results are summarized in the phase diagram of Fig. 5. Finally,
the choice of cluster is motivated in Sec. IV, where we show, by
comparing results for the magnetic phases with other methods,
that a cluster sharing symmetries with the lattice is essential
for a reliable CDMFT calculation in this regime. We conclude
in Sec. V.

II. MODEL AND METHOD

We focus on the physics embodied in the Hubbard model
on the anisotropic triangular lattice

Ĥ = −
∑

i,j,σ

tij ĉ
†
iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ − μ
∑

i,σ

n̂iσ . (1)

All quantities are expressed in natural units (� ≡ 1 and
kB ≡ 1). Here, tij are the hopping amplitudes between
sites i and j and can take two different values, t and t ′,
illustrated in Fig. 1. The Fourier transform of the hopping
amplitudes tij determines the anisotropic bare dispersion

εk = −2t [cos(kx) + cos(ky)] − 2t ′ cos(kx + ky). The on-site
Coulomb repulsion is U and μ is the chemical potential set so
that the system is half filled. For that filling, the signs of t and t ′
do not modify the phase diagram. Layered organic compounds
are usually half filled, but doped compounds [45,46] have been
investigated experimentally [47,48] and theoretically [49,50].

We focus on the M1d regime 1.2 � t ′/t � 2 using
CDMFT [13,14], a cluster extension of dynamical mean-field
theory (DMFT) [15]. CDMFT approximates the infinite lattice
as a finite size cluster self-consistently coupled to a bath of
noninteracting electrons, thus taking into account dynamical
correlations as well as spatial correlations up to the size of
the cluster [51,52]. CDMFT, like DMFT, maps the system
into an Anderson impurity problem, which is then solved
self-consistently. In this paper, the quantum impurity problem
is solved using the exact diagonalization (ED) method [53] at
zero temperature. This method is restricted to a small number
Nb of bath sites. While the Hamiltonian of the quantum impu-
rity problem is coded exactly, the ground state and the Green
functions of interest are found in a quasiexact way with the
Lanczos algorithm [52]. Exact diagonalization is robust in the
presence of frustration, unlike quantum Monte-Carlo methods
which suffer from the infamous sign problem [54]. Moreover,
it directly computes dynamical quantities as a function of
real frequencies. To summarize, the assumption inherent to
cluster approaches is that the essential physics of the system
originates from short-ranged correlations, which should be
the case in strongly-correlated magnetically-frustrated organic
compounds.

We solve the following cluster-bath Hamiltonian:

Ĥ =
∑

i,j,σ

tij ĉ
†
iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ − μ
∑

i,σ

n̂iσ

+
∑

m,σ

εmσ b̂†mσ b̂mσ

+
∑

m,i,σ

θmiσ (b̂†mσ ĉiσ + H.c.) , (2)

where the indices i,j = 1, . . . ,Nc label the sites within the
cluster whereas m = 1, . . . ,Nb label the bath sites. The second
quantized operators ĉiσ and b̂mσ annihilate electrons on the
cluster and in the bath, respectively. tij are the hopping matrix
elements within the cluster, εmσ are the bath energies, and θmlσ

are the bath-cluster hybridization matrix elements. Besides, in
order to allow antiferromagnetism to appear, εmσ and θmlσ

explicitly carry a spin variable σ . A complication of the ED
method is that the CDMFT self-consistency condition cannot
be satisfied exactly because of the finite number of bath sites.
This condition is rather satisfied approximately by minimizing
a distance function. For further information on the matter, see
Refs. [53,55], and [56]. We use the same distance function
parameters as in the last two references, namely a frequency
cutoff at ωn/t = 2 and a “fictitious” inverse temperature
β/t = 50. To check that there are no artifacts associated with
the finite bath, we checked our results for the Mott transition
using CDMFT with a continuous-time quantum Monte-Carlo
(CTQMC) impurity solver [57,58] at finite but low temperature
(β/t = 20). For both clusters that we describe below, we found
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FIG. 2. (a) Symmetry preserving (SP) cluster. (b) Quasi-one-
dimensional (Q1d) cluster. The four cluster sites are black circles,
and the bath sites are green and orange squares. For simplicity, spin
indices σ for the bath energies εm,σ and cluster and spin indices
i,σ for the bath-cluster hybridization matrix elements θm,i,σ are not
explicitly shown. Depending on the symmetry of the phase being
explored, some of the variational parameters are taken equal. Note
that the bath sites do not have a position in real space and that the
Q1d cluster does not share the symmetries of the lattice, contrary to
the SP cluster.

agreement with our CDMFT plus ED solver for the values of
t ′/t that we tested (0.4 and 1.5) [59].

As illustrated in Fig. 2, we use clusters of Nc = 4 sites
coupled to Nb = 8 bath sites. Although the calculation is for
2 × 2 clusters, we expect to capture the main physics of the
lattice since studies using CDMFT have confirmed that results
on a 2 × 2 cluster are quantitatively similar to those on larger
clusters, at least at high temperature [60]. All physical results
presented in the next sections are extracted from the symmetry-
preserving (SP) cluster of Fig. 1(b), whose parametrization
within the model Eq. (2) is detailed in Fig. 2(a). For large
values of t ′/t , one might argue that the quasi-one-dimensional
character of the lattice must be present in the cluster. In order to
shed light on this question, the quasi-one-dimensional (Q1d)
cluster of Fig. 1(b), whose parametrization within the model
Eq. (2) is detailed in Fig. 2(b), has also been investigated. Our
results, presented in the following sections, will show that the
physics extracted from this second cluster geometry does not
compare well with other methods, leading us to conclude that
the SP cluster is a better representation of the infinite lattice in
the M1d regime.

III. RESULTS

A. Mott transition

First, let us focus on the Mott transition in the normal
state. Magnetic states are forbidden if one suppresses the spin
dependence of the bath parameters. The phase diagram was
obtained by changing t ′/t in steps of 0.1 and varying U/t

in much smaller steps. Therefore, the values of t ′/t quoted
for phase boundaries in the following have an uncertainty of
order ±0.05. We find that as long as t ′/t � 1.2, the double
occupancy displays hysteresis bounded by jumps at Uc1 and
Uc2 as U decreases or increases, respectively (Uc1 � Uc2).
These jumps are the signature of the usual Mott transition.
For the SP cluster at t ′/t � 1.3, the hysteresis region is still

(a) (b)

(c)

FIG. 3. (a) Double occupancy D = 〈n̂↑n̂↓〉 for the SP cluster as a
function of U/t for t ′/t = 1.3 (sky blue dashed line) and t ′/t = 1.7
(dark blue solid line). While the jump at low interaction defines the
lower critical ratio Uc1/t , the change of slope at higher interaction
defines the upper critical ratio Uc2/t . (b) Double occupancy for the
Q1d cluster as a function of U/t for t ′/t = 1.3 (light green solid
line) and t ′/t = 1.7 (dark green solid line). Here, the change of slope
defines a critical ratio Uc2/t analog to the upper critical ratio of the SP
cluster. It is investigated further through the low-frequency behavior
of the local density of states, Fig. 4. (c) Mott critical ratio Uc2/t

as a function of t ′/t for the SP and Q1d clusters, in dark blue and
dark green, respectively. For t ′/t � 1, the results are quantitatively
equivalent but differences clearly appear just above t ′/t = 1.

present but is bounded by a jump only when U decreases.
As U increases, a mere change of slope occurs, as shown in
Fig. 3(a). Even without a jump in the double occupancy, the
Mott transition can be observed by studying the low-frequency
behavior of the local density of states A(ω), as presented in
Fig. 4 for t ′/t = 1.3. For U/t = 11.84, slightly smaller than
the upper critical ratio Uc2/t at t ′/t = 1.3, the local density of
states exhibits a low-frequency metallic behavior. When U/t is
increased only by a tiny fraction to U/t = 11.9, the opening of
an insulating gap in the local density of states signals the Mott
transition. The Mott transition of the Q1d cluster, presented
in Fig. 3(b), does not even feature a jump or some hysteresis
in the double occupancy. The local density of states, however,
indicates a Mott transition (not shown).

The critical ratios Uc2/t presented in Fig. 3(c) as a function
of t ′/t illustrate one of the main differences between the two
cluster geometries considered in this paper. Indeed, for t ′/t >

1, Uc2/t first decreases before increasing for the Q1d cluster
whereas it only increases monotonically for the SP cluster. The
later trend as a function of t ′/t is expected if we accept the
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FIG. 4. Local density of states A(ω) for t ′/t = 1.3 in the normal
state at U/t = 11.84 and U/t = 11.9 on the SP cluster. A Lorentzian
broadening η = 0.035 was used. A metal-insulator transition occurs
between these two values of U/t .

simple picture that the critical value Uc for the Mott transition
should increase with bandwidth. Surprisingly, this discrepancy
between the two cluster geometries does not hold for t ′/t � 1
since both geometries yield the same value of Uc2/t even if one
could assume that the Q1d cluster should be more appropriate
only in the M1d regime. An acceptable explanation for this
phenomenon has not been found yet, but the following section
will give arguments that lead us to believe that the results for
the SP cluster capture the correct physics.

B. Magnetic states

Within CDMFT, one can only look for commensurate
magnetic orders on the cluster. Therefore, this restriction does
not allow us to explore all possible magnetic phases nor to
distinguish between a spin liquid and an incommensurate
magnetic order (in the sense of a magnetic order whose unit
cell does not perfectly fit or repeat within the cluster). Hence,
we can only rule out a spin liquid by demonstrating that a
magnetic phase exists, but we cannot prove that a spin liquid
state will occur since we cannot explore all possible magnetic
states. In other words, not finding one of the allowed magnetic
states of our cluster in a Mott insulating phase is a necessary,
but not sufficient, condition for a spin liquid. A spin-liquid
state could occur only in a nonmagnetic insulating state (NMI
state).

For reasons that will become clear below, we present our
final phase diagram, including magnetic order, only for the
SP cluster. One can check from Fig. 5(a) that for t ′/t � 1.2,
we find the same results as in Ref. [28], namely a transition
from a metal to a Néel state for t ′/t � 0.7, followed by a NMI
state that starts right above the Mott transition for t ′/t ≈ 0.7
and then undergoes a Néel transition at larger U/t if 0.7 �
t ′/t � 0.9. We did not investigate U/t > 12. Previous studies
indicate that a spiral order or a spin liquid could be present
in this area of the phase diagram [24,32,61], corresponding to
the NMI state of Fig. 5(a).

(a)

(b)

FIG. 5. (a) Phase diagram for the Hubbard model obtained with
CDMFT on the SP cluster. Black curve: Data from a previous study
of the low-frustration phase diagram carried out by Kyung et al.
(Ref. [28]). Blue curve: Mott transition in the nonmagnetic normal
state. The bars indicate the boundaries of the coexistence region.
Red triangles: Metal to collinear magnetic state transition. Here, only
UCMS

c2 /t is displayed. The lower critical interaction UCMS
c1 /t cannot

always be found due to some numerical instabilities. Red area: The
collinear magnetic phase with wave vector Q = (0,π ). AF, NMI,
CMS, and M denote the Néel state, the nonmagnetic insulator, the
collinear magnetic state, and the metallic state, respectively. (b) Same
phase diagram with t ′ as energy unit, namely U/t ′ vs t/t ′ for 1.2 �
t ′/t � 2. This phase diagram can be more easily compared with the
results of Ref. [34].

For t ′/t � 1.3, a first-order transition between a metal and
a collinear magnetic insulating state takes place for (0,π ) or
(π ,0) upon increasing U/t , as shown in Fig. 5(a), and survives
at larger values of U/t . This transition occurs systematically
before the Mott transition in the sense that UCMS

c2 /t is smaller
than Uc2/t . The presence of this phase is not surprising
since different studies predict the appearance of this magnetic
phase in the M1d regime using lattice models [34,35] or
spin models [40,43,44,62]. At this magnetic transition, we
observe a jump in the double occupancy and a gap opening
in the spectral function. Some hysteresis can be seen in the
double occupancy, but while the upper critical interaction
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UCMS
c2 can always be detected for any value of t ′/t , the

lower critical interaction UCMS
c1 cannot always be found due

to some numerical instability [hence the absence of bars for
the red triangles of Fig. 5(a)]. Figure 5(b) shows the same
phase diagram as Fig. 5(a) using t ′ instead of t as the unit
of energy to allow an easier comparison with the results of
Ref. [34].

It is interesting to compare the phase diagram of Fig. 5(a)
with the one presented in Ref. [63] for the half-filled
square lattice with nearest-neighbor hopping (more suited
to the study of cuprates). This model is different and
the method is the variational cluster approximation [64],
but it presents the same collinear magnetic phase with
ordering wave vector (0,π ) or (π,0), for t ′/t larger than
t ′/t ≈ 0.9.

IV. CHOICE OF CDMFT CLUSTER

We saw that the results obtained with the Q1d cluster
differ from those for the SP cluster. We have checked that
the assumption that the Mott transition occurs when U is
of the order of the bandwidth is not sufficient to choose the
appropriate cluster, although in this context the nonmonotonic
dependence on t ′/t of the Mott metal-insulator transition is
suggestive of the inadequacy of the Q1d cluster. However,
based on the symmetries satisfied by the SP cluster, as
illustrated in Fig. 1, it should capture the correct physics. This
is confirmed by the fact that the predictions for the magnetic
state obtained with the SP cluster agree with the results of
other methods that are available for comparisons. With the
Q1d cluster there is no commensurable magnetic state at all
in the M1d regime while other methods find stable magnetic
long-range order.

First, we searched for a collinear magnetic state (0,π )
using the restricted Hartree-Fock approximation on a 18 × 18
cluster. This method allows one, in principle, to map the
phase diagram for a large but finite number of magnetic
states and to study larger clusters than in CDMFT. Here,
we used Hartree-Fock just to confirm our magnetic phase
diagram in the M1d regime for the SP cluster. We thus
allowed only two magnetic states: the Néel order and the
collinear magnetic state. Even though CDMFT and Hartree-
Fock methods cannot be compared quantitatively, a qualitative
agreement is found: For 0 < t ′/t � 1, a first-order metal
to antiferromagnetic (π , π ) insulator transition takes place
at a finite interaction Uc/t , whereas for t ′/t � 1.2, a first
order metal to collinear magnetic insulator transition is found.
Although the same magnetic states and the same order of
transition are found in the same range of t ′/t as in the CDMFT
plus ED solver method, the critical Hartree-Fock interaction
Uc/t has a lower value, around Uc/t ≈ 6, mainly due to
the fact that the Hartree-Fock method is purely a mean-field
theory that neglects the fluctuations that renormalize down the
value of the interaction. Kanamori-Brückner screening is an
example of renormalization mechanism that is neglected in
Hartree-Fock.

Finally, the critical interaction for collinear magnetism
found with the SP cluster exhibits qualitatively the same
dependency on frustration as in the phase diagram of Ref. [34]
obtained by variational methods. The phase diagram in

Fig. 5(b) presents our results with the same axis as in Ref. [34]
to ease the comparison.

Even though it is not a rigorous proof, the fact that the
appearance of a collinear magnetic state for 1.3 � t ′/t � 2
is supported by three different numerical methods gives solid
arguments in favor of its presence in this region of the phase
diagram. The lack of collinear magnetism with the Q1d cluster
is an additional argument, beyond symmetry, to reject that
cluster.

V. CONCLUSION

In the moderately one-dimensional regime of the Hubbard
model on the anisotropic triangular lattice, a symmetry-
preserving cluster should be preferred to a quasi-one-
dimensional cluster geometry for calculations with clus-
ter dynamical mean-field theory. The symmetry-preserving
cluster gives magnetic phases in agreement with other
methods.

With the symmetry-preserving cluster, we obtained the
phase diagram using CDMFT with an exact diagonalization
solver in the moderately one-dimensional regime. There is
a line of first-order Mott transition where the critical U/t

monotonically increases with t ′/t . We also found a first-order
metal-to-collinear magnetic state transition that occurs for
t ′/t � 1.3 and does not allow any spin liquid state to appear in
this regime. For 0.7 � t ′/t � 1.2, no sign of magnetic states
covering the metal-insulator transition has been found. A spin
liquid or a magnetic order which is not commensurate with
our cluster, such as a spiral order, might however appear in
this region.

Our results at t ′/t � 1.5 are particularly relevant for
experiment since they are supposed to describe the organic
compound κ-H3(Cat-EDT-TTF)2 that seems to be a good
candidate for a spin liquid state [6]. At t ′/t � 1.5, the collinear
magnetic state appears at a critical interaction strength that is
lower than the Mott critical interaction in the normal state. This
suggests that there cannot be a spin liquid state, i.e., a non-
magnetic insulating state at zero temperature, since a magnetic
phase covers the Mott metal-insulator transition. However,
the comparison with the real material is not straightforward
since we did not include multiband effects, near-neighbor
repulsion etc. Moreover, possible uncertainties in the value
of t ′/t coming from ab initio methods [10,17] can make the
real material κ-H3(Cat-EDT-TTF)2 behave differently from
our model.
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and Compute Canada.

245133-5



S. ACHECHE et al. PHYSICAL REVIEW B 94, 245133 (2016)

[1] B. J. Powell and R. H. McKenzie, Rep. Prog. Phys. 74, 056501
(2011).

[2] B. J. Powell and R. H. McKenzie, J. Phys. Condens. Matter 18,
R827 (2006).

[3] S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais, D. Jérome,
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