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Pure density functional for strong correlation and the thermodynamic limit from machine learning
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We use the density-matrix renormalization group, applied to a one-dimensional model of continuum
Hamiltonians, to accurately solve chains of hydrogen atoms of various separations and numbers of atoms. We
train and test a machine-learned approximation to F [n], the universal part of the electronic density functional, to
within quantum chemical accuracy. We also develop a data-driven, atom-centered basis set for densities which
greatly reduces the computational cost and accurately represents the physical information in the machine-learning
calculation. Our calculation (a) bypasses the standard Kohn-Sham approach, avoiding the need to find orbitals,
(b) includes the strong correlation of highly stretched bonds without any specific difficulty (unlike all standard
DFT approximations), and (c) is so accurate that it can be used to find the energy in the thermodynamic limit to
quantum chemical accuracy.
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I. INTRODUCTION

Although widely used in solid-state physics, chemistry,
and materials science [1], Kohn-Sham density functional
theory (KS-DFT) with standard approximations fails for strong
correlation [2,3]. The prototype is the H2 molecule. When
stretched, the electrons localize on each site while remaining in
a singlet state, but this is not captured by such calculations [4].
These kinds of difficulties have led to the popularity of many
beyond-DFT schemes, ranging from the simple addition [5] of
a Hubbard U to the use of dynamical mean field theory [6] as
well as many others.

But even KS-DFT is too slow for many large calculations,
such as those using classical MD or continuum mechanics [7].
The original DFT, first suggested in the Thomas-Fermi
approximation [8,9] and later justified by the Hohenberg-Kohn
theorem [10], uses only pure functionals of the total density
n(r). This “orbital-free” version has the potential to be much
faster than even the most efficient KS implementations, be-
cause the KS equations need not be solved [11]. Several recent
attempts have constructed machine-learning (ML) kinetic
energy functionals specifically to bypass this step [12–15].
These are designed to be used in conjunction with standard
KS approximations to speed up such calculations, but not to
improve their accuracy.

Meanwhile, beyond the world of DFT, density matrix
renormalization group (DMRG) has become a standard tool
for finding extremely accurate solutions to strongly correlated
lattice problems [16–19]. In recent years, a one-dimensional
(1D) analog of ab initio Hamiltonians has been developed,
using typically about 20 grid points per atom and interactions
involving many grid points, with the express purpose of
rapidly exploring both conceptual and practical issues in
DFT [3,20–23]. A particular advantage is that, since 2000 grid
points is routinely accessible, this includes up to 100 atoms,
and extrapolations to the thermodynamic limit are much easier
than in three dimensions. Applications include a demonstration
of the behavior of the KS gap in a Mott-Hubbard insulator [20]
and a proof of convergence of the KS equations with the
exact functional, regardless of the starting point or strength
of correlation [21].

In the present work we combine all these methodologies to
demonstrate several important features. We perform DMRG
calculations on a variety of one-dimensional hydrogen atom
chains, with from 2 to 20 atoms, and whose interatomic spacing
R varies from 1 to 10 Bohr radii, and use these to train a ML
model of F [n], the “universal” part of the density functional
identified by Hohenberg-Kohn. This simultaneously includes
both the noninteracting kinetic energy sought in orbital-free
DFT and the exchange-correlation energy that is approximated
in KS calculations. We demonstrate that, with reasonable
amounts of training, we can self-consistently calculate densi-
ties and energies for these chains at new values of R, outside the
training set, with quantum chemical accuracy. This includes
highly stretched systems which are strongly correlated, and
where all popular DFT approximations fail. We furthermore
extrapolate the DMRG densities from the center of finite chains
to the infinite chain limit, i.e., a 1D solid. We train a new ML
model and find we can solve self-consistently the solid problem
at the same level of accuracy. Figure 1 shows the convergence
of our ML method for a typical separation of the infinite chain
with respect to the number of training points. The horizontal
lines show two independent DMRG estimates of the energy.

II. BACKGROUND

A. DFT

The Hohenberg-Kohn theorem [10] establishes that the
ground-state energy and density of a many-body problem may
be found by minimizing a density functional:

E = min
n

{
F [n] +

∫
d3r n(r) v(r)

}
, (1)

where n(r) is the single-particle density, normalized to N

particles, and v(r) is the one-body potential. The functional
F can be defined via a constrained search as [24]

F [n] = min
�→n

〈�|T̂ + V̂ee|�〉, (2)

where T̂ is the kinetic energy operator and Vee is the electron-
electron repulsion operator, while � is a normalized antisym-
metric (for fermions) wave function. While this showed that
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FIG. 1. Electronic energy of the infinite chain from a model
learned from extrapolated chain densities and energies. The accurate
value was calculated with infinite DMRG (see text).

the old Thomas-Fermi theory [8,9,25] was an approximation to
an exact formulation, few modern calculations perform such a
direct minimization. In practice, almost all calculations use the
famous Kohn-Sham (KS) scheme, which uses an auxiliary set
of noninteracting orbitals in a single, multiplicative potential
whose density is defined to match that of the original system,
and in terms of which we can write

F [n] = TS[n] + U [n] + EXC[n], (3)

where TS is the noninteracting kinetic energy of the KS
electrons, U is the Hartree self-repulsion, and EXC is the
exchange-correlation energy (defined by this equation).

The genius of the KS formulation is that EXC is typically
a small fraction of F , so that much higher accuracy can be
achieved by approximating only this component. The cost
of the KS scheme is formally N3, the cost of solving for
the orbitals. Much of modern DFT research is devoted to
improving approximations to EXC, within which all quantum-
many body effects are contained (by definition). The smaller
field of pure DFT, also known as “orbital-free,” aspires to
approximate TS[n] directly, as in the old TF theory [8,26], and
thus bypass the need to solve the KS equations.

Many modern XC approximations are local or semilocal,
i.e., use the density and its gradient to approximate the XC
energy density at a point. While remarkably useful results
can be obtained with such approximations, there remains a
classic failure that can be understood in terms of the simple
H2 molecule [27]. Those approximations work well in the
vicinity of the equilibrium bond length, but as the bond is
stretched, they fail more and more badly. In the limit of
a large but finite bond length (which we call stretched), a
spin-restricted calculation yields the highly inaccurate energy
of two unpolarized H atoms. On the other hand, an unrestricted
calculation yields an accurate stretched energy, but has broken
spin symmetry. Neither situation is satisfactory [4], most
modern semilocal approximations fail in this way [27,28]
and efforts to overcome such difficulties are ongoing [29,30].
An analogous failure occurs for semilocal approximations to
TS[n] when bonds are stretched in orbital-free DFT. Figure 2
illustrates the failure of semilocal XC, by comparing the blue

FIG. 2. Binding curve for a 1D H2 molecule. Black: Highly
accurate, converged DMRG results. Blue: LDA result restricted to
a spin singlet [23].

restricted LDA curve with the black DMRG curve. There is a
huge error in the stretched limit.

B. DMRG benchmark data

It is difficult to overemphasize the utility of benchmark
quantum chemical calculations for the development of DFT.
The DFT revolution in quantum chemistry was made possible
by the existence of the well-tested G2 data set for small
molecules, and databases in quantum chemistry have prolifer-
ated ever since. On the other hand, calculations of “quantum
chemical” accuracy, i.e., errors below 1 kcal/mol, are much
more difficult and rarer for solids. A recent heroic effort [31]
was made for benzene, a molecular crystal.

For the present study, we need to consider chains of up to
20 H atoms, with many different values of the interatomic
spacing ranging from about 1 to 10 Bohr. Extracting this
large amount of data at the required level of accuracy from
a quantum chemical code would be extremely demanding, if
not impossible, given the strong correlation effects when the
bonds are stretched.

Recently, DMRG has been applied to a one-dimensional
analog of real-space Coulomb-interacting Hamiltonians, for
precisely the purpose of performing demanding, highly accu-
rate benchmark calculations of strongly correlated systems. In
particular, the interaction is modeled as

vee(u) = A exp(−κ |u|), (4)

where A = 1.071 and κ−1 = 2.385 [23] and u is the separ-
ation. This choice best mimics the popular soft Coulomb
interaction, while having a single exponential allows DMRG
to run very fast [23]. The one-body potential is then taken
as v(x) = −Zvee(x), where Z is the “charge” on a nucleus.
Here Z = 1 for each H atom in the chain. This 1D analog
allows rapid testing of novel ideas in electronic structure,
especially those involving the bulk limit. Figure 2 is in fact for
1D H2 with these parameters, and illustrates that the failures
of standard DFT approximations such as LDA mimic those of
three-dimensional (3D) Coulomb systems. The DMRG curve
plateau is at twice the ground-state energy of one of these 1D
H atoms.
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C. Machine learning of the KS kinetic energy functional

ML is a set of algorithms developed to find hidden insights
in data. It is widely used especially when the pattern behind
complicated data is difficult to deduce explicitly. Successful
applications include computer vision [32], cybersecurity [33],
ancient abstract strategy games [34], etc.

Recently, in chemistry and materials science, machine
learning has become a popular tool for analyzing properties
of molecules and materials, and finding specific functions
from large data sets [35,36]. But it has also been applied
to the problem of finding density functionals, constructed
by interpolation from accurate examples. To date, the focus
has been on the KS kinetic energy TS[n], partially because
of the ready availability of data (every cycle of every one
of the 30 000 KS-DFT calculations each year [1] produces
an accurate example of TS[n]) and because of the enormous
potential for speeding up routine DFT calculations.

The ML algorithm we used for modeling TS[n] is kernel
ridge regression (KRR). It is a nonlinear regression method
with an L2 regularization [37]. The density functional is
represented as

T ML
S [n] =

NT∑
i=1

αik[n,ni], (5)

where NT is the number of training data, ni(x) are the training
data, and k[n,ni] is a kernel, some measure of the “similarity”
between densities. Throughout this work, we use a Gaussian
kernel

k[n,n′] = exp(−‖n − n′‖2/2σ 2), (6)

where

‖n − n′‖ =
∫

dx[n(x) − n′(x)]2. (7)

Such a kernel is standard in KRR, and has yielded excellent
results in previous studies of TS[n] [14]. The weights α =
(α1, . . . ,αNT ) are found by optimizing the cost function

C(α) =
NT∑
i=1

(
T ML

S [ni] − TS[ni]
)2 + λαTKα, (8)

where K is the kernel matrix, Kij = k[ni,nj ]. The regular-
ization strength λ and length scale σ are hyperparameters
which are found via cross validation. A crucial principle
in kernel ridge regression is the separation of the training
data from the test data. A test set is constructed entirely
independently from the training set. The cross validation to
find the hyperparameters occurs using only training data. The
resulting approximate functional is tested only on the test data.

While highly accurate results for TS[n] can be found with
relatively little data [12], it was immediately realized that the
corresponding functional derivative is highly inaccurate. This
is unfortunate, as the practical usefulness of an accurate model
for TS[n] is in finding the density via solution of the Euler
equation (for the KS system):

δTS

δn(x)
= −vS(x), (9)

where vS(x) is the KS potential. This difficulty has been
surmounted in a sequence of increasingly sophisticated meth-
ods [13–15], each of which constrains the density search to
only the manifold of densities spanned by the data, avoiding
searching in directions for which there is insufficient data
to evaluate TS accurately. With such techniques, it has been
possible to demonstrate an ML TS functional that correctly
mimics the KS solution even as a bond stretches [13],
something impossible for any local or semilocal approximation
to TS. The value of this is to cut down the computational
cost of large, repetitive KS calculations, but one still uses
some standard XC approximation. Thus a machine-learned
functional for TS can, at best, reproduce the incorrect LDA
curve of Fig. 2.

III. METHOD

In all applications in this work, we generate a large data set
of highly accurate results generated using DMRG. We use a
real-space grid with spacing 0.04, which has previously been
shown to be sufficient to converge the results [23]. We calculate
the energies and densities of chains of even numbers of atoms,
from 2 to 20, with interatomic separations between 1 and 10
Bohr. Higher accuracy is achieved when every atom is centered
on a grid point, discretizing the set of allowed separations. The
specific separations used are listed in the Appendix.

Then a subset of these data are left out as a test set. The
training set, with NT values of R, are collected from the
remaining data. These are chosen to be as close to equally
spaced as practical. The test set is excluded from the data
where the training set is sampled from, to avoid contamination
via the cross-validation process.

A. Machine-learned F[n] for a given molecule

The first improvement on previous work is to apply ML to
F [n] itself, not TS[n] as in earlier work [13]. All the equations
of Sec. II C apply directly, by replacing TS[n] with F [n] and
vS(x) with v(x). It is not a priori obvious that one might not
encounter some difficulty, as F [n] contains all the many-body
physics of the ground state.

We continue to use the H2 molecule to illustrate our method.
Contrary to previous work, we apply KRR algorithms to ML
the interacting functional F [n] itself, by training on highly
accurate DMRG energies and densities at various values of R.
In Table I we list the errors for H2 as a function of NT, both
on the exact density and on an optimally constrained density
found by the methods of Ref. [38].

To illustrate the procedure, in Fig. 3 we show
the energies with only five training points, R =
1.00,3.20,5.48,7.76,10.00, yielding the smooth, green dashed
curve, when evaluated on the exact densities. The curve (al-
most) exactly matches at the training points, but is noticeably
inaccurate inbetween. But note that, in contrast to all previous
studies, we are fitting the full F [n], not just TS[n], so that,
e.g., our inaccurate curve dissociates H2 correctly, while no
standard DFT calculation, with a standard XC approximation,
can.

The problem is actually much greater than even the smooth
dashed green curve would suggest. In practice, we not only
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TABLE I. ML performance on different chains HN . NT is the size of the training set. Regularization strength λ and kernel length scale σ

are the model hyperparameters selected by cross validation [14]. The functional driven error �EF /N [39] is tested on the entire test set to show
the overall accuracy. The total error �E/N is tested on the equilibrium test set to emphasize accuracy around equilibrium position. ER=9.8/N

shows that ML can get a very accurate dissociation limit. All errors are given in kcal/mol.

N NT λ σ |�EF|/N max |�EF|/N |�E|/N max |�E|/N EML
R=9.8/N EDMRG

R=9.8 /N

2 5 1.0 × 10−8 1000 2.54 7.02 9.74 20.3 −421.291 −425.797
2 20 4.6 × 10−10 2.15 0.00121 0.00802 0.005 0.013 −425.785 −425.797
2 50 1.0 × 10−12 0.70 0.00003 0.00034 0.050 0.304 −425.798 −425.797
4 50 2.2 × 10−11 46.4 0.0021 0.016 0.005 0.017 −428.617 −428.620
8 50 1.0 × 10−4 2.15 0.011 0.31 0.28 1.68 −430.011 −430.032
12 50 1.0 × 10−12 0.46 0.0031 0.010 0.24 0.88 −430.502 −430.503
16 50 2.2 × 10−11 0.46 0.0042 0.012 0.08 0.41 −430.738 −430.738
20 50 2.2 × 10−11 0.46 0.0042 0.014 0.26 0.88 −430.880 −430.880
∞ 50 1.0 × 10−8 0.46 0.012 0.050 0.073 0.27 −431.447 −431.444

need the energy functional, but also its derivative, at least in
the vicinity of a solution density. This is because we use the
functional to find the density itself, via the Euler equation

δF

δn(x)
= −v(x). (10)

In fact, the derivatives of ML functionals such as that of
Eq. (6) are highly inaccurate and cannot be used to find the
minimizing density. Methods have been developed to constrain
the search to the manifold of training data via nonlinear
gradient denoising (NLGD) [38]. For our H2 with NT = 5,
these lead to the (even worse) solid green curve of Fig. 3. The
optimal density is shown in Fig. 4. We clearly see that (a) the
accuracy is not high enough and (b) the error is dominated
by the error in the densities. (This is called a density-driven
error [39] in a DFT calculation.)

However, when we increase to 20 data points, the ML
curve (red solid) is indistinguishable from the exact one, and
the error at equilibrium is only 0.007 kcal/mol, and shrinks
with increasing R. This calculation applies all the principles
discussed in Ref. [13], but is now applying them to the
many-body problem, not just the KS problem. Even in the
stretched limit, where the system is strongly correlated, there

FIG. 3. Same as Fig. 2. The green curves are ML with NT = 5
on both the exact (dashed) and ML-optimized (solid) densities. The
red solid curve is the ML with NT = 20 (number of training points)
on ML-optimized (solid) densities. Black dashed curve is the exact
DMRG curve, matching nearly exactly the NT = 20 on ML line.

is no loss of accuracy. Note that we are not just fitting the
binding curve, as we are reproducing the many-body density
at every value of R, starting from data at a limited number of
values. In Fig. 4 we plot the optimally constrained densities at
R = 4.0 (outside all training sets) for NT = 5 and NT = 20,
compared with the exact density.

Here ML has entirely bypassed the difficulty of solving the
many-fermion problem. The machine learns the characteristics
of the solution without ever solving the differential equation.
Moreover, the HK theorem is a statement of the minimal
information needed to characterize the ground state of the
system. In some ways, this ML approach is the purest
embodiment of the HK theorem.

We note that the Euler equation (10) is merely the same as in
KS theory but with TS replaced by F . Thus, the entire algorithm
for learning is synonymous with the previous works [13] but
with TS replaced by F [n].

B. Finding a data-driven optimal basis for longer chains

The cost of optimal gradient descent methods, evaluated
on a spatial grid, grows very rapidly with the number of grid
points, and rapidly becomes unfeasible as the number of H
atoms grows. Thus a simpler representation of the density
is required. To overcome those difficulties, we introduce a
basis set. Inspired by the localized atomic bases used in most

FIG. 4. Optimal densities for 1D H2 molecule in the test set:
DMRG (black dashed), ML with NT = 5 (orange solid), ML with
NT = 20 (red solid).
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FIG. 5. Partition density of each H atom in H8.

quantum chemical codes, we developed a data-driven basis
set using Hirshfeld partitioning [40] and principal component
analysis (PCA).

To partition a molecular density via the Hirshfeld scheme,
begin with the protomolecule of overlapped atomic densities
at the nuclear positions of the real molecule. If n0

i (x) = n0
1[x −

(i − 1)R] is an isolated atomic density at the ith nuclear center,
spaced R apart, then

n0(x) =
N∑

i=1

n0
i (x) (11)

is the density of the protomolecule, where R is the interatomic
spacing. We define a weight

wi(x) = n0
i (x)/n0(x), (12)

associated with each atom, and then define the density of each
Hirshfeld atom within the real molecule as

ni(x) = wi(x)n(x), (13)

where n(x) is the exact molecular density. The ground-state
density of a single hydrogen atom n0

i (x) is reported in Ref. [23].
Figure 5 shows partition densities ni(x) of atoms in one H8.

Next, for a specific chain length N , we consider a range
of interatomic separations R, and consider the collection of
every atomic density within the chain for every value of R in
a training set, each centered on the origin, as shown in Fig. 6.
These individual atomic partition densities reflect the diverse
behaviors caused by the interaction between the hydrogen
atoms inside the chains. A principal component analysis is

FIG. 6. Single H atom densities for H atoms in different chains
and atomic distance (gray). The average density is plotted in red.

FIG. 7. First seven principal components of the densities shown
in Fig. 6, from top to bottom.

applied to these densities, and the eigenvalues are ordered in
decreasing magnitude to find a subspace with the maximum
variance. Each atomic density can be accurately represented
by the base density f0(x) (red in Fig. 6) and seven principal
components (Fig. 7),

ni(R,x) = f0(x) +
7∑

p=1

ci,p(R)fp(x) (14)

i is the index of atom and p is the index of principal
components. Thus the total density of HN with separations
R is

∑N
i ni(R,x), and is described by just 7N coefficients.

Note that f0(x) is very close to an isolated atom density,
but we use the average to center our data for the PCA
analysis. Our representation greatly reduces the number of
variables in the density representation for a given chain length,
and saves a significant amount of computational cost when
solving for the ground-state density of the system. This new
basis set is completely data driven and physically meaningful.
Furthermore, the derivation of this method is not limited to 1D.

We next repeated these calculations for a sequence of chains
of increasing length. In each case, we train F ML[n] on a limited
training set, and then compare on a test set (see Appendix),
with the accurate results supplied by DMRG. The learning
curves, i.e., error as a function of NT, of chains of differing
length, are shown in Fig. 8(a). The error typically decreases
with amount of training data, but for fixed NT, longer chains
display substantially larger errors. This is because the binding
energy curve changes more rapidly when the chain length is
increased.

In applied machine learning, feature engineering, which
uses domain knowledge of the data to improve the efficiency
of ML algorithms, is a crucial step. Here we know that as
the chain length increases, the central density should converge
to a fixed value (thermodynamic limit). We therefore choose
the central two atomic densities alone to use as a minimal
input feature for learning the energy of a given finite chain.
The learning curves for models trained only on this central
partition density are shown in Fig. 8(b). For chain lengths
greater than or equal to 12, substantially greater accuracy is
reached for a fixed amount of training data. Here we still use
the total density for N � 8 and the bulk density for N � 12.
The model performance and hyperparameters are presented in
Table I.
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FIG. 8. Learning curves for several 1D H chains. (a) ML using
the total density. (b) ML using the bulk partition densities (see text).

C. Extrapolation to the thermodynamic limit

Our ultimate goal is to use ML to find the energy of the
infinite chain to within chemical accuracy, for all interatomic
separations. To do this, we first build a set of infinite chain
energies and densities. For each value of R, we extrapolate
both the density and energy of our finite chains as a function
of N . This then gives us a set of data for the infinite chain that
we can both train and test on and gave rise to Fig. 1. Figure 9
shows the extrapolation DMRG electronic energy curve. The
ML results match nicely.

In an entirely separate calculation, we also performed
DMRG directly for the infinite chain, using the method of
McCulloch [41] for a four atom unit cell [42]. The system is
initialized by solving the equivalent finite size system with box
edges at R/2. As a part of the iDMRG algorithm [41], a single
unit cell is then inserted into the center of the finite system
and 15 sweeps are performed over the inserted unit cell. The
sequence is repeated—after adding another unit cell—until
convergence. We compare these energies with the extrapolated
values, finding agreement to within 1 kcal/mol for all values
of R. This agreement validates our extrapolation procedure.

FIG. 9. Electronic energy per atom in the thermodynamic limit,
both via DMRG chains (extrapolated to infinity) and using machine
learning with 50 data points per chain.

FIG. 10. For a given training set with NT training points, the
functional driven error �FF per atom is shown in red (lower curve).
The upper curve is the total energy error per atom evaluated self-
consistently.

We find that, with 50 data points, the ML result, on the
optimized density, also agrees to within 1 kcal/mol. Thus,
armed with the 50-data-point machine-learned functional, one
can self-consistently find the density and energy of the infinite
chain to quantum chemical accuracy.

Our final figure, Fig. 10, simply demonstrates that the error
for the infinite chain (and for all the ML calculations) is
almost entirely due to the error in the optimized density. The
functional-driven error [39] is the energy error made on the
exact density:

�EF = EML[n] − E[n] = F ML[n] − F [n]. (15)

We see that, at any level of training, �EF is an order of
magnitude smaller than the final energy error on the optimized
density. Thus the error is density driven but, nonetheless, can
be forced down to quantum chemical limits with enough data.

IV. DISCUSSION

We have shown that it is in principle possible to construct,
via machine learning, the entire interacting functional of
Hohenberg and Kohn F [n] so accurately that optimized
densities and energies evaluated on them are within quantum
chemical accuracy. We have done this using the 1D simulation
of continuum Hamiltonians established over the last several
years, and using DMRG as an efficient solver. We apply
the ML methods previously developed for approximating the
noninteracting kinetic energy. Here, because we have precise
energies for the interacting system to train on, we are able
to construct the interacting functional, including all exchange
and correlation effects. Our ML functional has no difficulties
when bonds are stretched so that correlations become strong.
We have even managed to apply this methodology to chains
extrapolated to the thermodynamic limit, producing chemi-
cally accurate results for solids. This level of accuracy is far
beyond that of any existing DFT calculation of a solid.

We conclude with a discussion of the steps needed to
generalize this calculation to realistic solids. The first point
is that, while we have performed the present calculations
in 1D for both computational and programming efficiency,
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there is absolutely no reason they could not be repeated for
real 3D hydrogen chains. These can readily be treated using
DMRG [43,44] and the ML algorithms are independent of
the dimensionality. The extrapolation to an infinite chain limit
should behave in a similar fashion. While the algorithm for
generating a model of F [n] was already developed, merely
replacing TS in the algorithm in Refs. [13,14] with F [n], this
is a demonstration that this algorithm works for interacting
electrons. The ground-state density is solved by the techniques
of Ref. [38]. However, instead of using a spatial grid, a data-
driven atom-centered basis set for the density is developed.
The distance metric, derivatives, and second derivatives are
calculated on these basis functions. This greatly reduces the
number of variables in the algorithm. For H20, the calculation
in this new basis can easily be performed on a personal laptop.

We note also that the (relatively) large amount of data
needed to achieve chemical accuracy is solely because we have
chosen to approximate the entire HK functional F [n] and also
need to find its derivative sufficiently accurately to produce an
accurate energy. If, instead, we had used the KS scheme with
a standard approximation for EXC, we could used ML simply
for the error in that approximation, yielding inherently much
more accurate densities, and requiring much less data for the
same level of accuracy in the energy.

More generally, an accurate general purpose solver such
as QMC or accurate quantum chemical methods could be
used to provide the highly accurate data needed to train
the machine learning. For 2D or 3D solids, extrapolation
to the limit requires many more atoms. But since, e.g., a
20 × 20 × 20 array is eminently practicable within KS-DFT,
this is accessible with a machine-learned correction. Thus, at
least within KS-DFT, there is no reason that an ML-constructed
functional could not be created from QMC data to extract the
bulk energy of a solid.

It has also recently been shown [45] that the amount of data
needed to bypass the KS equations can be greatly reduced by
learning the density as a functional of the KS potential, so
that the functional derivative of the KS kinetic energy is never
used. This was demonstrated for 3D molecules.

Lastly, we mention that the geometries used here are rather
simple. We have not attempted to create ML functionals
that apply to many different atoms in many diverse bonding
situations, as has been done in other work, and our functionals
do not apply outside the domain they have been trained on.
But since the energy curve of a bulk solid does not require
such a functional, our ML approximation is sufficient for the
purpose here.

Ultimately, any ML method can be limited by the need
for excessive training. But our work here shows that this is
possible in principle, and there is no reason to think it more
difficult in practice.
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APPENDIX: DESCRIPTION OF DATA

The density matrix renormalization group (DMRG)
[16–19] has become the gold standard for calculations in one
dimension. The ansatz made for the wave function is that of a
matrix product state (MPS). This ansatz allows for a site-by-
site determination of the wave function by concentrating on
a small number (in our implementation, two) lattice sites at a
time. Once the wave function is updated on those two sites,
the next two sites are treated. The entire system is swept back
and forth until convergence which usually occurs very quickly
in one dimension.

To evaluate the hydrogen chains in this work, an extended
Hubbard model [20,21,23]

H =
∑
j,σ

−1

2a2
(ĉ†j,σ ĉj+1,σ + H.c.) − μ̃njσ

+
∑

j

vjnj + 1

2

∑
ij

vij
eeni(nj − δij ) (A1)

can be constructed to recover the continuum limit in the limit of
many sites. The prefactor on the kinetic energy terms is chosen
to match the finite difference approximation for the kinetic
energy with grid spacing a. An external potential is applied
in the variable vj while μ̃ = μ − 1

a2 for chemical potential

μ. Also, an electron-electron term v
ij
ee is represented by an

exponential function [23], This exponential mimics the soft-
Coulomb interaction, which itself is an approximation of the
Coulomb interaction in 3D but spherically averaged [23]. The
similarity between these functions gives the similar behaviors
of the 1D atoms and their 3D counterparts.

Systems are calculated with open boundary conditions
(“box” boundary conditions). The limit where the box bound-
ary is far from the nearest atomic center is always taken, so no
finite size effects appear.

A complication is apparent in 1D that does not appear in
3D. There is no angular momentum in 1D. Thus, not all neutral
atoms bind their electrons. One can see this in a reduced
example as follows: Consider a delta function interaction in 1D
of the form −δ(x − R/2) − δ(x + R/2) [46]. When R = 0,
there is only one solution. At any finite R, the number of
electrons that will bind increases. The same effect occurs for
the exponential interaction, though it is not as easy to see.

This implies that a lower cutoff in the exponentially
interaction hydrogen chains will impose a lower limit on
suitable chain length. We are interested in systems that do bind
all electrons, so systems below a critical R are ignored. Table II
lists the range of interatomic distances used for each chain.
For each Hydrogen chain data generated (H2, H4, H8, . . .)
generated by DMRG, 80 points are sampled equidistantly as
the entire test set range in Table II. This test set is inaccessible
in the training process. The rest of the data in the training set
range in Table II are used as a grand training set, where the
NT training data are uniformly sampled to train the model.
The equilibrium test set range is a subset of the entire test
set range, emphasizing the performance around equilibrium
positions. The upper bound is around twice the equilibrium
position given by the DMRG result.
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TABLE II. Hydrogen chain data. N is the number of hydrogen atoms in the chain. R is the atomic distance between atoms. The number of
DMRG data in each range is in parentheses.

N Training set range Entire test set range Equilibrium test set range

2 1.0 � R � 10 (146) 1.2 � R � 9.8 (80) 1.2 � R � 3.12 (19)
4 1.4 � R � 10 (136) 1.6 � R � 9.8 (80) 1.6 � R � 4.08 (25)
8 1.4 � R � 10 (136) 1.6 � R � 9.8 (80) 1.6 � R � 4.28 (27)
12 1.6 � R � 10 (131) 1.8 � R � 9.8 (80) 1.8 � R � 4.32 (26)
16 1.6 � R � 10 (131) 1.8 � R � 9.8 (80) 1.8 � R � 4.32 (26)
20 1.6 � R � 10 (131) 1.8 � R � 9.8 (80) 1.8 � R � 4.4 (27)
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