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Revealing frustrated local moment model for pressurized hyperhoneycomb iridate: Paving the way
toward a quantum spin liquid
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There have been tremendous experimental and theoretical efforts toward the discovery of a quantum spin-liquid
phase in honeycomb-based-lattice materials with strong spin-orbit coupling. Here the bond-dependent Kitaev
interaction between local moments provides strong magnetic frustration and, if it is the only interaction present in
the system, it will lead to an exactly solvable quantum spin-liquid ground state. In all of these materials, however,
the ground state is in a magnetically ordered phase due to additional interactions between local moments.
Recently, it has been reported that the magnetic order in the hyperhoneycomb material, β-Li2IrO3, is suppressed
upon applying hydrostatic pressure and the resulting state becomes a quantum paramagnet or possibly a quantum
spin liquid. Using ab initio computations and strong-coupling expansion, we investigate the lattice structure
and resulting local moment model in pressurized β-Li2IrO3. Remarkably, the dominant interaction under high
pressure is not the Kitaev interaction or further neighbor interactions, but a different kind of bond-dependent
interaction. This leads to strong magnetic frustration and may provide a platform for discovery of a new kind of
quantum spin-liquid ground state.
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I. INTRODUCTION

Magnetic frustration is often regarded as a prominent route
to realize quantum spin-liquid states, i.e., novel quantum
paramagnetic states with fractionalized excitations [1]. In the
Kitaev model on the honeycomb lattice, magnetic frustration
is achieved by bond-dependent Ising interactions, where there
exist a macroscopic number of classically degenerate ground
states [2]. The quantum ground state can be solved exactly
and is shown to be a quantum spin liquid. Recently, much
effort has been put forward to realize the Kitaev interaction
in honeycomb-based-lattice materials with strong spin-orbit
coupling [3–5], where the spin-orbit coupling and edge-
sharing octahedra structure allow such interactions [6]. This
physics has been explored in two-dimensional honeycomb
lattice systems such as Na2IrO3 [7–15], α-Li2IrO3 [9,16], and
RuCl3 [17–19], as well as three-dimensional hyperhoneycomb
β-Li2IrO3 [20–28] and stripy honeycomb γ -Li2IrO3 [29–34]
systems. Here the local moments on Ir (or Ru) ions can be
described by the pseudospin jeff = 1/2 degree of freedom,
which is a spin-orbit entangled Kramers doublet [35,36].

These materials, however, develop magnetic ordering at
low temperatures, defying attempts to achieve quantum spin-
liquid ground states [7,18,24,37]. It has been shown that
such magnetic ordering occurs due to the presence of other
interactions between jeff = 1/2 moments [31,38]. On the other
hand, the nature of the observed magnetic order is strongly
dependent on the Kitaev interaction, which is an indirect
evidence that the strength of the Kitaev interaction in these
materials is significant. This suggests that if there is a way to
control the relative strength of these interactions, one may be
able to achieve a quantum spin-liquid ground state.

Very recently, hydrostatic pressure was applied to the
hyperhoneycomb material, β-Li2IrO3, and it was found that the
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magnetic order disappears for sufficiently high pressure while
the material remains insulating [39]. The nuclear magnetic
resonance (NMR) and specific-heat measurements found no
signature of any broken symmetry, which could be regarded
as a sign of a possible quantum spin-liquid ground state.
Hence the question is what kind of local moment interactions
are present in the high-pressure phase and whether such
interactions would lead to a quantum spin-liquid ground state.

In this paper, we theoretically investigate the lattice struc-
ture and local moment model for β-Li2IrO3 under hydrostatic
pressure using ab initio density functional theory (DFT)
computations and strong-coupling expansion. It is shown that
the dominant interaction between local moments in a high-
pressure structure is the so-called symmetric anisotropic (SA)
interaction which depends on bond directions, as explained
below. On the other hand, the usual Heisenberg and Kitaev
interactions are generally suppressed and, in contrast to a
naive expectation, further neighbor interactions are not so
significant. If only the SA interaction is present, the classical
version of the model is highly frustrated and there exists
macroscopic degeneracy of classically degenerate ground
states. Interestingly, the manifold of classically degenerate
states in the SA model is very different from that of the Kitaev
model [31]. This points to an interesting possibility that the
quantum version of such a model may support a quantum spin-
liquid state that is distinct from the Kitaev spin-liquid state.

More specifically, we find that the space group of the ab
initio optimized lattice structure remains unchanged (Fddd,
SG. 70) under pressure at least up to 10.2 GPa, while the
lattice parameters become more anisotropic compared to those
at ambient pressure. The local moment model in the strong-
coupling limit has the following general form [38]:

H =
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FIG. 1. Hyperhoneycomb network of Ir atoms in β-Li2IrO3

shown in the conventional orthorhombic unit cell (depicted in black
lines). Each site is connected to three nearest-neighbor sites by X-
(green), Y- (blue), and Z- (red) type bonds. Note that the X and
Y bonds are equivalent under C2 rotations. a and b lattice vectors,
which are more sensitive than the c lattice vector to pressure, are
depicted as black arrows. x̂, ŷ, and ẑ are local cubic axes.

where Si is the jeff = 1/2 pseudospin at site i, the summation
is over the nearest-neighbor (NN) bonds 〈i,j 〉 labeled by
γ ∈ (X,Y,Z), and 〈i,j 〉 ∈ αβ(γ ) is shorthand for 〈i,j 〉 ∈
γ,α �= β �= γ . The ± sign in front of � is a reminder that
unlike the J and K terms, the � term can have relative minus
signs on different bonds (the sign structures of � are explained
in Ref. [31]). Here, J , K , and � represent the Heisenberg,
Kitaev, and SA interactions, respectively. At ambient pressure,
the magnitudes of J , K , and � are uniform for all of the X,
Y, and Z-type bonds (see Fig. 1 for NN bonds and Fig. 4 for
the magnitudes). When K is the dominant interaction with
nonzero � and J , this model can explain the incommensurate
counter-rotating spiral order observed in a resonant elastic
x-ray scattering experiment [31]. A previous DFT computation
shows that the material in the experimentally determined
structure is indeed in this parameter regime [26].

Upon increasing pressure, DFT results indicate that the
bond lengths of the X- and Y-type bonds become shorter
than that of the Z-type bond. The biggest change occurs
in the tddσ -type hopping integral, which represents a direct
overlap in the σ bonding channel between d orbitals at NN
sites. As explained later, this change makes the Kitaev and
Heisenberg interactions much smaller and these interactions
on the X-, Y-, and Z-type bonds become anisotropic. The
dominant interaction, however, is the SA interaction � while
it becomes also bond anisotropic. In addition, further neighbor
interactions are found to be, in general, less than 10% of the
NN interactions. Hence it is clear that a good starting point for
the local moment model at high pressure is the SA interaction
model, which is highly frustrated at the classical level and
holds promise for a quantum spin-liquid state.

II. COMPUTATIONAL DETAILS

For the electronic structure calculations, we employ the
Vienna ab-initio Simulation Package (VASP), which uses the
projector-augmented wave (PAW) basis set [40,41]. 520 eV of
plane-wave energy cutoff is used, and for k-point sampling, a
9 × 9 × 9 grid including � point is employed for the primitive

cell. On-site Coulomb interaction is incorporated using the
Dudarev’s rotationally invariant DFT+U formalism [42] with
effective Ueff ≡ U − J = 2 eV. We employ two different
trial magnetic configurations, i.e., Néel-type and zigzag-type
antiferromagnetic orders, which yield the same result. For each
configuration with different cell volume and magnetism, struc-
tural optimization for the cell shape and internal coordinates
is performed with a force criterion of 1 meV/Å and without
any symmetry constraints. A revised Perdew-Burke-Ernzerhof
generalized gradient approximation (PBEsol) [43] is used for
structural optimizations and total-energy calculations, which
yields the best agreement of calculated lattice parameters to
the experimental ones in conjunction with spin-orbit coupling
(SOC) and Ueff [23]. Optimized structures are tabulated in
Table I of Appendix A. After the structural optimizations,
the hopping integrals between the Ir t2g orbitals are com-
puted by employing maximally localized Wannier orbital
formalism (MLWF) [44,45] implemented in the WANNIER90
package [46], but without including Ueff and magnetism. The
computed t2g Wannier hopping integrals are presented in
Table II of Appendix B. The VESTA [47] package was used
to draw the crystal structure in Fig. 1.

It should be mentioned that structure optimizations in the
absence of SOC or the Coulomb interaction lead to severe
Ir-Ir dimerization of the Z bond, regardless of the choice of
exchange-correlation functionals and other parameters. Since
such dimerization has not been observed in experimental
crystal structures [23,24], we conclude that both SOC and
Coulomb interaction are crucial in maintaining the observed
hyperhoneycomb structure in β-Li2IrO3. Note that a similar
suppression of dimerization due to SOC was reported in the
quasi-two-dimensional α-RuCl3, which has the similar local
geometry of edge-sharing metal-anion octahedra [48].

III. EVOLUTION OF CRYSTAL STRUCTURE
UNDER PRESSURE

Figure 2 shows the evolution of the a and c lattice constants
and NN bond lengths with respect to the hydrostatic pressure
(more details about optimized crystal structures are in Table I
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FIG. 2. Pressure dependence of the ratios of lattice constants
and NN bond lengths with respect to the experimental values
{a0,c0,X0,Z0} at ambient pressure, reported in Ref. [23]. Note that
a/a0 � b/b0 and dX = dY.
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of Appendix A). In Fig. 2, the volume of the unit cell is
reduced from 103% to 91% with a decrement of 3%, where
the largest and smallest volume correspond to the pressures
of P = −3.9 and 10.2 GPa in our calculations. Note that the
ratio between the a and c lattice parameters becomes closer to
the experimental a0/c0 at P = −3.9 GPa, and hence we take
this pressure as a reference point. It is shown in the figure that
the a (and b) lattice parameters are reduced by ∼1.5% more
than the c parameter, implying that the X and Y bonds, forming
the zigzag chains in the hyperhoneycomb structure (shown in
Fig. 1), are more compressed than the Z bonds. Indeed, the
X-bond length, denoted as dX, is two times more compressed
than the Z-bond length dZ at P = 10.2 GPa; d0

X − dX and
d0

Z − dZ are 3.4 and 1.7% of the experimental d0
X and d0

Z at
ambient pressure, respectively [23].

Compared to the lattice constants and the NN Ir-Ir bond
lengths, the Ir-O bond lengths show smaller changes. dZ

Ir−O

and dX
Ir−O, the Ir-O bond lengths participating in the NN Z and

X bonds, are reduced by ∼1.4% and 1.2%, respectively, when P
is increased from −3.9 to 10.2 GPa. These changes are smaller
compared to the ∼3 to 4.5% reduction of the NN Ir-Ir bond
lengths. From this comparison, it can be deduced that the direct
hopping channels due to the direct overlap of neighboring Ir
t2g orbitals, which are relevant to the Ir-Ir bond length, should
be more affected by hydrostatic pressure than the oxygen-
mediated indirect channels, relevant to the Ir-O bond length.
This is confirmed in the computation of the hopping integrals,
as presented in the next section.

IV. t2g HOPPING CHANNELS

The hopping integrals between the NN Ir t2g orbitals
{dxz,dyz,dxy} for the X and Z bonds, represented by 3 × 3
matrices, are as follows:

T̂ Z =
⎛
⎝ t1 t2 ti

t2 t1 −ti
−ti ti t3

⎞
⎠, T̂ X =

⎛
⎝t3 t4 t ′4

t4 t1 t2
t ′4 t2 t ′1

⎞
⎠, (2)

where the forms of T̂ Z and T̂ X are determined by the point-
group symmetries at the Z- and X-bond centers [23,31]. Note
that T̂ Y can be obtained by applying twofold rotations to T̂ X.
Here the most dominant terms are t1 (t ′1), t2, and t3, which
originate from tddδ-like direct, tdpdπ -like indirect, and tddσ -like
direct overlaps, respectively. The sign of the t2 term at the X
bond flips when the twofold rotations along the ẑ and a ‖ x̂ − ŷ

axes are applied, and hence we show only the value of |t2|
hereafter. Other minor components, ti and t4 (and t ′4), come
from trigonal distortions, where the antisymmetric ti terms in
T̂ Z arise due to the absence of inversion at the Z-bond center.
Detailed illustrations for such terms in β-Li2IrO3 are presented
in Ref. [26]. Note that since Ir-O-Ir bond angles become closer
to 90◦ when pressure is increased, the magnitudes of the ti ,
t4, and t ′4 terms are reduced below 5% of that of the largest
hopping term. The difference between t1 and t ′1 at the X bond
also reduces from ∼20 to 6% of the average of t1 and t ′1 as P is
increased from −3.9 to 10.2 GPa. Hence, hereafter we denote
t1 as the averaged value of t1 and t ′1 and present the evolution
of t1,2,3 as a function of P.
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FIG. 3. Pressure dependence of the ratios of three Ir t2g hopping
integrals for the X and Z bonds, with respect to t

Z0
1,2,3 denoting the t1,2,3

channels for the Z bond at P = −3.9 GPa, respectively. Solid and
dashed lines depict the evolution of hopping amplitudes in the X and
Z bonds, respectively. Note that at P = −3.9 GPa, the NN hopping
terms are isotropic.

Figure 3 shows the evolution of the ratios t1,2,3/t
Z0
1,2,3 with

respect to pressure, where t
Z0
1,2,3 are the values of the Z-bond

hopping terms at P = −3.9 GPa (tZ0
1 = 80, |tZ0

2 | = 248, and
t
Z0
3 = −139 meV). As expected in the previous section, the
tddσ -like t3 channel shows the largest enhancement of 260%
at the X bond. Due to the larger compression of the X bond
compared to the Z bond, tX3 becomes 75% larger than tZ3 .
This huge enhancement makes t3 the dominant hopping term
at P = 10.2 GPa; −365 and −248 meV for the X and Z
bonds, respectively. The tddδ-like t1 channel is also increased
by the pressure, with smaller enhancement compared to t3.
On the contrary, the t2 channel is almost unchanged with
the small decrease of ∼4–8% at P = 10.2 GPa, due to the
cancellation between the tdpd -like indirect and tdd -like direct
overlaps within the t2 channel. As suggested in other systems
with similar local crystal structure [19,48], these changes in
NN hopping channels greatly affect the magnetic exchange
interactions between the jeff = 1/2 pseudospins in the strongly
correlated regime, as we will discuss in the following section.

It should be mentioned that compared to these huge changes
in the NN channels, the second, third, and further-neighbor
channels do not show any significant changes. For example,
the largest NN hopping term (t II

NNN in Ref. [26]) is enhanced
from 77 to 78 meV as P is increased from −3.9 to 10.2 GPa.
The largest third- (t II

3NN in Ref. [26]) and fourth-neighbor
terms, corresponding to −45 and −31 meV at P = −3.9 GPa,
respectively, are enhanced at most by 15 meV as P is increased.
From these results, we conclude that the role of further-
neighbor terms is not significant in the pressure-induced
paramagnetic phase of β-Li2IrO3.

V. MAGNETIC EXCHANGE INTERACTIONS
AT HIGH PRESSURE

The huge changes in the NN hopping channels upon
pressure affect the jeff = 1/2 NN exchange interactions
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substantially, where each interaction term in the spin model
written in Eq. (1) is represented as follows [31,38]:

J = 4

27

[
(4JH + 3U )(2t1 + t3)2

U 2
− 16JH (t1 − t3)2

(2U + 3λ)2

]
, (3)

K = 32JH

9

[
(t1 − t3)2 − 3t2

2

(2U − 3λ)2

]
, � = 64JH

9

t2(t1 − t3)

(2U + 3λ)2
,

(4)

where U , JH , and λ are the on-site Coulomb interaction,
Hund’s coupling, and Ir t2g-orbital SOC, respectively. In this
study, we employ U = 2.0 eV, JH/U = 0.2, and λ = 0.45 eV.
Note that apart from the overall energy scale, the ratios between
the exchange interactions are almost insensitive to JH/U

when JH /U > 0.05. In principle, the additional SA term �′
is allowed to exist, which is proportional to t4 (and t ′4) as
discussed in Ref. [49], and the DM vector parallel to the bond
direction at the Z bond is allowed as well. However, their
magnitudes become insignificant as pressure is increased.

Figure 4(a) shows the calculated values of the exchange
interactions, where all the values are divided by the absolute
magnitude of

√
(J 0

Z )2+(K0
Z )2+(�0

Z )2 along the Z bond at P =
−3.9 GPa and are shown as dimensionless numbers. Two
notable features are found: (i) the SA term � is enhanced
significantly by the pressure. At a relatively low pressure of
∼ − 2.5 GPa, the SA term overcomes K and becomes the
largest term. It becomes even larger under higher pressure;
at P = 2.1 GPa, the ratio between the magnitudes of the ex-
change interactions at the X bond is |JX| : |KX| : |�X| = 0.43 :
0.34 : 1, where all J,K,� < 0. As such, magnetic properties
in the pressurized β-Li2IrO3 would be distinct from those of
the Kitaev-dominated phases at ambient pressure [31]. (ii)
While the X and Z bonds share almost the same values
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FIG. 4. Pressure dependence of the exchange interactions
for the jeff = 1/2 pseudospins. Note that dimensionless val-
ues {J̄ ,K̄,�̄}X,Z ≡ {J,K,�}X,Z/

√
(J 0

Z)2 + (K0
Z)2 + (�0

Z)2 are shown,
where {J,K,�}0

Z are the exchange interactions for the Z bond at
P = −3.9 GPa.

of exchange interactions at P = −3.9 GPa, the anisotropy
between the X and Z bonds becomes significant in the high-
pressure regime of P > 5 GPa with the sign flip of K on the X
bonds. The anisotropy in the NN interactions becomes larger
than the strength of further-neighbor exchange-interaction
terms, and hence the anisotropy in the NN interactions would
play a more significant role than further-neighbor interactions
in the high-pressure phase of β-Li2IrO3 [50].

As noticed in previous studies on α-{Li,Na}2IrO3

(Refs. [19,51]), the magnitude of exchange interactions is
sensitive to the local Ir-O geometry, especially to the ratio
between the NN Ir-Ir and Ir-O bond lengths. This ratio is in
turn controlled by the Ir-O-Ir bond angle for a given Ir-Ir
distance. Previous studies revealed that the ferromagnetic
(FM) Kitaev term is suppressed when the Ir-O-Ir bond angle
becomes smaller. Reference [19] found also that the � term is
substantially enhanced as the bond angle is reduced. Since
the reduced bond angle corresponds to the increased Ir-O
distance and the reduced p-d-hopping amplitude, their results
are consistent with our finding of reduced Kitaev and enhanced
� terms under pressure.

Such pressure-induced effects on the anisotropic exchange
interactions would manifest in the anisotropy of the magnetic
susceptibility. For example, high-temperature expansion of
Eq. (1) yields the anisotropic Curie-Weiss temperatures,
which satisfy θCW

a − θCW
c � 2|�Z| and θCW

a + θCW
c − 2θCW

b �
2(KZ − KX), where θCW

a,b,c are the Curie-Weiss temperatures
(multiplied by kB) with external field parallel to the a,b,c
axes, respectively. Hence the change in anisotropic exchange
interactions and bond anisotropy of the Kitaev term under pres-

TABLE I. Table of optimized lattice parameters and internal
coordinates of pressurized β-Li2IrO3 with Fddd (SG. 70, origin
choice 2) space-group symmetry, where the internal coordinates for
each inequivalent site are (1/8,1/8,z) for Ir and Li1/2, (x,1/8,1/8)
for O1, and (x,y,z) for O2. V and V0 denote the cell volume for the
optimized structure at the given pressure and that of an experimental
one at the ambient pressure, respectively. In addition, Ir-Ir and Ir-O
bond lengths and Ir-O-Ir bond angles in each NN bond are shown
below.

P (GPa) −3.9 −1.1 2.1 5.9 10.2
V/V0 1.03 1.00 0.97 0.94 0.91

a 5.964 5.908 5.848 5.790 5.729
b 8.545 8.440 8.340 8.238 8.137

c (Å) 18.037 17.891 17.747 17.603 17.463
Ir (16g) z 0.7085 0.7085 0.7086 0.7087 0.7088
Li1 (16g) z 0.0441 0.0448 0.0454 0.0458 0.0460
Li2 (16g) z 0.8769 0.8775 0.8779 0.8781 0.8781
O1 (16e) x 0.8561 0.8588 0.8614 0.8637 0.8658
O2 (32h) x 0.6335 0.6320 0.6305 0.6289 0.6271

y 0.3631 0.3654 0.3676 0.3698 0.3719
z 0.0378 0.0384 0.0390 0.0397 0.0403

dIr−Ir Z 3.011 2.988 2.967 2.946 2.928
(Å) X 3.005 2.973 2.940 2.907 2.874
dIr−O Z 2.041 2.035 2.028 2.020 2.012
(averaged) X 2.034 2.029 2.023 2.017 2.010
θIr−O−Ir Z 95.06 94.50 94.04 93.64 93.39
(deg) X 95.23 94.23 93.25 92.26 91.24
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sure can be detected from the anisotropy of high-temperature
susceptibility data.

VI. DISCUSSION AND OUTLOOK

In iridates with honeycomb or hyperhoneycomb lattices,
the strong spin-orbit coupling and edge-sharing oxygen oc-
tahedra structure conspire to generate the celebrated Kitaev
interaction, which provides magnetic frustration and an exactly
solvable quantum spin-liquid ground state. Such physics has
been one of the main driving forces for research on quantum
spin-liquid phases in this class of materials. It is in contrast
to a more conventional paradigm, where further-neighbor
exchange interactions are used to engineer magnetic frustration
in bipartite lattices such as the honeycomb or hyperhoneycomb
lattices. In this work, we ask the question of whether the
bond-dependent interaction or further-neighbor interaction is
mainly responsible for the suppression of magnetic order
or appearance of a correlated quantum paramagnetic state
under high pressure as discovered in a recent experiment on

pressurized β-Li2IrO3 [39]. Remarkably, our analyses of ab
initio computations with structure optimizations and strong-
coupling expansion strongly suggest that the bond-dependent
symmetric anisotropic interaction, which is distinct from the
Kitaev interaction, is the dominant player in the magnetic
frustration. Previous studies of the SA interaction on the
honeycomb and hyperhoneycomb lattices have shown that
there exists a macroscopically degenerate manifold of classical
ground states [31,38]. Hence it is conceivable that the quantum
version of this model may support the emergence of a new
kind of quantum spin-liquid ground state. This would be an
excellent topic for future studies.
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APPENDIX A: OPTIMIZED CRYSTAL STRUCTURES
UNDER THE PRESSURE

As mentioned above, structure optimizations are carried out
in the primitive unit cell without enforcing any symmetry con-
straints. However, the optimized structures show practically
no deviation from the original Fddd space-group symmetry.
The angles between the orthorhombic Bravais lattice vectors
in the optimized structures do not deviate from the right angle
(|δθ | < 0.0004◦). The FINDSYM package [52] is employed
for refining the optimized structures, and the difference of
internal coordinates between structures before and after the

refinement is smaller than 0.0002 Å for each site. Therefore, we
conclude that the optimized structure under pressure remains in
Fddd symmetry without any symmetry lowering. The refined
structures are presented in Table I.

The pressure dependence of b deserves a comment: In Fig. 2
in the main text, only the pressure dependence of a is presented.
The compression of b is similar to that of a, where a/a0 and
b/b0 are 0.968 and 0.962, respectively, at P = 10.2 GPa. b
is slightly more compressed than a, but since the compression
of a and b is similar and significantly larger than that of c, we
present a as the representative.

APPENDIX B: t2g HOPPING INTEGRALS

The Ir t2g hopping integrals for two structures at P = −3.9
and 10.2 GPa are shown in Table II. The values are calculated
without including Ueff and magnetism for each optimized
structure.
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