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Thermoelectric response of a correlated impurity in the nonequilibrium Kondo regime

Antonius Dorda,"-" Martin Ganahl,> Sabine Andergassen,” Wolfgang von der Linden,' and Enrico Arrigoni'f

Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
2 Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada

3 Institut fiir Theoretische Physik and Center for Quantum Science, Universitiit Tiibingen, Auf der Morgenstelle 14, 72076 Tiibingen, Germany

(Received 26 August 2016; revised manuscript received 8 November 2016; published 19 December 2016)

We study nonequilibrium thermoelectric transport properties of a correlated impurity connected to two leads
for temperatures below the Kondo scale. At finite bias, for which a current flows across the leads, we investigate
the differential response of the current to a temperature gradient. In particular, we compare the influence of a
bias voltage and of a finite temperature on this thermoelectric response. This is of interest from a fundamental
point of view to better understand the two different decoherence mechanisms produced by a bias voltage and by
temperature. Our results show that in this respect the thermoelectric response behaves differently from the electric
conductance. In particular, while the latter displays a similar qualitative behavior as a function of voltage and
temperature, both in theoretical and experimental investigations, qualitative differences occur in the case of the
thermoelectric response. In order to understand this effect, we analyze the different contributions in connection to
the behavior of the impurity spectral function versus temperature. Especially in the regime of strong interactions
and large enough bias voltages, we obtain a simple picture based on the asymmetric suppression or enhancement
of the split Kondo peaks as a function of the temperature gradient. Besides the academic interest, these studies
could additionally provide valuable information to assess the applicability of quantum dot devices as responsive

nanoscale temperature sensors.
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I. INTRODUCTION

The Kondo effect [1-5] is one of the most prominent
quantum many-body effects in nanoscopic physics. The
(nonequilibrium) Kondo resonance [6—8], being characterized
by a much sharper characteristic line width Tk than the
resonant tunneling one determined by I" (see Refs. [3,4,9-13]),
allows us to resolve electronic level splittings (e.g., in semicon-
ductor nanostructures [14], carbon nanotubes [15,16], dopant
atoms [17]), vibrational frequencies [18], spin splittings due
to a magnetic field [19], exchange interactions [11,12,20],
magnetic anisotropies (e.g., in molecules [21,22] or adatoms
[23]), and spin-orbit coupling [24]. While these have long been
probed by gate controlled electrical transport spectroscopy,
recent advancements in the experimental investigation of
thermoelectric properties on the nanoscale [25-31] provide
a promising route for the detection of additional information
on the relaxation processes not accessible in the electrical
transport [32]. Theoretically, the development of powerful
techniques led to significant progress in the understanding
of correlated quantum dots out of equilibrium [6,7,33-67]. An
accurate description of the spectral and transport properties in
the most challenging (nonperturbative) regime of intermediate
temperatures and bias voltages T, ¢ < Tx has however not
been feasible until recently. While the electronic transport has
been studied extensively, the thermoelectric transport theory
mostly focused on the linear response regime [13,25,68-86].
The nonlinear regime has been addressed mainly in the weak
coupling limit [32,75,87-94]; a systematic analysis including
renormalization effects [66,67,95,96] beyond the perturbative
regime is still missing. Recent findings [87,96] indicate a
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Seebeck coefficient which is enhanced with respect to the
equilibrium result. A possible key to this observation is the
different relaxation processes occurring at finite temperature
and bias voltage. These differences in the behavior as a
function of temperature and bias voltage offer a promising
route to highly efficient devices [97,98] operating in the non-
linear regime. Besides quantum dot setups being considered as
potential solid state energy converters [9,13,25,68,75,99—-101],
a variety of experimental realizations have been proposed,
ranging from molecular systems [102,103] to ultracold atoms,
for which recent progress allows us to address quantum
transport in two terminal transport setups [104—109]. The high
flexibility and control of these systems with highly tunable
parameters provides a further interesting route to improve
the understanding of the thermoelectric transport properties
of strongly interacting systems.

In this work, we focus on the electronic contribution to
the thermoelectric response of a quantum dot described by
the single level Anderson model (SIAM) out of equilibrium.
Aiming at understanding the microscopic processes under-
lying the physical behavior when applying a temperature
difference in addition to a bias voltage, we investigate the
differential response dj/d(AT) of the current to a temperature
gradient rather than macroscopic thermoelectric properties
such as the figure of merit or efficiency. In particular, we
consider a finite bias voltage and an infinitesimal temperature
difference d(AT) and compute the differential response of
the current dj/d(AT), which can be directly compared to
equilibrium results. An extensive numerical renormalization
group (NRG) [110,111] study of the thermoelectric properties
of the SIAM in equilibrium can be found, e.g., in Ref. [69].
The differential quantities allow us to assess the effect of a
finite temperature 7' in the presence of a finite bias voltage
¢. On the level of the spectral function, the equilibrium
behavior for ¢ = 0 (and T # 0) differs significantly from the
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nonequilibrium one for ¢ # 0. In equilibrium a single Kondo
peak is suppressed upon increasing 7, while in nonequilibrium
the Kondo resonance splits into two weak excitations at
the chemical potentials of each lead for values of ¢ of
the order of Tx. Despite these differences in the spectral
function, the differential conductance dj/d¢ exhibits in the
spin-symmetric case a qualitatively similar dependence on T
and on ¢. Here, we present calculations for dj/d(AT) as a
function of T or ¢ and for various system parameters, which
is essentially the complementary information to dj/d¢. We
further analyze these results in connection with the response of
the nonequilibrium spectral function to a temperature gradient
at finite bias. Besides the fundamental interest, the knowledge
of the behavior of 9j/9(AT) as a function of the system
parameters might be valuable for sensing applications since
it determines the electric response to an applied temperature
difference.

We use the recent implementation of the auxiliary mas-
ter equation approach (AMEA) [38,112-114] within matrix
product states (MPS) [39], which allows for a significantly
improved accuracy as compared to previous implementations
based on exact diagonalization [38,112]. The equilibrium
results for the strongly interacting SIAM were benchmarked
against NRG data, showing a remarkable agreement. In the
AMEA results below, we obtained a high spectral resolution
over the whole frequency domain for temperatures and
voltages below kg Tk /e.

Our paper is organized as follows: In the next section, we
introduce the model and present the main concepts of the
nonequilibrium impurity solver, the AMEA approach, and its
formulation in terms of Keldysh Green’s functions. Details
of the computation of differential quantities are specified
in Appendix. In Sec. III we discuss our results for the
thermoelectric transport properties at finite bias voltages. In
particular, we analyze the differential response of the current
to a temperature gradient in terms of the different contributions
arising from the behavior of the spectral function as a function
of temperature. We present a consistent physical picture in the
nonequilibrium Kondo regime and conclude with a summary
in Sec. IV.

II. MODEL AND METHOD
A. Model

The nonequilibrium SIAM considered in this work is given
by a single site Hubbard model, which is connected to two
leads A € {L/R} at different chemical potentials w;,r and
temperatures T, g. The corresponding Hamiltonian reads

H = Himp + Heads + Hcoup . (D

Here, H;n, describes the isolated impurity by

Hip= ) e fify +Unpingy, @
oelt |}

with the fermionic creation and annihilation operators for spin
o denoted by fj /f, and ny, = f; f... The onsite Coulomb
interaction is given by U and the onsite energy for each spin
by e = —U/2 + Vg, such that the particle-hole symmetric
point corresponds to a gate voltage of Vi = 0. The whole
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Hamiltonian Eq. (1) is assumed to be symmetric with respect
to the spin degree of freedom. The Hamiltonian for the leads
is given by

Hieads = Z Zglkd;[kadxka ’ 3

re{L,R} ko

with di,m /d, . the fermionic operators for lead electrons and
&, the energies of the N lead levels for each lead. The coupling
Hamiltonian reads

Heowp = —= t dTU + H. 4
p \/_AEXL:R}AZ( ko Jo ¢, 4)

ko

with coupling amplitudes #; which for simplicity we assume
to be symmetric (f; = ;). In particular, we choose for the
leads a flatband model so that the lead density of states p, (w)
is constant in the range (—D, D) and zero outside [115]. We
take the hybridization strengthI' = ), 7t]* p,(w = 0) as our
unit of energy and consider D = 10 I". The chemical potentials
of the two leads are shifted antisymmetrically by an external
bias voltage ¢, i.e., up = —¢/2 and ug = +¢/2, and also
a temperature difference AT is applied in the same manner
T, =T —AT/2 and T =T + AT/2, with T the average
temperature.

In the equilibrium limit ¢ = 0 and AT = 0 the low-energy
physics of the SIAM is governed by the Kondo scale Tk. It
becomes exponentially small for large values of the interaction
since Tx o exp(—n U/8I") for Vi = 0 [116]. We here define
Tx by G(T =Tk)= Gy/2 (at Vg =0), with G(T) the
temperature-dependent conductivity and G the quantum limit
obtained for T — 0 [111,117]. This choice of T directly
related to observables is especially suited for comparison
with experiments. From a NRG calculation [118] we find
for Vg = 0 and interaction strengths of U =4I, U = 6T,
and U = 8T valuesof Tx = 0.50T", Tx = 0.21T, and Tx =
0.10T, respectively. Away from particle-hole symmetry and
for fixed U, Tk increases as a function of Vg since Ty
exp(—m(U? —4V2)/(8T'U)) [116,119]. For the calculations
presented below we consider Vi > 0 and a fixed temperature
of T = 0.1T, leading to the regime T < Tx.

B. Keldysh Green’s functions

The nonequilibrium SIAM introduced in the previous
section is conveniently addressed in the framework of Keldysh
Green’s functions [120-125]. In the steady state limit one
needs to consider an independent retarded G ® (w) and Keldysh
Green'’s function GX (w), which are defined in the time domain
by

GR(1) = —i®(@) ({c(t),c'}),

GX(t) = —i ([e(),cT), ®)

with {A, B} the anti- and [A, B] the commutator of A and B
and ©O(¢) the Heaviside step function. The Green’s functions
in frequency domain are obtained as usual by Fourier transfor-
mation G(w) = [ G(t) exp(iwt)dt. In equilibrium G®(w) and
G*(w) are related to each other via the fluctuation-dissipation
theorem

G (w) =27i2f (0,1, T) = DA), (6)
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with f(w,u,T) the Fermi function for temperature 7 and
chemical potential u, the spectral function

Alw) = #(G’*(a)) - Gw)), (7

and the advanced Green’s function G4(w) = GR(w)!.
It is common to adopt a 2 x 2 matrix structure for Green’s
functions

GR GX
(w) (w)> @)

G(w) = < 0 G w)

and other two-point functions. We will denote such 2 x 2
objects by an underscore .... Products of such objects are
conveniently evaluated with the Langreth rules, e.g., for the
inverse one finds [120]

G Ht=(@GH",
G ==@H6 G ©)
With this, Dyson’s equation for the STAM can be written as
Gl (w) =g, ' (@) — Aw) — Z()
=G;'(0) — Z(w), (10)

where g~!(w) is the noninteracting Green’s function of the
isolated impurity [126], A(w) the hybridization function
accounting for Hieads + Heoup, 2(w) the self-energy for the
interacting coupled system, and G, !(w) the noninteracting
Green’s function of the impurity coupled to leads. As usual
for many-body problems, the calculation of X(w) is most
demanding and cannot be done exactly in general. The main
concepts of the nonequilibrium impurity solver used in the
present work are specified in Sec. II D; for more details we
refer to Refs. [38,39,112]. The hybridization can be expressed
as

Aw) =Y 1’ (), (11)
A

in terms of the boundary leads’ Green’s functions g . (),
whose retarded component is related to the density of states
by pi(w) = —1/73 {gf(w)}. Its Keldysh component is deter-
mined by observing that in the decoupled case, i.e., at infinite
past on the Keldysh contour, the leads are in equilibrium so
that the retarded and Keldysh part of gk(a)) fulfill Eq. (6).

C. Thermoelectric response

As stated above, in this work we are interested in computing
the thermoelectric properties for a finite bias voltage ¢ # 0
and an infinitesimal temperature difference d(AT). In the
framework of Keldysh Green’s functions the current across
the impurity can be calculated with the aid of the Meir-
Wingreen expression [127]. In our case, since we consider
a bias-independent lead density of states pr(w) = pr(w), a
simplified Landauer-type formula is obtained [120]

J= /T(w)(fze(w) — fr@)dw, 12)

with the Fermi functions for the leads f;(w) = 1/(exp[(w —
w)/ 1]+ 1) and the transmission given by 7 (w)=
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A(w)y(w), where y(w) =), m,{z,ox(a)). For the differen-
tial quantities below we additionally specify the deriva-
tive fi(w) = —1/(4 cosh?[(w — w1)/2T;1), which is a peaked
function around w = p;. Similarly to the electric current, the
heat current at the left- or right-sided lead can be calculated by
replacing 7 (w) — (w — w;)7 (w) in Eq. (12) above [69,96].
Notice that, in contrast to the particle and energy current, the
nonequilibrium heat current is not conserved and the left and
right contributions differ [96].

Here, however, we focus on the electric current and
its response to an infinitesimal change in the temperature
difference or to a voltage in nonequilibrium, i.e., at finite ¢.
This prompts us to introduce a nonequilibrium generalization
of the linear response Seebeck coefficient S to the case of a
nonzero current j as

_ d¢ 8 9
d(AT)|; - a(AT)/ﬁ‘

We expect S to be well accessible by experiments since it
may be measured through a temporal modulation of AT at
constant current. With S and the knowledge of dj/d¢ the
thermoelectric response 9j/d(AT), which is the object of our
further analysis, can be determined.

To evaluate 0 /9(AT) we differentiate Eq. (12) with respect
to AT and find two contributions

dj dj dj

13)

=const.

AAT)  3(AT), + AAT) 5 (14
with
B(BAJT): / S?A(‘;;<fR<w>—fL<w))dw, (15)
and
o _ 1 / T Y —fl@No—pw)do. (16)
A(AT)y 272 -

In equilibrium, Eq. (15) vanishes and Eq. (16) reduces to the
well-known linear response expression. In nonequilibrium,
however, the situation is more involved and 07 (w)/d(AT)
has to be determined numerically. This is addressed in more
detail in Appendix. The second term Eq. (16), in contrast, is
rather intuitive since it is given by the asymmetry of 7 (w)
at w = uz/g. As in equilibrium, Eq. (16), and also Eq. (14),
vanishes in the limit of particle-hole symmetry, i.e., Vg =0
[128]. We finally note that in the present analysis we will focus
on evaluating Eq. (14) for cases with ¢ £ 0 and AT = 0.

D. Method

In order to determine the nonequilibrium self-energy X (w)
we here use the so-called auxiliary master equation approach
(AMEA), as previously introduced in Refs. [38,112] and
in its recent MPS implementation [39]. The basic principle
of the approach is to map the original nonequilibrium (or
equilibrium) impurity problem onto an auxiliary one, in which
the bath is modeled by a small number Ny of bath sites and
additional Markovian environments. By this, a finite open
quantum system described by a Lindblad equation is obtained,
which can be solved accurately by numerical techniques. The
mapping procedure relies on the condition to represent the
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FIG. 1. Thermoelectric response for V; = I" and for various values of the interaction strength U . The first panel depicts dj/9(AT), Eq. (14),
and the second and third panel the two parts of Egs. (15) and (16). See Appendix for a discussion on the accuracy of the numerical derivative.

original hybridization function as accurately as possible by the
auxiliary one. A similar idea is commonly used in the context
of dynamical mean field theory [129,130]. However, in order
to be able to address nonequilibrium situations it is necessary
to fit not only the retarded but also the Keldysh component
and therefore to construct an auxiliary hybridization with a
continuous spectrum. The AMEA approach is conveniently
formulated in terms of Keldysh Green’s functions [120-125]
and particularly suited to treat steady state situations. Time-
dependent problems are also accessible in principle but go
beyond the scope of the present work.

AMEA provides an accurate approximation for the impurity
self-energy X (w); for details on the method we refer to
Ref. [39]. The accuracy is hereby controlled by the quality
of the mapping procedure and can be systematically improved
by increasing Np, the convergence being exponential in Np
[39,131]. In practice, of course, finite values for Ny have to
be chosen, and with that technique we are currently able to
consider as many as Np &~ 10-20. The calculations in Ref. [39]
demonstrated that these values allow for very accurate results.
All of the calculations presented below are for Ny = 14.

For the calculation of thermoelectric properties one needs
to consider systems away from particle-hole symmetry. In our
previous calculations in Refs. [38,39,112] we treated particle-
hole symmetric situations only. However, this was done for
convenience and is by no means a restriction of the method.
The difference is that for Vs # 0 two independent Green’s
functions have to be computed in the many-body solution and
that twice as many fit parameters must be considered in the
mapping procedure. Both aspects require increased computa-
tional resources, mainly due to the many-body calculation,
but no essential conceptual modifications. The differential
quantities dj/d(AT) are estimated by finite differences; see
Appendix for more details on the implementation.

III. RESULTS

We start by investigating the current response dj/9(AT)
of the nonequilibrium SIAM to an infinitesimal temperature
difference d(AT). We are interested, in particular, in the
nonequilibrium behavior as a function of bias voltage ¢. For
all calculations we used an average temperature 7 = 0.1 T,
which, for U = 6T and Vi &~ 2T, corresponds to the point
at which 9j/9(AT) as a function of 7" has a maximum below

Tk . This is determined from an equilibrium NRG calculation
[118]; see the inset of the third panel of Fig. 3.

In Fig. 1 we analyze the general behavior of 9j/0(AT)
as a function of ¢ as determined by Eq. (14) together with
its two contributions Egs. (15) and (16), for different values
of U at a gate voltage Vg = I'. In the noninteracting case,
a plateau up to ¢ = Vi precedes the decrease of 9j/0(AT)
as a function of ¢ [132]. In this case only the second term
dj/90(AT)p contributes since the lead density of states, and
thus the noninteracting spectral function A(w), is independent
of ¢ and T. As aconsequence, according to Eq. (16), forU = 0
we have that 0j/9(AT) just measures the asymmetry of the
equilibrium A(w) at w = +¢/2.

For a finite value of U > 4T in the Kondo regime, the
results change significantly. The current response dj/9(AT)
is positive for all ¢ and decreases much faster as a function
of ¢, with a dependence that resembles the one of dj/d¢,
see, e.g., Refs. [6-8,33,39,64—66]. However, in contrast to the
conductance, in this case the relevant energy scale controlling
the decrease cannot be identified with Tx. In particular, it
does not depend on U and appears to be proportional to I.
This agrees with the findings in Ref. [69] and with the results
below. We note the functional behavior of the two contributions
dj/0(AT)4 and 97 /0(AT)p is very different, as shown in the
second and third panels of Fig. 1. While 9j/d(AT)p decreases
with ¢ (being maximal for ¢ = 0) and strongly depends on the
interaction, dj/d(AT)4 in contrast, exhibits a similar behavior
for all values of U: Starting from zero, dj/d(AT), increases
with applied bias and saturates at ¢ ~ I'. For U = 8T the
two contributions compensate each other yielding a nearly
¢-independent 9 /9d(AT).

In order to gain a more detailed understanding of this
behavior we analyze the frequency dependence of the spectral
function as well as of the integrand determining dj/9(AT).
The nonequilibrium spectral functions for AT = 0, which
determine the second contribution 9j/d(AT)g, are shown in
the upper panels of Fig. 2. We observe a pronounced Kondo
peak at ¢ = O for all values of U. For the results depicted in
Fig. 2 the temperature is fixed to 7 = 0.1 T", and U decreases
from left to right. Hence the ratio 7/Tx decreases from
left to right, resulting in an increasing height of the Kondo
peak. Moreover, it appears that for the smallest value of the
interaction the peak is rather broad as it is not well separated
from the lower Hubbard band [133] as compared to larger
U. The low-energy details are less smeared out for U > 6T°
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FIG. 2. Spectral functions A(w) for AT = 0 on top and of the integrand of Eq. (15) dj(w)/d(AT) at the bottom, which is proportional to
0A(w)/d(AT). The results are shown for the same parameters as in Fig. 1, i.e., on the left for U = 8T, in the center for U = 6 I, and on the

right for U = 4T, with Vg = I in all cases.

for which a splitting of the Kondo resonance into two peaks
is clearly visible for sufficiently large ¢. In contrast to the
particle-hole symmetric case (see Ref. [39]) the splitting is
asymmetric in the presence of a finite gate voltage. According
to Eq. (16), the asymmetry of A(w) at w = uz,r determines
9j/9(AT)p.

In the lower panels of Fig. 2 we show results for the re-
sponse of the spectral function to an infinitesimal temperature
difference, more specifically the integrand 9j(w)/d(AT)4 of
Eq. (15), which is proportional to d A(w)/d(AT) (evaluated
numerically) times the transport window fr(w)— fL(®).
dj(w)/d(AT), is maximal for ¢ ~ 0.5T and vanishes in the
limit ¢ — 0 due to the narrowing transport window. The main
characteristic features are a positive peak at w ~ —¢/2 and a
negative one at w = ¢ /2, which appear in correspondence
to the position of the leads’ chemical potentials and thus
of the split Kondo peaks. Hence the Kondo peaks strongly
affect the response d A(w)/d(AT) to a temperature difference.
In the limit of large ¢ and U a simple picture emerges:
The dominating effect of AT is that the split Kondo peaks
are asymmetrically enhanced or suppressed. This effect can be
clearly seen for U = 8T and ¢ = 4T, for instance, where
0j(w)/d(AT), exhibits only two peaks at w ~ £¢/2 and
no response in the region in between. The sign of the two
peaks is determined by the direction in which the temperature
difference is applied. Since we considered 7, =T — AT/2
and T = T + AT/2, analogously to u;, = —¢/2 and ug =
+¢ /2, it is intuitive that the Kondo peak at w < 0 is enhanced
and the one at w > 0 is suppressed. For lower values of the
interaction strength the behavior is more complex since the
split Kondo peaks are less pronounced and merge with the
Hubbard bands already for rather small values of ¢. In all cases,

the overall sign when integrating dj(w)/9d(AT)4 is positive
(see also Fig. 1), since for V; > 0 the Kondo peak at w < 0 is
enhanced by the proximity of the lower Hubbard band.

It is interesting to note that the nearly constant dj/9(AT)
for ¢ 2 ' and U > 6T, as observed in Fig. 1, is dominated
by the response of the split Kondo peaks. As discussed above,
both contributions 9j/d(AT)g and 0j/0(AT), are in this
parameter regime essentially determined by the asymmetry
of A(w) and its response at w = £¢ /2, which corresponds to
the positions of the split Kondo peaks.

In general, the Kondo resonance is suppressed by both a
finite temperature 7 and a bias voltage ¢, otherwise the two
external parameters act in a very different manner: A finite
T (at ¢ =0) induces a lowering of the Kondo resonance
peak height, whereas a finite ¢ (at T < T ) in addition splits
the peak in two; see also the upper panel of Fig. 2. From
previous results it is known that the differential conductance
dj/0¢ is not affected by this difference, since it shows
qualitatively the same functional dependence on T as on ¢
[47,48,54,66,67,134,135]. The question arises whether this
holds true also for dj/d(AT).

To address this issue, we show results for dj/9(AT) as a
function of ¢ and T in Fig. 3, for U = 6 I" and for various V.
The nonequilibrium calculations were obtained with AMEA
and the equilibrium ones with NRG [118]. Already from the
equilibrium behavior displayed in the inset on the right one
notices that the temperature dependence of dj/d(AT) is quite
involved. Apart from Vi = 2T all curves exhibit sign changes
[133]. These findings are in agreement with the results reported
in Ref. [69], where the Seebeck coefficient S, i.e., Eq. (13)
for j =0, was investigated in detail for ¢ = 0. Note that
the sign of 9j/30(AT) determines the sign of S. In general,
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FIG. 3. Thermoelectric response dj/d(AT) as a function of bias voltage ¢ in the first panel (in the second on a semilogarithmic scale) and
in the third for ¢ = 0 as a function of 7. All calculations are for U = 6 I" and for various V. The equilibrium values on the right are obtained
from NRG [118]. The inset depicts the behavior for a larger temperature range.

dj/9(AT) vanishes for Vg — 0 and also for 7 — 0. The
latter can be understood from a Sommerfeld expansion of
Eq. (16) [69,96] which yields for dj/d(AT) a linear behavior
in T for T — 0. The vanishing 9j/d(AT) for small T can be
observed in the inset of the right panel in Fig. 3. In contrast, the
left panel reveals that for ¢ — 0 the thermoelectric property
dj/9(AT) approaches a finite, even V-dependent value. This
is a first indication of the different dependence of dj/0(AT)
on temperature and on bias voltage.

In order to investigate the ¢ dependence of 9j/9d(AT) in
the Kondo regime, we consider T = 0.1 I', which corresponds
approximately to the position of the maximum of 9j/9(AT)
as a function of temperature (for 7 < Tk ) (see inset in right
panel). The results for the dependence on ¢ are shown in the
first two panels of Fig. 3. One can see that the characteristic
scale that governs the decrease of dj/d(AT) with ¢ is I" and
not the Kondo temperature T . The appearance of additional
energy scales proportional to I" has been also found in the
equilibrium thermoelectric properties of the SIAM [69]. A
comparison of the functional dependence of dj/d(AT) on
¢/T (for T =0.1T) and on T/ T (for ¢ = 0) is provided in
the second and third panel of Fig. 3, both with logarithmic
abscissa starting at 10~!. We note that for 7 =0.1T and
¢ = 0 the results obtained from AMEA and from NRG agree
very well. The equilibrium (7' -dependent) and nonequilibrium
(¢-dependent) data behave similarly only for large values
of the gate voltage (Vg =2TI"), while they deviate from
each other as a function of ¢ or T for small Vg =~ T'. In
particular, in nonequilibrium the decrease of 97 /d(AT) with ¢
is followed by a saturation to a finite (positive) value, whereas
in equilibrium the oscillating behavior as a function of T
exhibits also sign changes. As a consequence, the resulting
thermoelectric response of a SIAM in the Kondo regime is
characterized by pronounced differences.

We note that the quantity dj/9(AT) is rather sensitive to
details of the spectral function A(w). Differently to dj/d¢,
which involves an effective averaging over the transport
window, dj/9d(AT) is mainly determined by the response at
w = £¢/2, as discussed above. This explains the observed
differences in the behavior of 9j /9(AT) with respectto dj/d¢,
between the dependence on T in equilibrium and the one of ¢
in nonequilibrium.

Finally, we stress that, while we here restrict to linear
order in AT, the present method can evaluate nonequilibrium

properties for any finite AT (and ¢). In addition, we estimated
up to what AT the linear regime is valid by computing a
AT,, for which the second order term in AT becomes of
the same order as the first order correction (we have an
estimate for the second derivative of j with respect to AT from
finite differences). We get values of AT,,;/Tx = 0.4,1.5,0.7
for ¢ = 0.11,0.4T",2T", for the exemplary case U = 6 I and
V¢ = I'. Therefore, roughly for AT up to Tk the linear regime
is accurate.

In view of sensing applications we conclude that the
response is maximal in proximity of the linear response
regime for ¢ = 0 and moreover, that fairly large gate voltages
are advantageous. As illustrated by the results for Vg = 2T
considered here, a small plateau develops in the region up to
¢ ~ 0.3T in which 9j/9(AT) is nearly constant. In general,
this might be achieved by tuning the system to a temperature
just below the maximum of dj/d(AT) at ¢ = 0. However,
further studies including also asymmetric couplings to the
leads are required to fully assess the potential of quantum
dot devices for nanoscale sensing applications.

IV. CONCLUSIONS

In the present work we computed the nonequilibrium
spectral and thermoelectric transport properties of a quantum
dot modeled by a STAM in the presence of both an external bias
voltage ¢ and a temperature difference AT between the two
leads. In particular, we focused on the differential response
of the current to a temperature gradient dj/d(AT) in the
nonequilibrium Kondo regime (¢ # 0 and T < Tk), for the
case of an infinitesimal temperature difference d(AT). When
compared to the results for the differential conductance 9j/d¢
known from previous studies [47,48,54,66,67,134,135], we
find that dj/9(AT) exhibits a more complex behavior. On one
hand, the equilibrium and nonequilibrium properties turn out
to be quite different, i.e., whether one monitors dj/9(AT) as a
function of T or of ¢, and on the other hand, the relevant
low-energy scales are more involved. 9j/9(AT) reveals a
rapid decrease with increasing ¢, similar to d;/d¢, however,
governed by a scale determined by the coupling strength I'
and not Tk . This finding is consistent with equilibrium results
reported in Ref. [69].

A more detailed understanding is gained by inspecting
the different contributions to 9j/9d(AT) and especially by
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analyzing the spectral function A(w) and its frequency-
resolved response to AT. Here, we presented a systematic
study for various values of the interaction strength U and
gate voltages V. In the regime of strong interactions and
sufficiently large bias voltages we provided a simple physical
picture, based on the asymmetric suppression or enhancement
of the split Kondo peak. A temperature reduction of AT/2
in one lead and the respective increase in the other one
induces an asymmetric response of the two Kondo peaks. This
characteristic nonequilibrium feature lead to the qualitatively
different behavior of 9j/3d(AT) as a function of T or of ¢.
By extending our previous results [39] to non-particle-hole
symmetric situations we were able to accurately resolve
the asymmetric splitting of the Kondo peak in A(w) with
increasing bias voltage. We note that in contrast to other
previous works (see, e.g., Ref. [136]), we here report a clear
observation of this splitting, which was not accessible before,
and its evolution with increasing values of U.

On the whole, one can conclude that dj/d(AT) is more
sensitive to details in the spectral function A(w) than the
differential conductance 9j/0¢. Besides the fundamental
interest, the findings reported here may be of value to assess the
potential of quantum dots as possible nanoscale temperature
Sensors.

ACKNOWLEDGMENTS

We would like to thank M. Sorantin, I. Titvinidze, H. G.
Evertz, T. Costi, V. Zlatic, and K. Held for fruitful discussions.
We acknowledge financial support from the Austrian Science
Fund (FWF) within Projects F41 (SFB ViCoM) and P26508,
from the Simons Foundation (Many Electron Collaboration)
and the Perimeter Institute for Theoretical Physics, and from
NaWi Graz. The calculations were performed on the VSC-3
cluster Vienna as well as on the D-Cluster Graz. Furthermore,
the authors want to thank Rok Zitko for providing his open
source code NRG Ljubljana [118].

PHYSICAL REVIEW B 94, 245125 (2016)

APPENDIX: NUMERICAL DIFFERENTIATION OF
THE SPECTRAL FUNCTION

In order to evaluate Eq. (14) in nonequilibrium ¢ # 0 one
needs to calculate 97 (w)/d(AT) in Eq. (15) numerically.
Details on this are given here. AMEA consists of two major
steps: (i) the mapping procedure and (ii) the many-body
solution. In (i) we optimize all available bath parameters in the
auxiliary system for a given number of bath sites Ny in order
to reproduce the hybridization function of the physical system
A(w), Eq. (11), by the auxiliary one A, (w) as accurately as
possible. This is done through a fit on the real w axis and with
a parallel tempering (PT) routine [137,138], see Ref. [39]. We
thus aim at solving a global optimization problem in the fit.
Once the optimal bath parameters are obtained we thereafter
proceed to step (ii) and treat the many-body problem. In
Ref. [39] we presented a solution strategy based on matrix
product states, which we also make use of in the present work.

(AT \po := 0T (w,AT)/3(AT)| \y_, is estimated by
finite differences. First we compute for a certain ¢ the fit for
the particle-hole symmetric case at AT = 0, in the manner just
described above (see also Ref. [39]). Thereafter, we introduce
a small finite temperature difference AT =~ T /10, start the fit
from the bath parameters obtained for AT = 0 and optimize
only locally [139]. By this, the fit for AT # 0 is close in
parameter space to the one for AT =0, and we can thus
estimate the linear response with respect to AT. In order
to approximate a derivative by finite differences accurately
it would be appropriate, in principle, to consider various
stencils with varying values of AT. Since this would require
a major computational effort in the many-body calculation we
consider here for simplicity only two values AT = +T7/10.
Note further that these two fits are connected by a particle-hole
transformation. The derivative f'(AT)|,,_, is approximated
by the central finite difference, i.e., based on AT = +T7/10.
Together with the computation for A7 = 0 this amounts to
three many-body calculations for a certain ¢ and 7.

Already on the level of the mapping procedure, i.e., before
solving the many-body problem, one can check how well
the finite difference approach works with the chosen Ny and

¢ = 0.1T

¢ = 0.2T

5
¢ = 0.4T

exact 9AK[1 -0.5

-0.5 0 0.5 1

5

w/T

FIG. 4. Numerically estimated differentials 0

Auux

w/T w/T

(w)/9(AT), labeled by A*(w) with « = R, K, together with the analytical expressions

given in Egs. (6) and (11). Only the exact  AX (w)/3d(AT) is plotted since d AR (w)/d(AT) = 0. Especially for ¢ = 0.2 T larger errors occur

and dAR(w)/d(AT) is clearly nonzero.
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AT. For this we compute the derivative of the hybridization
function. The derivative of the physical hybridization function
Eq. (11) of the original impurity problem can be carried out
analytically. The temperature difference enters only through
the Keldysh component, so that d AR (w)/d(AT) = 0 and the
expression for AKX (w)/d(AT) is obtained by differentiating
the Fermi functions in Eqs. (11) and (6). A comparison of
the estimated derivatives versus the exact ones is shown in
Fig. 4 for a representative set of bias voltages. Overall, a
good agreement is found. Larger differences occur for instance
at ¢ = 0.2, where the retarded part is clearly nonzero
and also the Keldysh part exhibits more deviations. Judging

PHYSICAL REVIEW B 94, 245125 (2016)

from such an analysis and from comparing the values of the
forward, backward, and central difference approximations of
f'(AT)| \y_o» We can state that the presented data points for
the numerical derivatives in Fig. 1 and Fig. 3 are less reliable
for ¢ = 0.2T . For larger values of ¢ and for ¢ < 0.1T results
are more accurate. A rigorous quantitative estimate of the error
originating from the numerical derivative would require a more
expensive numerical analysis. On the contrary, the computed
spectral functions in Fig. 2 can be regarded to have a high
accuracy [140]. This shows that the computation of derivatives
magnifies small inaccuracies of the mapping procedure, which
are present for a certain finite value of Ng.
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