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Reduced density matrix and order parameters of a topological insulator
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It has been recently proposed that the reduced density matrix may be used to derive the order parameter
of a condensed matter system. Here we propose order parameters for the phases of a topological insulator,
specifically a spinless Su-Schrieffer-Heeger (SSH) model, and consider the effect of short-range interactions. All
the derived order parameters and their possible corresponding quantum phases are verified by the entanglement
entropy and electronic configuration analysis results. The order parameter appropriate to the topological regions
is further proved by calculating the Berry phase under twisted boundary conditions. It is found that the topological
nontrivial phase is robust to the introduction of repulsive intersite interactions and can appear in the topological
trivial parameter region when appropriate interactions are added.
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I. INTRODUCTION

At absolute zero temperature, a quantum many-body system
can undergo a quantum phase transition (QPT) [1,2] by
varying a nonthermal external driving parameter such as
the magnetic field. Across the quantum critical point, the
qualitative structure of the many-body ground state wave
function undergoes a significant change, and the change is
completely driven by the quantum fluctuation in the ground
state. To characterize a continuous quantum phase transition,
a traditional approach is to use Landau’s symmetry breaking
theory in which the order parameter plays the central role.
The order parameter is nonzero in the symmetry broken phase
while it vanishes in other phases. Through the emergency of the
order parameter, the phase boundary can also be determined.
However, to find an appropriate order parameter describing
a certain phase is a nontrivial task. People have to rely on
physical intuition or resort to methods such as group theory
and the renormalization group analysis. A prior knowledge
of the symmetry breaking of the system is required, and the
methods are not always guaranteed to apply, especially to
systems exhibiting topological QPTs [3].

On the other hand, in the recent decade much attention
has been paid to investigate quantum phase transitions from
the perspective of quantum information science. One of the
examples is the study of quantum entanglement in quantum
critical phenomena [4–6]. Being a measure of quantum corre-
lation, it is believed that the entanglement plays a crucial role
in QPTs. Studies showed that the quantum entanglement helps
to witness quantum critical points and exhibits interesting
properties such as scaling [5,6], singularity or maximum [7],
etc., in various transitions. It was also shown to be capable of
detecting topological orders [8,9]. In contrast to the traditional
approach, the application of the quantum entanglement does
not require a prior knowledge of the system’s symmetry, and
this makes it a great advantage to use for the study of QPTs.
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Recently, along the streamline of quantum entanglement,
Gu, Yu, and Lin [10] proposed a systematic way to derive
the order parameter by studying mutual information and the
spectra of the corresponding reduced density matrix. To apply
the scheme, one only needs the knowledge of the ground state
of the system but not the symmetries existing in it. By studying
the single site and two sites reduced density matrices, the
order parameters for the spin-density wave (SDW), charge-
density wave (CDW), bond-order wave (BOW), and the
phase separation phase (PS) in the one-dimensional extended
Hubbard model were successfully obtained [11]. Meanwhile,
there are other independent proposals to derive the order
parameter. Furukawa, Misguich, and Oshikawa [12] proposed
a variational method by investigating a set of low-energy
“quasidegenerate” states that lead to the symmetry breaking in
the thermodynamic limit. Their scheme was later improved by
Henley and Changlani [13]. Cheong and Henley [14] on the
other hand suggested to study the singular-value decomposi-
tion of the correlation density matrix to gain information on
the correlation function and the order parameter. Compared
to those methods, the one proposed by Gu et al. [10] is a
nonvariational approach and is relatively more intuitive to
apply. Moreover, it also establishes a connection between the
mutual information and the order parameters.

In this work, we apply Gu et al.’s method to a problem
which has topological properties. The model considered is
a one-dimensional spinless fermions Su-Schrieffer-Heeger
(SSH)-like model with explicit dimerization. The original
SSH model [15] describes the coupling between spinful
electrons and phonons and was proposed to describe the
one-dimensional conducting polyacetylene; the condensation
of the phonons leads to a dimerization of the lattice. The
simplified model considered here, with explicit dimerization,
can be viewed as a two-band model where interband hopping
with alternating amplitudes takes place at the same site or
neighboring sites. The model has two gapped phases, depend-
ing on the relative amplitudes of the two sets of hoppings.
If the two sets of hoppings are equal (no dimerization), the
spectrum is gapless. One of the phases is topologically trivial
while the other has a nonvanishing winding number and
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fermionic edge states. The model has no true topological order
but is a symmetry-protected topological system [16–18]. The
model is also related to Shockley’s model (see, for instance,
Ref. [19]). We identify the order parameters appropriate to
describe the two phases: In the trivial phase the order parameter
is fully local and involves the two bands at a given site.
In the topological phase the order parameter involves two
neighboring lattice sites.

The effect of interactions is also addressed. Both the
separate addition of dimerization and interactions lead to
spectra that are gapped. In the case of spinless fermions
Pauli’s principle forbids a Hubbard-like term and a nearest-
neighbor interaction term is the dominant. Dimerization and
the consequent existence of two bands allows a local interband
Hubbard term. These various cases have been extensively
studied before using various techniques such as bosoniza-
tion and the density matrix renormalization group (DMRG)
method [20]. The addition of interactions to the problem leads
to a competition between various orderings. In the case of
spinful systems there is a competition between bond-ordered,
charge density waves and spin density waves [21–24] as a
result of the phonon and electronic repulsion terms. The
competition in the case of explicit dimerization has also
been addressed [25] as well as the contribution of bond-
bond and mixed bond-site electronic couplings [26]. These
competitions continue to attract interest in the literature (see,
for instance, Refs. [27–29]). The nondimerized problem but
with interactions has also been shown to lead to spontaneous
dimerization as a result of interactions in a narrow region
between the ordered SDW and CDW phases [30–33]. In this
work, we consider the effect of interactions in the spinless
fermions using both DMRG and exactly diagonalization (ED)
methods.

One of the goals of this work is to gauge the effectiveness
of the method to construct order parameters using the method
described in the next section. As an essential part it requires
calculating the reduced density matrix of a subsystem of
some minimal size (discussed ahead). One may expect some
difficulties associated with a topological system. As shown
ahead, the method provides in a direct way a form for the
order parameter in the trivial region, but in the topological
region some ambiguity is left due to the significant contribution
of all the eigenvalues of the reduced density matrix. An
appropriate change of basis reduces the number of eigen-
values that contribute significantly. This change of basis is
obtained representing the Hamiltonian in a Majorana fermion
basis.

The order parameters for various phases in the interacting
system are derived and are compared to other order parameters,
such as the bond-order and charge density wave ones. The
topology of the system is affected by the interactions, and we
use Berry phase to separate the trivial from the topological
regions. Interestingly, the derived order parameter appropriate
for the topological regions is robust to the presence of intersite
repulsive interactions.

The paper is organized as follows. In Sec. II, we first briefly
introduce the scheme to derive the potential order parameters.
Then an introduction about the spinless SSH model is given
in Sec. III. The topological phase transition in the model is
detected by the entanglement entropy and the order parameters

for the topologically trivial and nontrivial phases are derived in
Sec. IV. In Sec. V, we consider the case when interactions are
added. The ground state phase diagram and order parameters
for each quantum phase are obtained. The order parameter
corresponding to the topological nontrivial phase is further
verified by the berry phase results. Finally, a conclusion is
given in Sec. VI.

II. OUTLINE OF THE SCHEME IN DERIVING THE
POTENTIAL ORDER OPERATORS

To derive the order parameter, we first have to determine the
minimum size of the block (subsystem) for which the mutual
information (also known as the correlation entropy) does not
vanish at a long distance. The mutual information is defined
as

S(i,j ) = S(ρi) + S(ρj ) − S(ρi∪j ), (1)

where

S(ρi) = −tr(ρi ln ρi) (2)

is the von-Neumann entropy of the block i. ρi is the reduced
density matrix obtained by tracing out all other degrees of
freedom except those of the block i, i.e., ρi = tr|�0〉〈�0|
where |�0〉 is the ground state of the system. If and only
if the mutual information is nonvanishing at a long distance,
there exists a long-range order (or quasi-long-range order) in
the system [34,35].

The next step is to calculate the eigenvalues and eigenvec-
tors of the reduced density matrices of the desired block size.
Depending on the basis of the reduced density matrix, it is
possible to have diagonal and off-diagonal long-range orders.
In terms of the creation (annihilation) operator a

†
iμ(aiμ) for a

state |μ〉 localized at the block i, we define the diagonal order
operator as [10]

Od
i =

∑
μ�ξ

wμa
†
iμaiμ, (3)

where ξ is the rank of ρi . It can be proved that for any μ > ξ ,
the operator a

†
iμaiμ does not correlate. The coefficients wμ can

be fixed by the traceless condition tr(ρiO
d
i ) = 0 and the cutoff

condition max({wμ}) = 1.
If the two-block reduced density matrix ρi∪j is not diagonal

in the eigenbasis of ρi ⊗ ρj , there exists off-diagonal long-
range order in the system. The corresponding order operator
is defined by

Oo
i =

∑
〈μ,ν〉

wμνa
†
iμaiν + w∗

μνa
†
iνaiμ, (4)

where μ �= ν and the sum is over all the pairs of μ,ν

that correspond to the nonzero off-diagonal matrix elements
in ρi∪j .

III. SPINLESS SSH MODEL

This model describes a dimerized chain of spinless
fermions hopping in a tight-binding band. The dimerization
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FIG. 1. Two-band SSH model of spinless fermions: At each
lattice site there are two inequivalent sites, A and B, linked by
alternating hoppings given by t(1 + η) and t(1 − η).

is parametrized by η. Due to the dimerization the unit cell
contains two atoms of types A and B. The sites are indexed by
j . The model is given by the Hamiltonian

H = −μ
∑

j

(nj,A + nj,B )

− t
∑

j

[(1 + η)c†j,Bcj,A + (1 + η)c†j,Acj,B

+ (1 − η)c†j+1,Acj,B + (1 − η)c†j,Bcj+1,A]. (5)

The operator cj,α destroys a spinless fermion at site j of type
α = A,B, and nj,α = c

†
j,αcj,α . The amplitude t is the hopping,

η is the dimerization, and μ is the chemical potential. The
model is related to the Schockley model [19] by taking t1 =
t(1 + η) and t2 = t(1 − η). The region of η > 0 corresponds
to t1 > t2 and vice versa for η < 0. The Hamiltonian in real
space mixes nearest-neighbor sites and also has local terms.
The links involved are depicted in Fig. 1.

We may define Hermitian Majorana operators, γj,α,β (with
β = 1,2), as

cj,A = 1
2 (γj,A,1 + iγj,A,2),

cj,B = 1
2 (γj,B,1 + iγj,B,2). (6)

In terms of Majorana operators the Hamiltonian is written
as

H = −μ

2

N∑
j=1

(2 + iγj,A,1γj,A,2 + iγj,B,1γj,B,2)

− it

2
(1 + η)

N∑
j=1

(γj,B,1γj,A,2 + γj,A,1γj,B,2)

− it

2
(1 − η)

N−1∑
j=1

(γj+1,A,1γj,B,2 + γj,B,1γj+1,A,2) (7)

under open boundary condition. Taking μ = 0 we have a
couple of special points: (i) At η = −1 we have a state
with two fermioniclike zero energy edge states, since the
four operators γ1,A,1,γ1,A,2; γN,B,1,γN,B,2 are missing from the
Hamiltonian. (ii) An example of a trivial phase is the point

FIG. 2. Phases of SSH model (or Schockley model). For negative
η the model is topologically nontrivial with edge states represented
by the decoupled Majorana operators (each Majorana is represented
by a dot). Since at each end site there are two decoupled Majoranas,
these combine to form edge fermionic modes. There is also a trivial
phase with no zero energy modes for positive η.

η = 1 in which case there are no zero energy edge states. In
Fig. 2 the phases with edge modes are presented for special
points in parameter space. The model has simplified time-
reversal symmetry and sublattice symmetry, if the chemical
potential vanishes. The model is in the chiral orthogonal (BDI)
symmetry class [18] and therefore allows the presence of a Z

index related to the winding number and the number of edge
modes.

At the special point of interest μ = 0,η = −1 shown in the
figure, the Hamiltonian reduces to

H = it

N−1∑
j=1

(γj,B,2γj+1,A,1 − γj,B,1γj+1,A,2). (8)

Let us define nonlocal fermionic operators [36]

dj = 1
2 (γj,B,2 + iγj+1,A,1),

(9)
d
†
j = 1

2 (γj,B,2 − iγj+1,A,1),

and

fj = 1
2 (γj,B,1 − iγj+1,A,2),

f
†
j = 1

2 (γj,B,1 + iγj+1,A,2). (10)

We can show that

iγj,B,2γj+1,A,1 = 2d
†
j dj − 1,

−iγj,B,1γj+1,A,2 = 2f
†
j fj − 1. (11)

In terms of these new operators we can write that

H = t

N−1∑
j=1

(2d
†
j dj − 1 + 2f

†
j fj − 1) (12)

and, therefore, the problem is diagonalized. It is now clear that
the ground state is obtained by taking d

†
j dj = 0 and f

†
j fj = 0

at each site. This new Hamiltonian in terms of the d and f

operators is like a Hamiltonian with no hopping and just a
chemical potential μ̃ = −2t .
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The new operators can be related to the original ones in
terms of a nonlocal transformation as

dj = i

2
(c†j,B − cj,B + cj+1,A + c

†
j+1,A),

fj = 1

2
(c†j,B + cj,B − cj+1,A + c

†
j+1,A). (13)

Also

cj,A = 1
2 [−i(−d

†
j−1 + dj−1) − (fj−1 − f

†
j−1)],

cj,B = 1
2 [f †

j + fj + i(dj + d
†
j )]. (14)

Note that the index of the d and f operators refers to the
bond connecting the j,A and j + 1,B sites in the original
representation. At the special point we are considering we
may also write

H = −2t
∑

j

(c†j+1,Acj,B + c
†
j,Bcj+1,A). (15)

IV. TOPOLOGICAL INSULATOR

The evidence that the SSH model has a topologically
nontrivial phase can be provided as above, solving the
problem in a finite chain using open boundary conditions and
showing that there are zero energy edge modes, as shown in
Fig. 2. Using the bulk-edge correspondence it can be shown
that the winding number is nontrivial in the same phase.
Methods inspired by quantum information theory may also
be used, such as the entanglement entropy, and is discussed
next.

A. Entanglement entropy

The entanglement entropy between a single site and the
rest of the chain S1 is defined by the von-Neumann entropy
in Eq. (2). As shown in Fig. 3, it detects the topological
phase transition at η = 0 between the trivial phase and the
topological phase. The transition point is particularly visible
if one calculates the derivative of the entanglement entropy;
it becomes sharper as the system size grows. Even though

FIG. 3. Entanglement entropy and its derivative as a function of
dimerization.

FIG. 4. Mutual information (correlation entropy) for N = 10
using OBC. Here i = 1 is taken as the reference site and r = |i − j |.
The subsystem is taken as a single site consisting of two atoms of
type A and B.

there is no change of symmetry as one crosses the gapless
point, the correlations change and this is detected by the
entanglement entropy. In addition, we note that S1 = 0 at η = 1
and S1 = 2 ln 2 at η = −1. This may be explained as follows:
When η = 1, the intersite hopping terms equal to zero. There
is no information exchange between different sites. Therefore,
S1 which measures the entanglement between an arbitrary site
and the rest of the chain becomes zero, while for η = −1,
the intersite hopping is the strongest and the intrasite hopping
vanishes. The entanglement for a single site thus reaches its
maximum, i.e., S1 = 4 × (− 1

4 ln 1
4 ) = 2 ln 2.

B. Mutual information

In order to implement the method discussed in Sec. II,
we calculate the mutual information or entropy correlation
defined in Eq. (1) in a system with open boundary condition.
The subsystem is taken as a single site consisting of two atoms
of type A and B. In Fig. 4, r = |i − j | is the distance between
sites i and j .

For η > 0, the correlation entropy is vanishing exponen-
tially as r grows. For η < 0, there exists correlation between
the two ends of the chain indicative of the existence of the edge
modes. In a finite system they are coupled and their degeneracy
is lifted. In the thermodynamic limit the edge modes become
completely decoupled. Around the critical point, η = 0, the
correlations extend along the system, signaling the quantum
phase transition.

C. Single-site reduced density matrix and order parameters

To derive the order parameter, we calculated the single-
site reduced density matrix using periodic boundary condition
(PBC). In the basis of |nj,A,nj,B〉 = {|00〉,|01〉,|10〉,|11〉}, the
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FIG. 5. Eigenspectrum of the reduced density matrix calculated
with a block consisting of (a) an atom A and atom B at site j , and
(b) an atom B at site j and an atom A at site j + 1 using PBC for a
system of N = 10.

reduced density matrix takes the form

ρj =

⎛
⎜⎝

u 0 0 0
0 v z 0
0 z v 0
0 0 0 u

⎞
⎟⎠. (16)

The eigenstates are given by

|A〉 = 1√
2

(|10〉 + |01〉)

|B〉 = |00〉
|C〉 = |11〉
|D〉 = 1√

2
(|10〉 − |01〉), (17)

and the corresponding eigenvalues are shown in Fig. 5(a).
For η < 0, the four eigenstates are equally weighted as

η → −1. According to our scheme [10,11], the order param-
eter can be defined as

O− = wA|A〉〈A| + wB |B〉〈B| + wC |C〉〈C| + wD|D〉〈D|.
(18)

Here we have four variables to be fixed but we only have the
traceless and cutoff conditions.

Instead, we may try a different approach by changing the
basis used to define the reduced density matrix. As shown in
the previous section, the Hamiltonian is diagonalized in terms
of the d and f fermions at the point μ = 0,η = −1. At this
point the reduced density matrix is solely contributed by the
|nf = 0,nd = 0〉 state. The Hamiltonian is trivially diagonal,
and the eigenvector of the reduced density matrix is just the
eigenvector of the state for which both d and f are empty.
(Unlike in the original description in terms of the cA and cB

operators, for which all four states contribute equally). So the
representation of the states depends on the basis used (meaning
which operators we use). Due to the nature of the topological
region, one expects that as long as the system remains gapped
the properties of the system should be qualitatively the same
for all η < 0.

FIG. 6. Order parameter and the connected correlation function
of O− in Eq. (20) as a function of η.

In the diagonal basis the order parameter is

O− = |00〉〈00|
= I − |10〉〈10| − |01〉〈01| − |11〉〈11|
= I − f

†
j fj − d

†
j dj − f

†
j fjd

†
j dj . (19)

These expressions are local in space. We may now use the
relation between the d and f operators and the original
operators in Eq. (13). This is a nonlocal transformation since
it couples site j with the nearest-neighbor site j + 1. The
operator may now be obtained as

O− = 3
2 (c†j+1,Acj,B + c

†
j,Bcj+1,A) + nj,Bnj+1,A

− 1
2 (nj,B + nj+1,A). (20)

For η > 0, the mutual information is exponentially van-
ishing and the correlation is not captured by considering the
single-site block with atoms A and B. However, one could
take the block consisting of an atom B at site j and an atom A

at site j + 1. The mutual information obtained would be the
mirror image of that in Fig. 4 about η = 0. The eigenspectrum
in this case is shown in Fig. 5(b). Carrying out similar analysis
as above, the order parameter takes the form of Eq. (20), but
with the index {j + 1,A} and {j,B} being replaced by {j,B}
and {j,A}, respectively. We have

O+ = 3
2 (c†j,Bcj,A + c

†
j,Acj,B) + nj,Anj,B − 1

2 (nj,A + nj,B).

(21)

In Fig. 6, we show the results for the order parameter O−
and its correlation function as a function of the dimerization
η (for O+ could be obtained by taking the mirror image about
η = 0). By construction we see that the order parameter is
dominant in its intended region of applicability and changes
continuously from a finite value towards zero or small values
as we move to the opposite region. However, since the system
is actually not ordered the connected correlation function
〈OiOj 〉 − 〈Oi〉〈Oj 〉 vanishes in all regimes.
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D. Discussion

Regarding the above derivations, note that the dominating
eigenstate of the reduced density matrix is given by a single
state in the basis chosen. This is in contrast with the case of
a continuous phase transition in which symmetric eigenstates
would be resulted in a finite system. Consequently, we did not
apply the traceless condition and the cutoff conditions in the
derivation. The resulted order parameters, despite showing a
sharp change around the quantum critical point, do not behave
as conventional ones (finite in the “ordered” phase and goes
to zero in the “disordered” phase). The order parameters are
defined across two lattice locations: at the same site between
the two types of (sublattice) locations A and B for η > 0,
and linking two locations A and B between neighboring sites.
A vanishing order parameter may be constructed summing
two consecutive links with opposite signs as in the bond-
order (BOW) parameter [25]. The order parameter in the
topological region derived in Eq. (20) is similar to the BOW
order parameter in Eq. (23), with an addition of the last
two terms which are related to the densities at sites A

and B.

V. EFFECT OF INTERACTIONS

Adding interactions is interesting because (i) it allows a
generalization of the procedure of finding order parameters
to a problem that is now interacting and to determine
how the interactions affect the choice of order parameter(s)
to describe the various phases, and (ii) it may change
the topological properties determined for the noninteracting
system.

A. DMRG results for order parameters

We add a local Hubbard-U -like term (coupling two elec-
trons at the same site but in two different sublattices, A and
B) and/or a V -term coupling two electrons at nearest-neighbor
sites. In the presence of interactions the model Hamiltonian is
chosen as

H = −
∑

j

[(1 + η)c†j,Acj,B + (1 − η)c†j,Bcj+1,A + H.c.]

+U
∑

j

nj,Anj,B + V
∑

j

nj,Bnj+1,A. (22)

We calculate, using the density matrix renormalization group
method [20] with PBC, the entanglement entropy and various
order parameters as a function of η,U and V . The truncation
error is set to less than 10−7, and three sweeps are carried out
in the finite-system algorithm. The system size simulated is
N = 86 unless otherwise specified. Specifically we calculate
in addition to the order parameters O+ and O−, a bond-order
parameter defined on a link

mBOW = 〈(c†j+1,Acj,B + H.c.)〉. (23)

We begin by accessing the effect of the interaction on
the single-site entanglement entropy shown in Fig. 7 for a
point in the trivial region with η = 0.6 and another point in
the topological region with η = −0.6 as a function of the
interactions U and V . The smoothness of the phase boundaries

FIG. 7. Single-site entanglement entropy for (a) η = 0.6 and (b)
η = −0.6 as a function of U and V . In each region the dominant
order parameters are shown. There is a clear correlation between the
entanglement and the order parameter O−.

were limited by the point density of the driving parameters.
As shown in Fig. 3, the entanglement entropy is large in
the topological region with no interactions. The presence
of repulsive intersite interaction V does not change the
entanglement entropy. However, if V < 0, the entanglement
entropy is reduced, particularly when U < 0. The decrease
of the entanglement entropy is more gradual if U > 0. In
the trivial region (η > 0), the entanglement is also large
in the regime where the order parameter O− has a large
value.

In Fig. 8 we compare various order parameters for three
points: one in the topological trivial region (η = 0.6), one at
the transition point where the dimerization η = 0, and one in
the topological region (η = −0.6). The results are presented
as a function of the interactions U and V .

A first comment is that there is some interpolation between
the topological and the trivial regions as one crosses the
transition point. At least from the point of view of the order
parameters, there does not seem to be a clear distinction
between the two topologically different regimes. This is
consistent with the idea that a topological transition is subtle
and is not straightforwardly associated with a change of some
order parameters. However, it is the purpose of the choice
of order parameters by analyzing the reduced density matrix
eigenstates and eigenvalues to construct order parameters with-
out the necessary use of any symmetry breaking arguments.
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FIG. 8. Order parameters suitable for η = 0.6,η = 0,η = −0.6 (from left to right). In the first row for O+ given in Eq. (21). In the second
row O− given in Eq. (20). In the third row for mBOW given in Eq. (23).

The similarity of the order parameters mBOW and O− might
lead to the expectation that, at least in this case, the method
is actually capturing the traditional types of order (as also
revealed in the mutual information results) instead of some
form of topological property.

The order parameters mBOW and O− are particularly
expanded in the phase diagram in the topological regime. Their
extension decreases as one crosses over to the trivial region,
as might be expected since they are particularly suited to the
topological region.

As one crosses to the trivial region, the effect of U (local
term) becomes more prominent as evidenced by the local
nature of the order parameter O+. As expected the effect of
the interactions is smaller in the trivial regime where extended
regions in the phase diagram result in a large value of this
order parameter.

Given that the effect of the local interaction U is small
particularly in the topological regime, we take U = 0 in Fig. 9
and study the effect on the order parameters and the single-site
entanglement entropy as a function of V and η. We clearly see
the dominance of the order parameters O− and mBOW in the
topological region of η < 0 and of the order parameter O+ in
the trivial regime η > 0.

The order parameters considered so far are only defined in
single links. In order to probe possible long-range order we
need to consider two cells containing at least two consecutive
links. One may consider possible related order parameters
defined as follows:

OBOW = 〈(c†j+1,Bcj,A + H.c.) − (c†j,Bcj,A + H.c.)〉 (24)

for bond ordering (BOW) and

OCDW = 1
2 〈(nj+1,A + nj+1,B − 1) − (nj,A + nj,B − 1)〉

(25)

for charge-density wave (CDW) ordering.
The analysis of several partial links is shown in Fig. 10,

which leads to the conclusion that the electron configurations
may be described by the scenario show in Fig. 11. The order
parameters related to BOW and CDW as a function of U

and V are presented in Fig. 12 and Fig. 13, respectively. The
results for the BOW order parameter are consistent with those

FIG. 9. (a) Single-site entanglement entropy and order parameter
(b) O+, (c) O−, (d) mBOW for U = 0 as a function of V and η.
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FIG. 10. Electron number density analysis on different links: (left
column) A and B at the same site, (right column) A and B linked by
different sites. The fist row is for η = −0.6 and the second row is for
η = 0.6.

obtained from the derived order parameters O+ and O− in
the previous section. In the case without interactions (U =
0,V = 0), O+ dominates, and OBOW < 0 and is close to −1
in the trivial region. While in the topological region, the order
parameter O− dominates, and OBOW > 0 and is close to 1.
The effect of interactions is similar to the one observed for
the link order parameters. On the other hand, the result in
Fig. 13(a) shows that the intersite repulsion (V > 0) and the
intrasite attraction (U < 0) between the electrons favor the
CDW order in Fig. 11. According to the analysis on electron
configurations, we could define another order parameter

OCDW2 = 1
2 〈(nj+1,B + nj+2,A − 1) − (nj,B + nj+1,A − 1)〉,

(26)

which describes the charge-density wave of the links between
adjacent sites. For the case of η = −0.6 as shown in Fig. 7,
there exists a region in which the above order parameter is
nonzero. We therefore conclude that this region (approxi-
mately around U > 0 and V < 0), which corresponds to the
CDW2 region in Fig. 7, belongs to the CDW2 order.

FIG. 11. Possible electron configuration for the three quantum
states indicated in Fig. 10.

FIG. 12. BOW order parameter of Eq. (24) for (a) η = 0.6 and
(b) η = −0.6.

B. Berry phase in the presence of interactions

To see if and how the topology changes one needs to look
at edge states (using open boundary conditions) or looking at
topological invariants (using periodic boundary conditions).
One method to calculate a topological invariant involves
calculating the Green’s function and using the definitions of
the invariants [37]. Another possibility to study a topological
invariant is to calculate the Berry phase [38,39].

Using twisted boundary conditions we can calculate the
Berry phase which is a topological invariant that reveals the
topological nature of the system. Imposing a phase of φ in

FIG. 13. (a) CDW order parameter of Eq. (25) for η = 0.6.
Because OCDW = 0 at the whole parameter region for η = −0.6,
we do not show it here. (b) CDW2 order parameter of Eq. (26) for
η = −0.6.
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FIG. 14. Berry phase as a function of η for the noninteracting case.

the boundary conditions the Berry phase may be calculated as

γ = −i

∫ 2π

0
〈ψ(φ)| ∂

∂φ
ψ(φ)〉. (27)

In order to calculate the Berry phase, it is more con-
venient to discretize the range of phase values into M

points, i.e., φ1,φ2, . . . ,φM . Defining the link variable U (φl) =
ψ∗(φl)ψ(φl+1) and summing over φl , we may obtain the Berry
phase as

γ = −i

M∑
l=1

ln U (φl). (28)

Consider first the noninteracting case. In Fig. 14 the results
for the Berry phase as a function of η in the absence of
interactions is shown. In the topological region the Berry
phase is π and in the trivial phase it vanishes, as expected
of the topological transition discussed above. We performed
ED for small systems to calculate the overlap between the
ground state at nearby values of the phase imposed by twisted
boundary conditions.

FIG. 16. Berry phase and order parameter O− as a function of
U under different V . The dominant region of O− coincides with the
topological phase indicated by the π value of Berry phase.

In Fig. 15 we analyze the size dependence of the Berry
phase for η = −0.6. As is well known, the V term may induce
bond order which is a characteristic feature of the topological
region. Starting from the topological region we see that both
negative V and negative U affect the topology, and a trivial
regime characterized by the vanishing Berry phase may appear
as a result. In Fig. 15 we also consider the size dependence of
the results for η = −0.6. Due to finite size effects there is a
4N , 4N + 2 alternancy. In the very large size limit the results
converge to the 4N case, as shown in the right plot of Fig. 15,
where the curves of Berry phase for V = −2.0 tend to the
same value as N is larger than 10 (system sizes up to N = 12
is considered here).

To illustrate the relationship between the topological phase
and the derived order parameter O−, Fig. 16 plots the Berry
phase and O− under the same parameter’s conditions. The

FIG. 15. Berry phase as a function of the interactions for η = −0.6 for various system sizes.
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points where O− changes dramatically is consistent with the
edge of the topological π region of the Berry phase. Therefore,
the dominant region of O− indeed describes the topologically
nontrivial phase. In addition, the Berry phase for η = 0.6 is
also π when O− is dominant due to the effect of interactions
(negative U positive V , as shown in Fig. 12). This confirms the
appearance of topology due to the interactions having started
at U = 0 and V = 0 from a trivial phase. Also, it extends the
relationship between a Berry phase of π and a nonzero O−.

C. Reduced density matrix and order parameters
in the presence of interactions

1. η = 0.6

Let us first consider varying V along the path of fixed
U = 0. The mutual information as a function of V and
the distance r calculated for U = 0 with PBC is shown in

FIG. 17. (a) Mutual information as a function of V and distance
r from the first site for U = 0,η = 0.6. Inset shows that the
mutual information decays algebraically with the distance. (b) The
eigenspectrum of the reduced density matrix ρj as a function of V .
Inset shows the asymptotic weight of the eigenstates of the reduced
density matrix in the large V limit.

Fig. 17(a). As indicated by the log-log plot in the inset, the
mutual information decays algebraically with the distance, and
we could argue that there exists a long-range correlation in the
system for V > 6.

Figure 17(b) shows the eigenvalues of the states in Eq. (17)
of the single-site reduced density matrix. For V > 6, the
contribution of the four eigenstates are similar and they are
almost equally weighted in the large V limit [inset of 17(b)].
This is the same as the case for η < 0 in the noninteracting
system. Following the same argument in Sec. IV C, the order
parameter for this phase is O− in Eq. (20).

For V < 6, from the result of single-site entanglement show
in Fig. 7, the system is in the same phase as that of U = V = 0.
The behavior of the reduced density matrix eigenspectrum is
the same as for the noninteracting case for η > 0. The order
parameter in this regime is O+ as obtained in Eq. (21).

To analyze the different possible phase regions in Fig. 7, we
next consider the path along fixed U = −3.2. Figure 18 shows
the mutual information as a function of r and V . Obviously, the

FIG. 18. (a) Mutual information as a function of V and distance
r from the first site for U = −3.2,η = 0.6. (b) The eigenspectrum of
the reduced density matrix ρj as a function of V .
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FIG. 19. The correlation function of O3 in the momentum
space for U = −3.2 and V = ±4. Here k = 2mπ/N , where m =
0,1, . . . ,N − 1.

mutual information for V > 2 and V < −2 (corresponding to
CDW and PS phases in Fig. 7, respectively) is nonvanishing
at a long distance. In Fig. 18(b), the eigenspectrum of the
reduced density matrix is dominated by the states |B〉 and |C〉
for both regions. For a large enough system, the weight of state
|A〉 would be suppressed to zero (our DMRG results, which
we do not show here, indicate this). We can define the order
parameter as

O3 = wB |B〉〈B| + wC |C〉〈C|. (29)

Using the traceless condition, we have wB = −wC , and
applying the cutoff condition, i.e., wB = 1, we have

O3 = |00〉〈00| − |11〉〈11|,
(30)

= 1 − (nj,A + nj,B ),

which is indeed the order parameter for the CDW and PS
phases. To further distinguish the two phases, we can consider
the correlation function in the momentum space shown in
Fig. 19. The correlation function peaks at 2π/N [and 2π (N −
1)/N as a result of PBC] and π for V < −2 and V > 2,
respectively. It indicates that the electronic configuration has a
wavelength of half of the lattice in the former case and of two
sites in the latter case. This is consistent with our deduction for
the PS and CDW phases illustrated in Fig. 11. In addition, the
behavior of the mutual information in Fig. 18(a) also reflects
the difference of the two phases. In the PS phase, the largest
correlation appears between two local sites separated by half
of the lattice.

2. η = −0.6

Consider now the case U = 4. Figure 20 shows the mutual
information as a function of V and r . In the case of V > 0,
a correlation emerges between the end points of the system.
Note from Fig. 8 that in this regime O− also becomes large. On
the other hand, for V < 0, the Berry phase results of Fig. 15 do
not indicate a topological phase, consistent with the separation
of the two types of topological properties in the system. For

FIG. 20. (a) Mutual information as a function of V and distance
r for U = 4,η = −0.6 calculated with PBC. (b) Mutual information
as a function of r from the first site for V = 6,8 calculated with OBC.

negative V < −2.5 the correlation extends all over the system,
as expected.

Figure 21(a) shows the eigenvalues of the states {A,B,C,D}
of the reduced density matrix. For V > 0, all the eigenstates
have non-negligible weight. Let us once again transform into
the basis defined by the d and f operators using Eq. (14).
Under PBC and keeping the number of electrons equal to
the number of sites (half filling) the transformed Hamiltonian
reads H = H1 + H2, where

H1 = t

2
(1 + η)

N∑
j=1

(f †
j f

†
j+1 + fj+1fj + f

†
j fj+1 + f

†
j+1fj )

+ t

2
(1 + η)

N∑
j=1

(d†
j d

†
j+1 + dj+1dj + d

†
j dj+1 + d

†
j+1dj )

+
[
t(1 − η) + V

2

] N∑
j=1

(
n

f

j + nd
j

) − V

N∑
j=1

n
f

j nd
j

+N

[
U

4
− t(1 − η)

]
, (31)

FIG. 21. Eigenspectrum of the single-site reduced density matrix
in the (a) original basis and (b) rotated basis as a function of V . Here
N = 10, U = 4, and η = −0.6.
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and

H2 = −U

4

N∑
j=1

(f †
j fj+1d

†
j dj+1 + f

†
j+1fjd

†
j+1dj

+ f
†
j+1fjd

†
j dj+1 + f

†
j fj+1d

†
j+1dj

+ fjfj+1d
†
j+1d

†
j + f

†
j+1f

†
j dj dj+1

+ f
†
j f

†
j+1d

†
j d

†
j+1 + fj+1fjdj+1dj

− f
†
j+1f

†
j d

†
j dj+1 − fjfj+1d

†
j+1dj

− f
†
j fj+1d

†
j+1d

†
j − f

†
j+1fjdjdj+1

− f
†
j+1fjd

†
j+1d

†
j − f

†
j fj+1djdj+1

− fjfj+1d
†
j dj+1 − f

†
j+1f

†
j d

†
j+1dj ). (32)

In the basis of |nf

j ,nd
j 〉, the eigenstates of the single-

site reduced density matrix ρ ′
j (a “site” in the transformed

representation refers to a bond in the original one) take the
form

|A′〉 = α|10〉 + β|01〉, |B ′〉 = |00〉,
|C ′〉 = |11〉, |D′〉 = β|10〉 − α|01〉. (33)

As shown in Fig. 21(b), the state |B ′〉 is dominant in the region
V > 0, and we would arrive at the same order parameter, i.e.,
O−, as in the case of no interaction. The order parameter
in this topological region prevails and is not affected by the
interactions.

For V < −2.5, states |A〉 and |D〉 are dominant, and let us
define the order parameter as

O+,1 = wA|A〉〈A| + wD|D〉〈D|
= 1

2 (wA + wD)(|10〉〈10| + |01〉〈01|)
+ 1

2 (wA − wD)(|10〉〈01| + |01〉〈10|). (34)

Without the loss of generality, assume that the weights of the
two states |A〉 and |D〉 tends to an asymptotic value of 0.5
with some probably chosen values of U and V within the
same phase. Traceless condition then gives wA = −wD and
setting wA = 1, we have

O+,1 = c
†
j,Acj,B + c

†
j,Bcj,A. (35)

A remark here is that if one considers the form of Hamil-
tonian in Eq. (22), the case of a positive η is equivalent to the
case of a negative η with the role of U and V interchanged and
{j,A},{j,B} being replaced by {j,B},{j + 1,A}, respectively.
Therefore, for the case V < −2.5, one can also take O3 in
Eq. (30) but with the index replaced as the order parameter.

That gives

O+,2 = 1 − (nj,B + nj+1,A), (36)

which is consistent with the CDW2 order parameter. In
addition, the linear combination of O+,1 and O+,2 can also
be an order parameter. For −2.5 < V < 0.5, note that the
eigenspectrum is similar to the one shown in the V < 6 regime
in Fig. 17(b) and supplemented with the above argument, the
order parameter for this phase is given by O+.

VI. CONCLUSIONS

Using the method proposed from the reduced density
matrix [10], we construct the potential order parameters for
a condensed matter system, especially for the topologically
nontrivial phase, which cannot be described by those general
order parameters derived from the Landau’s symmetry break-
ing theory. We first study the two-band spinless fermions SSH
model. In this simple model, a topological phase transition
exists. We calculate the entanglement entropy, which clearly
identify the quantum critical point. Analyzing the mutual
information and one-site reduced density matrix, we get a local
order parameter for the trivial phase. Furthermore, through an
appropriate change of basis by representing the Hamiltonian
in a Majorana fermion basis, we reduced the number of
eigenvalues that contribute significantly and construct the
nonlocal order parameter O− for the topologically nontrivial
phase.

We then consider the case when the interactions U and V are
added. The entanglement entropy results capture a rich ground
state phase diagram on the U − V plane. Through analyzing
the electron configurations, we identify the PS, CDW, and
CDW2 phases and give the order parameter for the CDW2 state.
The order parameters for various quantum phases are deduced
according to the method of analyzing the mutual information
and the reduced density matrix spectra. In addition, comparing
with the dominant regions of different order parameters, we
conclude that the topologically trivial and nontrivial quantum
phases described by O+ and O−, respectively, could exist
in a wide range of parameter space. Moreover, the topology
of the system affected by the interactions is verified by the
Berry phase results, and the effectiveness of the deduced order
parameter O− in describing the topological quantum phase is
further proved.
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