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Linear ramps of the mass in the O(N) model: Dynamical transition and quantum noise of excitations
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Nonthermal dynamical critical behavior can arise in isolated quantum systems brought out of equilibrium by
a change in time of their parameters. While this phenomenon has been studied in a variety of systems in the case
of a sudden quench, we consider here its sensitivity to a change of protocol by considering the experimentally
relevant case of a linear ramp in time. Focusing on the O(N ) model in the large-N limit, we will show that a
dynamical phase transition is always present for all durations of the ramp, and we discuss the crossover between
the sudden quench transition and one dominated by the equilibrium quantum critical point. We show that the
critical behavior of the statistics of the excitations, signaling the nonthermal nature of the transition, is also
robust. An intriguing crossover in the equal-time correlation function, related to an anomalous coarsening, is also
discussed.
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I. INTRODUCTION

The nonequilibrium dynamics of isolated quantum many-
body systems has been the subject of many theoretical and
experimental studies [1–4] in recent years. The interest in
this field is mainly motivated by advances in the experi-
mental study of cold atoms trapped in optical lattices [5].
These systems are characterized by a very weak coupling to
the external environment, which strongly suppresses dissipa-
tive and decoherence effects and allows the observation of the
coherent quantum many-body dynamics for quite long time
scales. In this context, a series of remarkable experiments led,
for example, to the observation of the collapse and revival of
a system driven across the Mott-superfluid transition [6,7],
the spontaneous symmetry breaking in a quenched spinor
Bose-Einstein condensate [8], the absence of thermalization
in a one-dimensional Bose gas [9], the phenomenon of
prethermalization [10–12], and the light-cone spreading of
correlations [13].

Among all the possible ways of taking an isolated quantum
system out of equilibrium, the most natural one is to vary in
time one of its parameters. A natural goal of any experimental
and theoretical characterization of nonequilibrium dynamics
is to be able to predict the nature of the steady state attained by
a system long after such variation has occurred. While generic
systems are expected to approach a thermal state [14–16]
even if thermally isolated from the environment, in special
cases (i.e., for integrable systems [9,17–21]) relaxation to a
nonthermal state described by the generalized Gibbs ensemble
(GGE) [22] consistent with all the constants of motion is
anticipated. Despite the peculiar nature of integrable systems,
signatures of nonthermal behavior may be observed even in
nonintegrable ones: the relaxation to a thermal state may
indeed involve the approach to a nonthermal quasistationary
state (prethermal state) [23–40] on intermediate time scales.
Such prethermal states are either expected in low dimensions
for systems approximately integrable, as well as in the presence
of long-range interactions and in large dimensions close to a
mean-field limit. Most importantly, recent literature has shown
that such quasistationary states may display dynamical critical

behavior. There are two types of dynamical quantum phase
transitions in the literature, i.e., criticality in the stationary
state attained after a quantum quench and/or singular behavior
as a function of time in the so-called Loschmidt amplitude
[41]. These two phenomena are related and characterize
in a different way the symmetry of quantum trajectories
[42]. In the following, we will focus on the first type of
criticality. Originally studied for sudden changes of parameters
(quenches) in the Hubbard model [43–45], such criticality was
later observed in several systems at the mean-field level [46,47]
and in field theories [48–51]. While the characterization of
these dynamical transitions and their peculiarities as compared
to thermal transition is a topic of recent research, it has been
recently shown that a simple protocol measuring the quantum
noise of excitations produced in a sudden quench can single
out their nonequilibrium nature [50].

In general, any dynamical evolution is expected to de-
pend on the particular protocol selected to vary the system
parameters. While dynamical transitions were studied for
instantaneous variations (sudden quenches), considering more
generic procedures, such as a linear ramp, could shed some
light on which dynamical features are unaffected by the
changes of the protocol and which ones depend on its details
(for example, the dependence on its duration). Moreover,
the study of generic protocols can be useful for eventual
experiments, which typically use linear ramps to prepare and
study particular states. In this work, therefore, we address the
sensitivity of dynamical transitions to a change of protocol,
from a sudden quench to a linear ramp. We focus on the case
of an O(N ) vector model in the large-N limit, where the
model can be solved exactly [52–56], and driving the system
out of equilibrium by a linear variation in time of the bare
mass, starting in the disordered phase, rather than by a sudden
quench. We will show that for this system the dynamical phase
transition is robust against changing the protocol and map
entirely the crossover between a true dynamical transition and
one dominated by the equilibrium quantum critical point as
a function of the duration of the ramp τ . In particular, we
will discuss analytically how the value of the bare mass at
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the dynamical critical point rc varies as a function of ramp
duration, focusing in particular on the two limits of large and
small τ . While both critical exponents as well as the behavior
of the quantum noise of excitations in a double quench are
found to be hardly sensitive to the change of protocol, we
observe an intriguing crossover in the equal-time correlation
functions displaying anomalous coarsening [57].

The paper is organized as follows. In Sec. II we review the
critical properties of the system at equilibrium and in the case
of a sudden quench in the bare mass. In Sec. III we study the
dynamics of the system when a linear ramp is performed,
detecting the dynamical critical point and computing the
critical dimensions and exponents. The characterization of the
dynamical transition based on the quantum noise of excitations
is discussed in Sec. IV, while the case of a linear ramp below
the dynamical critical point is studied in Sec. V. In Sec. VI we
summarize the results.

II. THE MODEL

In the following, we will focus on the dynamical phase
transition in the dynamics of an interacting N component
real scalar field �φ in d spatial dimensions, described by the
Hamiltonian

H= 1

2

∫
ddx

[
( ��)2 + (∇ �φ)2 + r0( �φ)2 + λ

12N
(( �φ)2)2

]
, (1)

where �� is the conjugate momentum field. We will be
interested in characterizing the dynamical phase transition
occurring in the mean-field, N → ∞, limit, where the O(N )
vector model is exactly solvable [52]. In this limit and at
equilibrium, this system is described by a quadratic theory with
an effective mass r , satisfying the self-consistent equation

r = r0 + λ

6

∫
dr〈φ2〉, (2)

where exploiting the O(N ) symmetry of the model, we focused
on one of the components of the field �φ, indicated as φ. Using
this equation, one may easily see that the system exhibits
both a quantum and a thermal phase transition between a
paramagnetic phase and an ordered one, characterized by the
spontaneous symmetry breaking of the O(N ) symmetry [52].
At the critical point, identified by the vanishing of the effective
mass r , the bare mass is given by

rc
0 = − λ

12

∫ � ddk

(2π )d
1

k
coth

(
βk

2

)
, (3)

where � is the ultraviolet cutoff and β is the inverse
temperature. The integral on the right-hand side converges
for d > 2 (d > 1 at zero temperature), setting, therefore,
the value for the lower critical dimension. Moreover, one
can compute the critical exponent ν describing the divergent
behavior of the correlation length ξ ∼ r−1 close to the critical
point, i.e., ξ ∼ (δr0)−ν , with δr0 = r0 − rc

0 . At T = 0, one
finds ν = 1/(d − 1) for 1 < d < 3 and ν = 1/2 for d � 3,
which is therefore the upper critical dimension of the quantum
phase transition. In the finite-temperature case, one gets instead
ν = 1/(d − 2) for 2 < d < 4 and ν = 1/2 for d � 4, which
implies that d = 4 is the upper critical dimension for the
thermal transition.

Focusing now on the dynamics, it has been shown numer-
ically [49,50,58,59] that this model can undergo a dynamical
phase transition after a sudden quench in the bare mass, i.e.,
suddenly changing its value from r0,i to r0,f (we focus here on
the case of a sudden quench starting from the ground state in
the paramagnetic phase). The time-dependent effective mass
[satisfying Eq. (2) with a time-dependent correlation function
〈φ2(t)〉 dictating the self-consistency] is seen to oscillate and
then relax to a well-defined value at large times. The stationary
value r� of the effective mass can be predicted efficiently via
an ansatz [58] (see below) based on the replacement of the
equal-time correlation function 〈φ2(t)〉 in Eq. (2) with the
stationary, time-averaged part of corresponding post-quench
correlator for a free theory (λ = 0) with the initial and final
values of the mass set equal to ri and r�. The dynamical critical
point is therefore reached provided the final bare mass satisfies
the relation

rc
0,f = − λ

24

∫ � ddk

(2π )d
2k2 + ri

k2
√

k2 + ri

, (4)

where ri indicates the effective mass before the sudden quench.
From this equation, one obtains that the lower critical

dimension for the dynamical transition is d = 2, and that the
value of the bare mass at the dynamical critical point is always
smaller than the one at the quantum critical point rc

0 . As in
the equilibrium case, we denote with ξ ∗ the correlation length
in the stationary state and with ν∗ the exponent describing
its divergence close to the dynamical critical point. We find
that ν∗ = 1/(d − 2) for 2 < d < 4 and ν∗ = 1/2 for d � 4,
which is the upper critical dimension. The fact that these
critical exponents are similar to those of a thermal transition at
equilibrium suggests that the two might be analogous [50,59].
Indeed, one could imagine that fixing r

f

0 in the equilibrium
ordered phase and increasing ri

0 from r
f

0 to higher values
amounts to increase the energy density injected by the sudden
quench into the system. This could be seen as equivalent to
moving from low to high temperatures in the corresponding
equilibrium phase diagram, in which case a thermal phase
transition would sooner or later be crossed. Notice, however,
that, despite the analogies, the distribution of quasiparticles
after a sudden quench in the N → +∞ limit is not thermal.
Moreover, the difference between the two cases becomes
apparent if one studies the quantum noise of excitations
produced close to a dynamical transition, since, unlike the
equilibrium case, in the dynamical one the fluctuations in the
number of excitations are very sensitive to how close one is to
a dynamical critical point [50].

III. DYNAMICS AND DYNAMICAL CRITICAL
PROPERTIES FOR A LINEAR RAMP

In this paper, we address the robustness of the scenario
above with respect to a change of protocol from a sudden
quench to a linear ramp of the bare mass. The system is initially
prepared in the ground state of the disordered phase (r0,i > rc

0 ),
then the bare mass is linearly decreased to a final value r0,f

according to the following protocol: r0(t) = r0,i for t < 0,
r0(t) = r0,i + (r0,f − r0,i)t/τ for 0 � t � τ , and r0(t) = r0,f

for t > τ .
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Let us start setting up the formalism to study the dynamics
in the N → +∞ limit [53,54]. The system is again described
by an effective quadratic Hamiltonian with a time-dependent
effective mass r(t). Exploiting the O(N ) symmetry of the
model, we can focus on only one component of the field.
Passing to Fourier space, we may write

Heff(t) = 1

2

∫ � ddk

(2π )d
[
�k(t)�−k(t) + ω2

k(t)φk(t)φ−k(t)
]
,

(5)

where ωk(t) =
√

k2 + r(t), and

r(t) = r0(t) + λ

6

∫ � ddk

(2π )d
〈φk(t)φ−k(t)〉. (6)

Let us now expand the field in the Heisenberg representation
as

φk(t) = fk (t)ak + f �
k (t)a†

−k, (7)

where ak and a
†
k diagonalize the initial Hamiltonian (5) at t = 0,

and fk (t) is a complex amplitude. Imposing the Heisenberg
equations of motion for φk(t), we derive the equation for the
evolution of the mode function fk (t),

f̈k (t) + [k2 + r(t)]fk (t) = 0, (8a)

where

r(t) = r0(t) + λ

6

∫ � ddk

(2π )d
|fk (t)|2 (8b)

and the initial conditions are fk (0) = 1/
√

2ωk(0) and ḟk (0) =
−i

√
ωk(0)/2, with ωk(0) =

√
k2 + ri .

These equations have the same form as those obtained for
a sudden quench, with the only difference that r0 is now not
a constant but a linear function of time. In particular, Eq. (8)
can be solved analytically for a linear ramp in the special case
of λ = 0 (see Appendix A). For any finite λ, one instead has
to resort to numerical integration. Varying the duration of the
ramp and the value of the final bare mass, the system is found
to display again a dynamical phase transition: as shown in
Fig. 1, long after the end of the ramp, the effective mass r(t)
is seen to relax to a stationary value, which is positive up to
a certain τ -dependent dynamical critical value rc

0,f (τ ), and it
vanishes for r0,f � rc

0,f (τ ).

Stationary state and dynamical criticality

Let us now characterize thoroughly the dynamical phase
transition as a function of initial and final parameters and
ramp duration τ . First of all, it is important, as in the case of a
sudden quench, to be able to predict analytically the stationary
value of the effective mass r∗. To achieve this goal, we
introduced an ansatz for the stationary effective mass inspired
by the one used before for a sudden quench [50,58]: we
assume the stationary part of the equal-time Green’s function
〈φk(t)φ−k(t)〉 = |fk (t)|2 to be equal to the noninteracting
(λ = 0) one, with the bare masses replaced by the renormalized
ones, namely r0,i → ri [which can be calculated with Eq. (8)
with t < 0] and r0,f → r∗ (see Appendix A). We therefore

r0, f rc0, f τ
r0, f rc0, f τ
r0, f rc0, f τ

0 10 20 30 40 50 60

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

t

r

FIG. 1. Time evolution of the effective mass r(t) for ramps of
duration τ = 5, initial bare mass r0,i=5 in d = 3, and interaction
strength λ = 15. Final values of the bare mass below, at, and above
the dynamical critical point are shown.

obtain the following self-consistent equation for r∗:

r∗ = r0,f + λ

12

∫ � ddk

(2π )d

[∣∣f 0
k (r∗,τ̃ )

∣∣2 +
∣∣ḟ 0

k (r∗,τ̃ )
∣∣2

k2 + r∗

]
, (9)

where f 0
k denotes the mode function that solves Eq. (8a)

for λ = 0 and r(t) = r� at time τ [see Eqs. (A6) and (A7)].
According to this ansatz, we can identify the value of the bare
mass at the dynamical critical point for which r∗ vanishes as

rc
0,f (τ ) = − λ

12

∫ � ddk

(2π )d

[∣∣f 0
k (0,τ̃ )

∣∣2 +
∣∣ḟ 0

k (0,τ̃ )
∣∣2

k2

]
. (10)

The mere fact that the stationary state can be described
by an ansatz such as Eq. (9) allows us to deduce many
of the properties of the dynamical phase transition. Note,
however, that in order to obtain the correct stationary value
for r0,f � rc

0,f (τ ), we had to renormalize the ramp duration τ

to an effective value τ̃ in Eq. (9). Such a renormalized value
increases as τ does (see the discussion below). Notice that
making τ̃ an adjustable parameter does not allow us to fit any
function, but it has a clear physical significance. Indeed, by
rewriting Eq. (9) as

r� − r0,f = I (τ̃ ), (11)

with

I (τ̃ ) = λ

12

∫ � ddk

(2π )d

[∣∣f 0
k (r∗,τ̃ )

∣∣2 +
∣∣ḟ 0

k (r∗,τ̃ )
∣∣2

k2 + r∗

]
, (12)

the above equation determines the effective ramp duration τ

given the final bare mass r0,f and the observed asymptotic
effective mass r�. The function I (τ̃ ) is an increasing function
of τ̃ , with the limiting values

I (0) = λ

48�2

∫ �

0
dk k2 2k2 + ri + r�

(k2 + r�)
√

k2 + ri

,

I (τ̃ → ∞) = λ

24�2

∫ �

0
dk

k2

√
k2 + r�

. (13)
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f
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FIG. 2. Value of the mass at the dynamical critical point rc
0,f (τ )

as a function of the ramp duration τ in d = 3. Different values of
the initial bare mass r0,i are shown, while the interaction is λ = 15.
Horizontal black dashed lines indicate the value of the bare mass at
the dynamical critical point for a sudden quench (τ → 0) and that at
the quantum critical point for the equilibrium case (τ → ∞).

Both of these values are positive and finite, so the ansatz can
work only if the difference r� − r0,f is always between these
two limits and cannot fit any value. There is, of course, no
guarantee that this would always be the case, therefore the fact
that the ansatz works is certainly not trivial.

Let us now establish the lower critical dimension of
the dynamical transition by analyzing the behavior for low
momenta of the integrand of Eq. (10) (see Appendix B).
Inspection of Eq. (10) shows that for every finite τ , the modes
that contribute the most to the integral on the right-hand side
are those with k 
 min[(ri/τ̃ )1/3,

√
ri], where both |f 0

k (0,τ̃ )|2
and |ḟ 0

k (0,τ̃ )|2 go to a constant, making the integrand behave
as 1/k2. This implies that the value of the bare mass at the
dynamical critical point rc

0,f (τ ) is finite for d > 2, d = 2 being
the lower critical dimension for every finite τ . We observe
that as τ increases, the region considered above shrinks.
Moreover, as τ gets larger and larger, the region of intermediate
asymptotics (ri/τ̃ )1/3 
 k 
 √

ri , where |f 0
k (0,τ̃ )|2 ∼ 1/k

and |ḟ 0
k (0,τ̃ )|2 ∼ k, becomes more and more important. When

τ becomes infinite, this asymptotics dominates and the lower
critical dimension becomes d = 1, recovering the result of the
quantum transition. As shown in Fig. 2, the values of rc

0,f (τ )
interpolate between the value of the bare mass at the dynamical
critical point for a sudden quench, corresponding to τ → 0,
and that at the quantum critical point at equilibrium, in the
limit of large τ .

It is now important to study the dependence of τ̃ on
τ . Equation (9) provides the correct stationary value of the
effective mass provided the parameter τ̃ is adjusted, a task
that can be accomplished numerically. In particular, once the
dynamical critical point has been identified, we can compute
a posteriori the effective ramp duration τ̃ at criticality using
Eq. (10). Analyzing the behavior of τ̃ as a function of the
true ramp duration τ at the critical point and for r0,i and λ

fixed, it turns out that in the limits of small and large τ these
two quantities have a linear relation, as can be seen in Fig. 3.
Moreover, varying the value of the initial bare mass r0,i (but
keeping λ fixed), the different τ̃ (τ ) collapse on the same line,

(a)

10−3

10−2

10−1

10−3 10−2 10−1

τ̃

τ

r0,i = 2
r0,i = 5
r0,i = 15

(b)

50

100

150

200

50 100 150 200
τ

r0,i = 2
r0,i = 10
r0,i = 15

FIG. 3. Effective ramp duration τ̃ as a function of the true ramp
duration τ at the dynamical critical point in d = 3 for small (a) and
large (b) τ . Different values of the initial bare mass r0,i are shown,
while the interaction is λ = 15.

for large and small τ . We may therefore use the ansatz (10) to
analytically study how the dynamical critical value depends on
τ in two limiting cases, for τ → ∞ (adiabatic switching) and
τ → 0 (sudden quench). Note that the linear relation between
τ and τ̃ is not valid for intermediate values of τ , as can be
seen from Fig. 4. There we can see that oscillations are present
in the intermediate regime, and different values of the initial
bare mass r0i do not collapse one on each other. Moreover, it
is worth noting that the two linear relationships valid at small
and large τ are different from each other.

Our ansatz, together with the linear relation between τ and
τ̃ at large τ and small τ , will now allow us to map entirely
analytically the crossover between sudden quenches and linear
ramps. Let us start with large τ and employ Eq. (10) to study the
crossover in Fig. 2. We will use in particular the exact solu-
tions for the noninteracting mode functions f 0

k (t) expressed
in terms of Airy functions (see Appendix A). Employing
the asymptotic expansion of the Airy functions for large
and negative arguments (see Appendix B), for τ̃ � 1/

√
ri

FIG. 4. Effective ramp duration τ̃ as a function of the true ramp
duration τ at the dynamical critical point in d = 3 for intermediate
τ . Different values of the initial bare mass r0,i are shown, while the
interaction is λ = 15. The dashed green line and the dotted purple
line represent the linear relation between the quantities that are valid
at small and large τ , respectively.
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(a)

10−3

10−2

10 100

rc 0
−

rc 0,
f
(τ

)

τ

r0,i = 2 λ = 15
r0,i = 10 λ = 10
r0,i = 10 λ = 15

(b)

10−4

10−3

10 100
τ

r0,i = 15 λ = 15
r0,i = 20 λ = 15

FIG. 5. Difference between the value of the bare mass at the
quantum critical point rc

0 and that at the dynamical critical point
rc

0,f (τ ) for large ramp duration τ in d = 3 (a) and d = 4 (b). Different
values of the interaction λ and of the initial bare mass r0,i are shown.
Black lines are proportional to τ−2/3 (a) and to τ−1 (b).

Eq. (10) reads

rc
0,f (τ ) � − λ

12

�(d)

(2π )d
[I1(d) + I2(d)], (14)

where �(d) is the solid angle in d dimension, and

I1(d) = π

4
�d

(
τ̃

ri

)1/3 ∫ 1

0
dz z

d−2
2

×
[

Ai2
(

−�2τ̃ 2/3

r
2/3
i

z

)
+ Bi2

(
−�2τ̃ 2/3

r
2/3
i

z

)]
, (15a)

I2(d) = π

4
�d−2

(
ri

τ̃

)1/3 ∫ 1

0
dz z

d−4
2

×
[

Ai′ 2

(
−�2τ̃ 2/3

r
2/3
i

z

)
+ Bi′ 2

(
−�2τ̃ 2/3

r
2/3
i

z

)]
, (15b)

where we introduced the dimensionless variable z = k2/�2.
Integrals (15) can be computed exactly both in d = 3 and

4 (see Appendix C). We find that the asymptotic value of the
bare mass at the dynamical critical point for large τ and d = 3
is

rc
0,f (τ ) = rc

0 + λ �(−1/3)

217/3 × 37/3 π2

(
ri

τ̃

)2/3

+ O

(
r

4/3
i

�4τ̃ 4/3

)
, (16)

while for d = 4 it is

rc
0,f (τ ) = rc

0 − λ

1152
√

3 π2

(
ri

τ̃

)
+ O

(
r2
i

�6τ̃ 2

)
, (17)

where rc
0 is the quantum critical point at equilibrium [see

Eq. (3)]. In both cases, rc
0,f is smaller than the equilibrium

critical point.
Since for large τ the relation between τ̃ and τ is linear at the

critical point, we conclude that the value of the bare mass at
the dynamical critical point approaches the quantum critical
value as τ−2/3 for d = 3 and as τ−1 for d = 4. We verified these
scalings numerically by linearly fitting the relation between τ̃

and τ for large τ and replacing the result in Eqs. (16) and (17),
getting an excellent agreement with numerical data, as shown
in Fig. 5.

Let us now consider the fate of the dynamical critical point
in the limit of small τ . By using the asymptotic expansion of
the Airy functions for small arguments (see Appendix B), we

(a)

10−6

10−4

10−2

10−3 10−2 10−1

rc 0,
f
(τ

)
−

rc 0,
f
(0

)

τ

r0,i = 2.5 λ = 10
r0,i = 5 λ = 15
r0,i = 15 λ = 15

(b)

10−6

10−4

10−2

10−3 10−2 10−1

τ

r0,i = 15 λ = 15
r0,i = 20 λ = 15

FIG. 6. Difference between the value of the bare mass at the
dynamical critical point for a ramp, rc

0,f (τ ), and for a sudden quench,
rc

0,f (0), for small ramp duration τ in d = 3 (a) and d = 4 (b). Different
values of the interaction λ and of the initial bare mass r0,i are shown.
Black lines are proportional to τ 2.

have that

∣∣f 0
k (0,τ̃ )

∣∣2 � 1

2
√

k2 + ri

+ ri

6
√

k2 + ri

τ̃ 2, (18)

∣∣ḟ 0
k (0,τ̃ )

∣∣2 �
√

k2 + ri

2
− 4k2ri + r2

i

24
√

k2 + ri

τ̃ 2. (19)

Inserting these expressions in Eq. (10), we obtain

rc
0,f (τ ) � rc

0,f (0) + λ

12
τ̃ 2

∫ � ddk

(2π )d
r2
i

24k2
√

k2 + ri

, (20)

where rc
0,f (0) is the value of the bare mass at the dynamical

critical point for a sudden quench [see Eq. (4)].
Since at criticality τ̃ ∼ τ for small τ , we conclude that the

value of the bare mass at the dynamical critical point departs
from the sudden quench value as τ 2, both in d = 3 and 4. This
is confirmed by numerical data (Fig. 6).

We are now ready to compute the critical exponent ν∗,
describing the divergence of the correlation length ξ ∗ in the
stationary state close to the dynamical critical point, i.e.,
ξ ∗ ∼ [δr0,f (τ )]−ν∗

, with δr0,f (τ ) = r0,f − rc
0,f (τ ) combining

Eqs. (9) and (10). As shown in detail in Appendix B, for
2 < d < 4 the stationary value of the effective mass at the
leading order scales as r∗ ∼ [δr0,f (τ )]

2
d−2 , while for d � 4 the

scaling becomes linear, i.e., r∗ ∼ δr0,f (τ ). Since the theory is
Gaussian, (ξ ∗)−1 ∼ √

r∗. We conclude that

ν∗ = 1/(d − 2) for 2 < d < 4,

ν∗ = 1/2 for d � 4,
(21)

d = 4 being the upper critical dimension. Figure 7 shows that
numerical results for d = 3 and 4 agree with this prediction.
We note that for d = 3 [Fig. 7(a)] numerical data follow the
relation r∗ ∼ [δr0,f (τ )]2 for sufficiently small values of r∗ and
then depart from this scaling, eventually approaching a linear
relation for larger r∗, indicating a crossover between d = 3
critical and mean-field behavior.

As in the case of a sudden quench, the critical dimensions
and the critical exponent turn out to be the same as the thermal
one, even though we are dealing here with the unitary dynamics
of a pure state and not with a mixed state. Similar behavior
is observed in other models, such as the infinite-range Ising
model (Lipkin model) [47,60]. Only when τ is strictly infinite
do we eventually recover the results of the quantum transition.
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FIG. 7. Stationary value of the mass as a function of the distance
from the dynamical critical point in d = 3 (a) and d = 4 (b). Black
lines are quadratic (a) and linear (b) fits.

Notice that despite the fact that such exponents are identical
to the thermal ones in the N → ∞ limit, we cannot rule out
that the 1/N corrections will be different. This issue is left for
future studies.

IV. QUANTUM NOISE OF EXCITATIONS

To complete our characterization of the crossover in the
dynamical transition, we study the quantum noise of excita-
tions produced by the ramp of the bare mass, generalizing
the approach proposed in Ref. [50]. As in the case of a sudden
quench, we will show that the growth in time of the fluctuations
in the number of excitations bears strong signatures of the
dynamical transition.

The protocol we will study is the following: after the end
of the ramp, we let the system evolve for a certain waiting
time, after which we suddenly quench the bare mass back to
its initial value r0,i . The number of excitations generated in
this process is a fluctuating quantity characterized by a certain
probability distribution related to the operator

N̂ =
∫ � ddk

(2π )d
a
†
kak. (22)

An equivalent and more convenient description can be given
in terms of the moment-generating function

G(s,t) = 〈ψ(t)| e−sN̂ | ψ(t)〉, (23)

where |ψ(t)〉 = U (t) |0〉 is the evolved state at time t , and |0〉
indicates the initial ground state. The explicit derivation of
G(s,t) is presented in Appendix D. In particular, we obtain

ln G(s,t) = −V

2

∫ � ddk

(2π )d
ln[1 + ρk (t)(1 − e−2s)], (24)

where

ρk (t) = 1

2

[
ωk(0)|fk (t)|2 + |ḟk (t)|2

ωk(0)
− 1

]
(25)

and V = Ld,L being the linear size of the system. Notice that
this quantity is exactly the number of excitations per mode
studied in the context of inflation and preheating dynamics
[55,56].

The dynamical critical properties of the system can be
studied by analyzing the cumulants of the distribution of

excitations, defined as

Cn(t) = (−1)n
∂n

∂sn
ln G(s,t)

∣∣∣∣
s=0

. (26)

In the following, we will focus on the first two cumulants, i.e.,
the averageN (t) and the variance σ 2(t), in d = 3 and 4, and we
numerically study their time dependence, trying to distinguish
qualitatively different behaviors for different values of the bare
mass at the end of the ramp. Their explicit expressions in terms
of ρk (t) are

N (t)

V
=

∫ � ddk

(2π )d
ρk(t), (27)

σ 2(t)

V
=

∫ � ddk

(2π )d
2ρk(t)[1 + ρk(t)]. (28)

For large times, the average number of excitations relaxes
to a finite value for every value of r0,f , both in d = 3 and 4.
Remarkably, the variance per unit volume displays a nontrivial
behavior at large times, depending on the final value of the bare
mass r0,f . For ramps ending above the dynamical critical point,
i.e., r0,f > rc

0,f (τ ), the variance saturates to a finite value, both
in d = 3 and in d = 4 [Figs. 8(a) and 8(d)]. For r0,f < rc

0,f (τ ),
the variance increases algebraically: for d = 3 it scales as σ 2 ∼
t [Fig. 8(c)], while for d = 4 it scales as σ 2 ∼ t2 [Fig. 8(f)].
Finally, for ramps at the critical point, i.e., r0,f = rc

0,f (τ ), the
variance grows logarithmically in time, both in d = 3 and in
d = 4 [Figs. 8(b) and 8(e)].

We note that this behavior is the same as that observed in
the case of a sudden quench [50], showing that the critical
scaling of the variance appears to be unaffected by the change
of the protocol.

V. LINEAR RAMP BELOW THE DYNAMICAL
CRITICAL POINT

An interesting signature of the crossover between sudden
quench and slow ramp is observed by focusing on ramps
below the dynamical critical point. It has been shown [57]
that performing a sudden quench below the dynamical critical
point induces the emergence of a scaling form in the cor-
relation functions associated with coarsening dynamics with
an exponent characterizing these functions differing from the
one expected in the usual classical coarsening. The reason
for this discrepancy between quantum and classical systems
has been unclear up to now. In particular, in the case of
standard coarsening, one would expect the correlation function
to scale as G(r,t) = G[r/L(t)] and G(k,t) = L(t)dG[kL(t)].
As shown in Ref. [57] and discussed below [see Eq. (30)],
this is not consistent with what was obtained in the case of a
quantum quench. To see this in the most general case, let us
now investigate how this behavior is affected by a linear ramp
in the bare mass. Toward that end, we consider the equal-time
two-point correlation function 〈φk(t)φ−k(t)〉 = |fk (t)|2 and its
Fourier transform 〈φ(x,t)φ(y,t)〉 in d = 3 and 4.

As a consequence of the ramp protocol, the dependence of
〈φk(t)φ−k(t)〉 on momentum k displays two different regimes.
Right at the end of the ramp [Figs. 9(a) and 9(d)], we note that
it exhibits the following scaling form:

〈φk(τ )φ−k(τ )〉 = τ dFd (kτ ), (29)
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FIG. 8. Variance per unit volume for ramps above [(a) and (d)], at [(b) and (e)], and below [(c) and (f)] the dynamical critical point in d = 3
(first row) and d = 4 (second row). Different values of the initial bare mass r0,i and of the ramp duration τ are shown, while the interaction is
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(a)

10

10−8

10−5

10−2

1 10 100

φ
k
(τ

)φ
−

k
(τ

)
/τ

3

kτ

τ = 250
τ = 100
τ = 50

(b)

1

103

10−9

10−6

10−3

0.1 1 10 100 1000

φ
k
(t

)φ
−

k
(t

)
/t

2

kt

t = 3000
t = 1000
t = 600

(c)

1

102

10−6

10−4

10−2

1 210−3 10−2 10−1

φ
(x

,t
)φ

(y
,t

)
x
−

y
|

|x − y|/t

t = 3000
t = 1000
t = 600

(d)

10

10−11

10−8

10−5

10−2

1 10 100

φ
k
(τ

)φ
−

k
(τ

)
/τ

4

kτ

τ = 250
τ = 100
τ = 50

(e)

1

103

10−9

10−6

10−3

0.1 1 10 100 1000

φ
k
(t

)φ
−

k
(t

)
/t

3

kt

t = 3000
t = 1000
t = 600

(f)

1

102

10−6

10−4

10−2

1 210−3 10−2 10−1

φ
(x

,t
)φ

(y
,t

)
x
−

y
|

|x − y|/t

t = 3000
t = 1000
t = 600

FIG. 9. Equal-time two-point correlation functions for ramps below the dynamical critical point in d = 3 (first row) and d = 4 (second
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where Fd (kτ ) is an oscillating function decaying as
∼(kτ )−(d+1) for kτ � 1.

In the subsequent evolution for t > τ , shown in Figs. 9(b)
and 9(e), the correlation function acquires a different depen-
dence on momentum for 1/t � k � 1/τ , and, for long times
after the end of the ramp, the scaling form found in the case
of a sudden quench is recovered, namely

〈φk(t)φ−k(t)〉 = td−1Gd (kt), (30)

whereGd (kt) is an oscillating function decaying as ∼(kt)−(d−1)

for 1 � kt � t/τ . For k � 1/τ , instead, the correlation func-
tion still decays as ∼k−(d+1). Notice that in the limit τ → 0,
the latter regime, which is due to the finite duration of the
ramp, is suppressed.

The corresponding Fourier transform in real space,
〈φ(x,t)φ(y,t)〉, shown in Figs. 9(c) and 9(f), exhibits a light-
cone structure [13,49,61], vanishing for |x − y| > 2t as a
consequence of the finite speed of propagation of excitations,
and it decays as |x − y|−1 for τ � |x − y| < 2t , both in d = 3
and in d = 4. While in the limit τ → 0 the result of a
sudden quench is fully recovered, for τ → ∞ we do not find
the corresponding equilibrium correlation function, since the
O(N ) symmetry cannot be globally broken by the dynamics.
Moreover, adiabaticity is not expected to hold, since the
system crosses the dynamical critical point and enters a gapless
phase.

VI. CONCLUSIONS

In this work, we investigated the crossover of the dynamical
phase transitions of the O(N ) vector model in the N → ∞
limit as a function of the duration of a linear ramp in the
bare mass. In particular, we have shown that, when the
duration of the ramp is finite, the critical properties associated
with dynamical transitions are the same as the equilibrium
transition at finite temperature, while as τ → +∞ they are
close to those of the equilibrium system at zero temperature,
i.e., the quantum phase transition. Studying in detail the value
of the bare mass at the dynamical critical point rc

0,f (τ ), we
investigated how its value interpolates between the limiting
cases of the sudden quench (τ → 0) and the adiabatic
switching (τ → ∞) of the bare mass. We found that the
approach to these two limits is algebraic in τ , and we derived
analytically the values of such exponents.

As for a sudden quench, the nonequilibrium nature of the
dynamical transition, however, leaves strong signatures on the
statistics of the excitations, whose variance grows as a power
law below the critical point and exhibits a logarithmic behavior
at the critical point. An intriguing crossover is finally observed
analyzing the equal-time two-point correlation function for
ramps below the dynamical critical point. There we found the
emergence of two different scaling behaviors, one related to
the finite duration of the ramp (unrelated to quantum critical
scaling) and the other to the subsequent time evolution and
coarsening dynamics.

APPENDIX A: NONINTERACTING THEORY AND STATIONARY VALUES

In this appendix, we explicitly solve Eqs. (8) in the case of a free theory, i.e., λ = 0, and we provide additional details on the
ansatz of Eq. (9).

Obviously, when λ = 0 the effective mass is equal to the bare one, therefore we have to solve the equation

f̈ 0
k (t) + [k2 + r0(t)]f 0

k (t) = 0 (A1)

with the initial conditions f 0
k (0) = 1/[4(k2 + r0,i)]1/4 and ḟ 0

k (0) = −i[(k2 + r0,i)/4]1/4.
For 0 < t < τ , the solution is given by

f 0
k (t) = π√

2(k2 + r0,i)1/4

[
Ai

(
γ t − k2 + r0,i

γ 2

)
Bi′

(
−k2 + r0,i

γ 2

)
− Ai′

(
−k2 + r0,i

γ 2

)
Bi

(
γ t − k2 + r0,i

γ 2

)]

+ iπ (k2 + r0,i)1/4

√
2γ

[
Ai

(
γ t − k2 + r0,i

γ 2

)
Bi

(
−k2 + r0,i

γ 2

)
− Ai

(
−k2 + r0,i

γ 2

)
Bi

(
γ t − k2 + r0,i

γ 2

)]
, (A2)

where γ = [(r0,i − r0,f )/τ ]1/3, and Ai(x) and Bi(x) denote the Airy functions, while for t > τ

f 0
k (t) = f 0

k (τ ) cos
(√

k2 + r0,f (t − τ )
)

+ ḟ 0
k (τ )√

k2 + r0,f

sin
(√

k2 + r0,f (t − τ )
)
, (A3)

where f 0
k (τ ) and ḟ 0

k (τ ) have to be read from Eq. (A2).
Using Eqs. (A2) and (A3), we can explicitly compute the two-body equal-time Green’s function 〈φk(t)φ−k(t)〉 = |f 0

k (t)|2,
which, for t > τ , is

〈φk(t)φ−k(t)〉 = 1

2

[∣∣f 0
k (τ )

∣∣2 +
∣∣ḟ 0

k (τ )
∣∣2

k2 + r0,f

+
(∣∣f 0

k (τ )
∣∣2 −

∣∣ḟ 0
k (τ )

∣∣2

k2 + r0,f

)
cos

(√
k2 + r0,f (t − τ )

)

+2 Re
(
f 0

k (τ )ḟ 0�
k (τ )

)

√
k2 + r0,f

sin
(√

k2 + r0,f (t − τ )
)]

. (A4)

When λ �= 0, we have to resort to numerical integration of Eqs. (8), which shows that for long times after the end of the ramp
the effective mass r(t) relaxes to a stationary value. To predict the stationary value r∗, we use the following ansatz: after the end
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of the ramp, we assume the stationary part of the two-body equal-time Green’s function to be equal to the noninteracting one,
but with the bare masses and the ramp duration replaced by the renormalized ones. Namely, we take Eq. (A4), disregard all the
oscillatory terms, and replace r0,i → ri , r0,f → r∗, and τ → τ̃ . Thus, we obtain the following self-consistent equation for r∗:

r∗ = r0,f + λ

12

∫ � ddk

(2π )d

[∣∣f 0
k (r∗,τ̃ )

∣∣2 +
∣∣ḟ 0

k (r∗,τ̃ )
∣∣2

k2 + r∗

]
, (A5)

where

f 0
k (r∗,τ̃ ) = π√

2(k2 + ri)1/4

[
Ai

(
−k2 + r∗

γ̃ 2

)
Bi′

(
−k2 + ri

γ̃ 2

)
− Ai′

(
−k2 + ri

γ̃ 2

)
Bi

(
−k2 + r∗

γ̃ 2

)]

+ iπ (k2 + ri)1/4

√
2γ̃

[
Ai

(
−k2 + r∗

γ̃ 2

)
Bi

(
−k2 + ri

γ̃ 2

)
− Ai

(
−k2 + ri

γ̃ 2

)
Bi

(
−k2 + r∗

γ̃ 2

)]
, (A6)

ḟ 0
k (r∗,τ̃ ) = πγ̃√

2(k2 + ri)1/4

[
Ai′

(
−k2 + r∗

γ̃ 2

)
Bi′

(
−k2 + ri

γ̃ 2

)
− Ai′

(
−k2 + ri

γ̃ 2

)
Bi′

(
−k2 + r∗

γ̃ 2

)]

+ iπ (k2 + ri)1/4

√
2

[
Ai′

(
−k2 + r∗

γ̃ 2

)
Bi

(
−k2 + ri

γ̃ 2

)
− Ai

(
−k2 + ri

γ̃ 2

)
Bi′

(
−k2 + r∗

γ̃ 2

)]
, (A7)

with γ̃ = ((ri − r∗)/τ̃ )1/3.

APPENDIX B: DYNAMICAL CRITICAL PROPERTIES

In this appendix, we provide the detailed computation of
the critical dimensions and critical exponent ν∗.

For studying the lower critical dimension, it is useful to
recall the expansions of the Airy functions both for small and
large arguments [62]. For small x, we have

Ai(−x) = 1

32/3�(2/3)
+ x

31/3�(1/3)
+ O(x3), (B1a)

Ai′(−x) = − 1

31/3�(1/3)
+ x2

2 · 32/3�(2/3)
+ O(x3), (B1b)

Bi(−x) = 1

31/6�(2/3)
− 31/6x

�(1/3)
+ O(x3), (B1c)

Bi′(−x) = 31/6

�(1/3)
+ x2

2 · 31/6�(2/3)
+ O(x3), (B1d)

while for large and positive x we have

Ai(−x) = 1√
πx1/4

sin

(
π

4
+ 2

3
x3/2

)
+ O(x−7/4), (B2a)

Ai′(−x) = −x1/4

√
π

cos

(
π

4
+ 2

3
x3/2

)
+ O(x−5/4), (B2b)

Bi(−x) = 1√
πx1/4

cos

(
π

4
+ 2

3
x3/2

)
+ O(x−7/4), (B2c)

Bi′(−x) = x1/4

√
π

sin

(
π

4
+ 2

3
x3/2

)
+ O(x−5/4). (B2d)

We can now analyze the behavior for low momenta of the
integrand of Eq. (A5) with r∗ = 0. For every finite τ , the most
relevant modes are those with k 
 (ri/τ̃ )1/3 and k 
 √

ri .
In this region and for r∗ = 0, we can replace all the Airy
functions with the argument −(k2 + r∗)/γ̃ 2 with their zero
value [see Eqs. (B1)], while the leading order of all the other
terms is obtained setting k = 0. Thus, we conclude that both
f 0

k (0,τ̃ ) and ḟ 0
k (0,τ̃ ) are constant in k. As a consequence, the

lower critical dimension for every finite τ is d = 2. Instead,
to understand what happens in the limit τ → ∞, we have to
take into account the region (ri/τ̃ )1/3 
 k 
 √

ri . Here, and
for r∗ = 0, we have to substitute the Airy functions with the
argument −(k2 + r∗)/γ̃ 2 with their asymptotic expansions of
Eqs. (B2), and set k = 0 in all the other terms. Thus, we see
that f 0

k (0,τ̃ ) ∼ 1/
√

k and ḟ 0
k (0,τ̃ ) ∼ √

k. So, when τ is strictly
infinite, the lower critical dimension is d = 1.

To determine the critical exponent ν∗, we analyze the
behavior of the asymptotic mass r∗ for small distances of r0,f

from the dynamical critical point. Denoting δr0,f (τ ) = r0,f −
rc

0,f (τ ), defining the dimensionless variable y = k/
√

r∗, and
combining Eqs. (9) and (10), we can write

r∗ = δr0,f (τ ) + λ

12
(r∗)

d−2
2

∫ �/
√

r∗
ddy

(2π )d

× y2g(y
√

r∗,r∗) − (y2 + 1)g(y
√

r∗,0)

y2(y2 + 1)
, (B3)

with

g(k,r∗) = ∣∣f 0
k (r∗,τ̃ )

∣∣2
(k2 + r∗) + ∣∣ḟ 0

k (r∗,τ̃ )
∣∣2

. (B4)

The asymptotic behavior of the integral in Eq. (B3) for small
r∗ is determined by the behavior of the integrand in the region
1 
 y 
 √

ri/r∗, where it scales as g(0,0)/y4. Thus, for 2 <

d < 4 the dominant contribution to the integral in powers of
r∗ is obtained by replacing the upper limit of integration with
infinity and the integrand with its leading order in r∗, namely

r∗ � δr0,f (τ ) − λ

12

�(d)

(2π )d
(r∗)

d−2
2

∫ ∞

0
dy yd−1 g(0,0)

y2(y2 + 1)

= δr0,f (τ ) + λ

12

�(d)

(2π )d
(r∗)

d−2
2

π g(0,0)

2 sin (dπ/2)
, (B5)

where �(d) is the solid angle. So, we conclude that at
the leading order r∗ ∼ [δr0,f (τ )]

2
d−2 . For d = 4 we have

logarithmic corrections to this scaling, while for d > 4 the
divergence of the integral can be deduced by considering
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the scaling of the integrand mentioned above. We have that the integral diverges as (r∗)−
d−4

2 , giving a linear relation
r∗ ∼ δr0,f (τ ) at the leading order. Therefore, we can recover the values of Eq. (21) for the critical exponent ν∗.

APPENDIX C: ASYMPTOTIC EXPANSIONS FOR LARGE τ

In this appendix, we provide additional details on the derivation of Eqs. (16) and (17). Let us start by considering the case of
d = 3. Computing the integrals (15), we obtain

I1(3) = �2

[
2π

31/3�2(−1/3)
2F3

(
1

6
,
1

2
;

1

3
,
2

3
,
3

2
; −4

9
y2

)
y1/3 − 1

5
√

3
2F3

(
1

2
,
5

6
;

2

3
,
4

3
,
11

6
; −4

9
y2

)
y

+ �(5/6)

21/3 · 31/6 · 7
√

π
2F3

(
5

6
,
7

6
;

4

3
,
5

3
,
13

6
; −4

9
y2

)
y5/3

]
, (C1a)

I2(3) = �2

[
−31/3�(−1/3)�(5/3)

4π
2F3

(
−1

6
,
1

6
; −1

3
,
1

3
,
7

6
; −4

9
y2

)
y−1/3 + 1

10
√

3
2F3

(
1

2
,
5

6
;

1

3
,
5

3
,
11

6
; −4

9
y2

)
y

+ �(1/6)

22/3 · 35/6 · 36
√

π
2F3

(
7

6
,
3

2
;

5

3
,
7

3
,
5

2
; −4

9
y2

)
y7/3

]
, (C1b)

where 2F3(a,b; c,d,e; x) denotes the hypergeometric function and y = �3τ̃ /ri . Taking the asymptotic expansions of the
hypergeometric functions for large y, namely

2F3

(
1

6
,
1

2
;

1

3
,
2

3
,
3

2
; −4

9
y2

)
= 35/6√π

21/3�(1/6)
y−1/3 −

√
3π �(−1/3)

24 �(1/6)
y−1 + O(y−5/3), (C2a)

2F3

(
1

2
,
5

6
;

2

3
,
4

3
,
11

6
; −4

9
y2

)
= 5

4
√

3
y−1 − 5 �(−1/3)

28/3 × 311/6
y−5/3 + O(y−7/3), (C2b)

2F3

(
5

6
,
7

6
;

4

3
,
5

3
,
13

6
; −4

9
y2

)
= 7

√
π

22/3 × 35/6�(5/6)
y−5/3 + 7

√
π �(−1/3)

27/3 × 313/6�(5/6)
y−7/3 + O(y−3), (C2c)

2F3

(
−1

6
,
1

6
; −1

3
,
1

3
,
7

6
; −4

9
y2

)
= �(4/3)

35/6�(5/3)
y1/3 + π

22/3 × 35/3�(5/3)
y−1/3 + O(y−1), (C2d)

2F3

(
1

2
,
5

6
;

1

3
,
5

3
,
11

6
; −4

9
y2

)
= − 5

2
√

3
y−1 − 5 �(−1/3)

25/3 × 35/6
y−5/3 + O(y−7/3), (C2e)

2F3

(
7

6
,
3

2
;

5

3
,
7

3
,
5

2
; −4

9
y2

)
= 22/3 × 35/6 × 6

√
π

�(1/6)
y−7/3 − 27

√
3π �(5/3)

4 �(1/6)
y−3 + O(y−11/3), (C2f)

we get

I1(3) = �2

4
+ �(−1/3)

211/3 × 34/3

(
ri

τ̃

)2/3

+ O

(
r

4/3
i

�4τ̃ 4/3

)
, (C3a)

I2(3) = �2

4
− �(−1/3)

211/3 × 31/3

(
ri

τ̃

)2/3

+ O

(
r

4/3
i

�4τ̃ 4/3

)
. (C3b)

Using these results, we can recover Eq. (16).
For d = 4, we have

I1(4) + I2(4) = �3

{
1

12
√

3
y−1 + π

12
{2y1/3[Ai′2(−y2/3) + Bi′2(−y2/3)] + 2y−1/3[Ai 2(−y2/3) + Bi 2(−y2/3)]

−y−1[Ai(−y2/3)Ai′(−y2/3) + Bi(−y2/3)Bi′(−y2/3)]}
}
, (C4)

where we introduced y = �3τ̃ /ri . Expanding the Airy functions for large and negative arguments, we finally obtain

I1(4) + I2(4) = −�3

3
+ 1

12
√

3

(
ri

τ̃

)
+ O

(
r2
i

�6τ̃ 2

)
, (C5)

from which Eq. (17) follows.
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APPENDIX D: MOMENT-GENERATING FUNCTION

In this appendix, we derive the moment-generating func-
tion, defined as

G(s,t) = 〈ψ(t)| e−sN̂ |ψ(t)〉, (D1)

where N̂ is the operator describing the number of excitations,
|ψ(t)〉 = U (t)|0〉 is the evolved state at time t , and |0〉 indicates
the initial ground state.

Since the effective theory is quadratic and different k-modes
are coupled only via r(t), the moment-generating function can
be factorized as

G(s,t) =
∏
k

Gk(s,t), (D2)

where Gk(s,t) is the moment-generating function for a single
k-mode.

To compute Gk(s,t), we have to write the evolved state
|ψ(t)〉 in terms of the operators ak and a

†
k diagonalizing the

initial Hamiltonian. Toward that end, we introduce a time-
dependent operator ãk(t) such that ãk(t)|ψ(t)〉 = 0. Since ak =
U †(t)ãk(t)U (t), using Eq. (7), we have that

φk(0) = fk (t)ãk(t) + f �
k (t)ã†

−k(t), (D3a)

�k(0) = ḟk (t)ãk(t) + ḟ �
k (t)ã†

−k(t). (D3b)

Furthermore, we know that at t = 0

φk(0) = 1√
2ωk(0)

(ak + a
†
−k), (D4a)

�k(0) = i

√
ωk(0)

2
(a†

−k − ak). (D4b)

Combining Eqs. (D3) and (D4), and using the fact that
fk (t)ḟ �

k (t) − f �
k (t)ḟk (t) = i, we get

ãk(t) = α�
k(t)ak − β�

k (t)a†
−k, (D5)

with

αk(t) =
√

ωk(0)

2
fk (t) + i√

2ωk(0)
ḟk (t), (D6a)

βk (t) =
√

ωk(0)

2
fk (t) − i√

2ωk(0)
ḟk (t). (D6b)

Since the evolved state must be annihilated by the operator
ãk(t) of Eq. (D5), we finally obtain

|ψ(t)〉k = 1√|αk(t)| exp

(
β�

k (t)

2α�
k(t)

a
†
ka

†
−k

)
|0〉, (D7)

with ak | 0〉 = 0.
Now we can readily compute the moment-generating

function for a single k-mode, that is,

Gk(s,t) = 1√
1 + ρk (t)(1 − e−2s)

, (D8)

where

ρk (t) = |βk (t)|2 = 1

2

(
ωk(0)|fk (t)|2 + |ḟk (t)|2

ωk(0)
− 1

)
. (D9)

Using the relation

ln G(s,t) = Ld

∫ � ddk

(2π )d
ln Gk(s,t), (D10)

we finally recover the result of Eq. (24).
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