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We study nonlinear magneto-optical responses of metals by a semiclassical Boltzmann equation approach.
We derive general formulas for linear and second-order nonlinear optical effects in the presence of magnetic
fields that include both the Berry curvature and the orbital magnetic moment. Applied to Weyl fermions, the
semiclassical approach (i) captures the directional anisotropy of linear conductivity under a magnetic field as a
consequence of an anisotropic B2 contribution, which may explain the low-field regime of recent experiments;
and (ii) predicts strong second harmonic generation proportional to B that is enhanced as the Fermi energy
approaches the Weyl point, leading to large nonlinear Kerr rotation. Moreover, we show that the semiclassical
formula for the circular photogalvanic effect arising from the Berry curvature dipole is reproduced by a full
quantum calculation using a Floquet approach.
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I. INTRODUCTION

The wave function of a single electron moving through a
crystal has several geometric properties whose importance in
insulators is well known. The most celebrated example is the
Berry phase derived from Bloch states. It gives a gauge field
in momentum space that underlies topological phases ranging
from the integer quantum Hall effect to topological insulators.
These phases are characterized by topological invariants that
can be expressed as integrals of Berry gauge fields; even
in ordinary insulators, similar integrals describe important
physical quantities such as electric polarization [1,2] as well
as the magnetoelectric response [3–6].

In metals, the Berry gauge field is known to give an
additional term (the “anomalous velocity”) in the semiclassical
equations of motion that describe the motion in real and
momentum space of a wave packet made from Bloch states.
The anomalous velocity was originally discussed in the context
of the anomalous Hall effect in magnetic metals such as iron.
The semiclassical equations can be derived systematically to
linear order in applied electric and magnetic fields, under
certain assumptions that we review more fully in Sec. II. In
several cases, such as the anomalous Hall effect [7] and the
gyrotropic or “transport limit” of the chiral magnetic effect
[8,9], the semiclassical approach (SCA) fully reproduces the
results obtained from quantum mechanical calculations based
on the Kubo formula.

The focus of this paper is the semiclassical theory of
nonlinear properties of metals that are currently active subjects
of experimental and theoretical investigation. One motivation
is that systematic quantum mechanical derivations that capture
all contributions to a given nonlinear order in applied fields
have not as yet been achieved. An example we consider is
the chiral anomaly, which in a solid is a particular type of
angle-dependent magnetoresistance (MR) with an enhanced
electrical conductivity along the direction of an applied
magnetic field. This effect has been argued to exist based on
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linearization near isolated Dirac or Weyl singularities, but the
lesson of the past few years of work on the chiral magnetic
effect is that it can be dangerous to treat the singularities solely
and without including all effects at a given order. We derive a
semiclassical formula for magnetotransport in the weak-field
regime of this problem and discuss that including all terms
gives an answer distinct from that in other recent work, which
may explain experimental observations on a Dirac semimetal
in this regime [10,11].

The semiclassical equations of motion for an electron wave
packet in a metal are [12]

ṙ = 1

�
∇kεk − k̇ × �, (1a)

�k̇ = −eE − e ṙ × B. (1b)

One new contribution compared to the version in older
textbooks [13] is from the Berry curvature in momentum space,

� = −Im[〈∇kuk| × |∇kuk〉], (2)

and another is from the orbital magnetic moment contribution
to the energy dispersion, εk = ε0

k − mk · B, where Hk|uk〉 =
ε0

k|uk〉 with B = 0 and the orbital magnetic moment is

mk = − e

2�
Im

[〈∇kuk| × (
Hk − ε0

k

)|∇kuk〉
]
. (3)

(We note that we adopt the convention e > 0.)
These equations conserve the properly defined volume

in phase space and give an intuitive approach to many
observable properties of metals. However, the SCA can
make erroneous predictions if used outside the regime of
its validity. To illustrate this point we present, in Sec. II,
the predictions of semiclassical and fully quantum theories
of a fundamental nonlinear response in metals with a low
symmetry: the photogalvanic effect (PGE) [14–16]. The term
“photogalvanic” refers to the generation of a dc current by
a time-varying electric field, with the amplitude proportional
to the square of the applied field. The PGE is distinguished
from a conventional photovoltaic response by the dependence
of the dc current on the polarization state of the electric field.
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For example, in the the circular PGE (CPGE) the direction
of the dc current reverses when the polarization state of the
time-varying field is changed from left to right circular. Using
the SCA the CPGE has been shown to have a Berry-phase
contribution [17] in two-dimensional and, more recently, in
three-dimensional [18] systems such as Weyl semimetals.

In Sec. II we show that the previous semiclassical predic-
tions for the CPGE can be derived in a fully quantum theory
by using the Floquet approach [19]. We first derive the Berry
curvature formula for CPGE in the case of two bands and then
generalize the derivation to the cases with many bands. This
indicates that the CPGE provides a good example where the
nonlinear effects that follow from semiclassical equations are
exactly what is obtained from a full quantum derivation, which
was previously only known in the linear case. We also show
that in this same limit in which interband terms are neglected,
there is a close quantitative relation between the CPGE and
second-harmonic generation (SHG).

In Sec. III we derive semiclassical formulas for a variety
of nonlinear effects. In particular, we systematically study
nonlinear magneto-optical effects by incorporating the orbital
magnetic moment, which has not been discussed previously.
We show that magnetic fields modify the nonlinear Hall effect
via the orbital moment of Bloch electrons. In Sec. IV, we apply
our semiclassical formula to magnetotransport of Weyl/Dirac
semimetals and study the angle-dependent MR. We find that
there exist contributions of opposite sign from the orbital
magnetic moment and Berry curvature in addition to the
contribution of the chiral anomaly. The angular dependence
that we obtain by taking into account all the contributions
at the same order in the SCA is compared with recent
magnetotransport experiments [10,11]. Section V applies the
semiclassical formulas to nonlinear Kerr rotation (polarization
rotation of SHG signals with applied magnetic fields) of
Weyl semimetals. Since isotropic Weyl fermions with linear
dispersion support no intraband contribution to SHG in the
absence of magnetic fields, intraband contributions to SHG in
such Weyl semimetals are linear in B, which leads to nonlinear
Kerr rotation in general. We show that Weyl semimetals can
exhibit giant nonlinear Kerr rotation in the infrared regime
as the Fermi energy approaches the Weyl points. Section VI
summarizes some remaining issues and open problems.

II. NONLINEAR OPTICAL EFFECTS AND
FLOQUET APPROACH

In this section, we first review formulas for the nonlinear
Kerr rotation and CPGE. Previous works based on SCA
showed that those nonlinear optical effects are described by
a geometrical quantity, i.e., the Berry curvature dipole [18].
We give an alternative derivation for those formulas based on
fully quantum theoretical treatment by applying the Floquet
formalism for a two-band system.

A. Geometrical meaning of nonlinear optics in
the semiclassical approach

In previous semiclassical works [17,18], it has been shown
that the intraband contributions to SHG and CPGE have
a geometrical nature that is described by Berry curvatures

of Bloch wave functions. The SHG is the second-order
nonlinear optical effect, which is described by nonlinear
current responses j (2ω)e−2iωt as

j (2ω)
a = σabcEbEc, (4)

where the external electric field is given by

E(t) = Ee−iωt + E∗eiωt . (5)

The nonlinear Hall effect in Ref. [18] refers to a transverse
current response that is described by σabb with a �= b. Sim-
ilarly, the CPGE is the second-order nonlinear optical effect
in which the dc photocurrent of j (0) is induced by circularly
polarized light as

j (0)
a = σabcEbE

∗
c . (6)

In a time reversal (TR)-symmetric material, these nonlinear
response tensors σ are given by

σabc = εadc

e3τ

�(1 − iωτ )

∫
[dk]f0(∂b�d ), (7)

where the frequency ω is much smaller than the resonant
frequency for optical transitions (i.e., the intraband contri-
bution). Here, εabc is the totally antisymmetric tensor, f0 is
the Fermi distribution function, and we have used the notation
[dk] = dk/(2π )d with the dimension d.

We focus here on the case of a three-dimensional material
[18] but have adopted notations for E(t) and j slightly different
from those in Ref. [18], which results in a modified expression
for σ above. While these nonlinear effects are Fermi surface
effects because one obtains σabc ∝ εadc

∫
[dk](∂bf0)�d by

integrating by parts, they can also be understood as currents
carried by electrons in the Fermi sea with an anomalous
velocity originating from the Berry curvature dipole.

The way in which the anomalous velocity (k̇ × �) of
electron wave packets driven by an external electric field leads
to the CPGE and SHG is schematically illustrated in Fig. 1.
Circular polarized light induces circular motion of the wave
packet in momentum space [Fig. 1(a)]. In the presence of the
Berry curvature dipole, the anomalous velocities in regions
with � > 0 and � < 0 add up, which results in a dc current.
Similarly, linearly polarized light induces an oscillation of the
wave packet as shown in Fig. 1(b). The driven wave packet
exhibits anomalous velocities in the y direction that oscillate
twice in the driving period, which results in SHG.

B. Fully quantum mechanical derivation by the
Floquet formalism

Systematic derivations for nonlinear optical effects includ-
ing the CPGE and SHG are presented in Sec. III using the SCA
for general cases with a finite B. Before proceeding to a general
discussion of B, we study these nonlinear optical effects from
a fully quantum mechanical treatment using a two-band model.
The focus of interest is whether the fully quantum mechanical
expression coincides with the semiclassical formula. While the
SCA partially includes high-energy bands through �, it does
not necessarily capture all effects of the high-energy bands.
Thus it is an interesting question whether the geometrical
formulas for the CPGE and SHG hold even in the fully
quantum mechanical treatment. In the following, we study the
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FIG. 1. Semiclassical picture of CPGE and SHG induced by
a Berry curvature dipole. The distribution of Berry curvature in
momentum space is indicated by the color scale, with the red region
corresponding to �z > 0 and the blue region to �z < 0. (a) CPGE
arises from circular motion of the electron wave packet in momentum
space driven by circularly polarized light. The dipole structure in
�(k) induces an anomalous velocity (k̇ × �) in the x direction
denoted by green arrows. (b) SHG arises from oscillation of the
electron wave packet driven by linearly polarized light in the x

direction. The Berry curvature dipole leads to an anomalous velocity
that undergoes two oscillations in the y direction in one driving
period. The configuration of Berry curvature shown preserves C2v

point-group symmetry (which is present for typical polar crystals
that support CPGE and SHG), where the y axis corresponds to the
polar axis and the yz plane to the mirror plane.

intraband contribution to the CPGE and SHG by applying the
Floquet formalism and show that the Berry curvature formula
is indeed exact in the fully quantum mechanical treatment.

First, we study a two-band system periodically driven by
an external electric field using the Floquet formalism (for
details of the Floquet formalism, see Refs. [19–21]. When
the original Hamiltonian of the two-band system is given by a
Bloch Hamiltonian, Horig(k), the time-dependent Hamiltonian
of the system driven by E(t) = Ee−iωt + E∗eiωt is given by

H (t,k) = Horig(k + eA(t)), (8)

A(t) = i
E

ω
e−iωt − i

E∗

ω
eiωt , (9)

which is periodic in time with t → t + 2π/ω. For such
periodically driven systems, the Floquet formalism gives a
concise description in terms of the band picture as follows.
The Floquet formalism is, roughly speaking, a time-direction
analog of Bloch’s theorem for the time-dependent Hamiltonian
H (t) that satisfies H (t + T ) = H (t) with period T . Namely,
in a similar manner to Bloch’s theorem, the solution for the
time-periodic Schrödinger equation,

i�
∂ψ(t)

∂t
= H (t)ψ(t), (10)

is given by a time-periodic form,

ψ(t) = e−iεt/�φ(t), φ(t + T ) = φ(t), (11)

with the quasienergy ε. Using the time-periodic part of the
wave function φ(t), the time-dependent Schrödinger equation
is rewritten as

(i�∂t + ε)φ(t) = H (t)φ(t). (12)

Since φ(t) is periodic in time, we can perform Fourier
transformation of both sides with

φ(t) =
∑
m

e−imωtφm (13)

and obtain

(m�ω + ε)φm = H̃mnφn, (14)

H̃mn = 1

T

∫ T

0
dtei(m−n)ωtH (t). (15)

Here H̃mn is time independent but has an additional matrix
structure spanned by Floquet indices m and n. Thus the time-
dependent Schrödinger equation effectively reduces to a time-
independent one in the Floquet formalism as

HF φ = εφ, (16)

where the Floquet Hamiltonian is given by

(HF )mn = 1

T

∫ T

0
dtei(m−n)ωtH (t) − n�ωδmn. (17)

Floquet bands obtained by diagonalizing the Floquet Hamil-
tonian HF offer a concise understanding of the dynamics of
a driven system in terms of an effective band picture. We
note that the energy spectrum of ε shows a periodic structure
with �ω as a consequence of the translation symmetry with
respect to the Floquet index n. Thus the quasienergy spectrum
is essentially described within the range −�ω/2 � ε < �ω/2,
which is an analog of “the first Brillouin zone” (BZ) in Bloch’s
theorem.

Since we consider the case of a driving frequency much
lower than the band gap, we can obtain the current expectation
value by studying the Floquet band that is connected to the
valence band in the undriven system. In order to do so, we use
standard second-order perturbation theory for

HF = H0 + H1 + H2, (18)

where Hi represents a term in the Floquet Hamiltonian
proportional to Ai . The wave function up to the second order
in A reads

|ψn〉 = |n〉 −
∑
m�=n

(H1)mn

Em − En

|m〉

×
∑
m�=n

[
− (H2)mn

Em − En

− (H1)mn(H1)nn

(Em − En)2

+
∑
k �=n

(H1)mk(H1)kn

(Em − En)(Ek − En)

]
|m〉, (19)

where H0|n〉 = En|n〉. By applying the above formula to the
Floquet Hamiltonian HF , we obtain Floquet states |ψ〉 that
describe the steady state under the drive of incident light.
The current responses in the steady state are obtained from
perturbed Floquet states that are connected to the original
valence bands. This treatment can be justified when the
frequency of incident light is much lower than the energy
difference between valence and conduction bands. (When ω

satisfies the conditions for optical resonances, Floquet bands
originating from valence and conduction bands anticross each
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other. In this case, we cannot naively determine the occupation
of resulting Floquet bands, which requires considering the
coupling to a heat bath [19].)

Using the Floquet state |ψ〉 connected to the valence band,
the time-dependent current in the steady state is given by

Jα(t) =
∑
m,n

{tr[|ψ〉〈ψ |v̂α]}mne
−i(m−n)ωt , (20)

where tr denotes the trace over the band index, m and n are
Floquet indices, and v̂α is the current operator along the α

direction, given by

(v̂α)mn = 1

T

∫ T

0
dtei(m−n)ωt ∂H (t)

∂kα

. (21)

In the following, we derive representative components of the
nonlinear response tensor describing the CPGE and SHG using
the above method.

To study the CPGE we consider a system subjected to the
left circularly polarized light in the xy plane, where the electric
field is given by

E(t) = E(ex + iey)e−iωt + E∗(ex − iey)eiωt . (22)

In this case, the Floquet Hamiltonian is written as

HF = H0 + H1, (23)

(H0)mn =
(

εv − nω 0

0 εc − nω

)
δmn, (24)

(H1)mn = −iA∗(vx − ivy)δmn−1 + iA(vx + ivy)δmn+1,

(25)

where εv/c is the energy of the valence/conduction band, vi =
∂H0/∂ki is the velocity operator for the static Hamiltonian,
A = E/ω, and we set e = 1,� = 1 for simplicity. Here we
have dropped the term H2 proportional to A2 because it does
not contribute to the dc photocurrent, which is proportional
to AA∗ and does not involve A2 terms in the end. Since we
are interested in the second-order nonlinear current responses,
it is sufficient to consider the Floquet Hamiltonian with
n = −2, . . . ,2 by starting with the unperturbed wave function
|ψini〉 = |uv,n=0〉. Now we study the dc current in the x

direction induced by circularly polarized light for the steady
state described by the Floquet state in Eq. (19). The velocity
operator in the x direction is written up to linear order in A as

v̂x = vxδmn − iA∗∂kx
(vx − ivy)δmn−1

+ iA∂kx
(vx + ivy)δmn+1. (26)

Using Eq. (20), we obtain the CPGE photocurrent Jx =∫
[dk]j (0)

x as

j (0)
x =

∑
n

{tr[|ψ〉〈ψ |v̂x]}nn

= 4
|E|2
ω

{
Im[(∂kx

vx)vc(vy)cv + (vx)vc(∂kx
vy)cv]

(εv − εc)2

−3
Im[(vx)vc(vy)cv][(vx)vv − (vx)cc]

(εv − εc)3

}
, (27)

where we have dropped higher order terms with respect to ω

by focusing on the current response in the low-frequency limit.

We note that the contributions proportional to |E|2/ω2 vanish
due to the time reversal symmetry (TRS; e.g., the TRS T = K
constrains Re[v] and Im[v] to be odd and even functions of
k, respectively), which is used when going from the first line
to the second line. In the case of two-band models, the Berry
curvature is written as

�z = −2Im[(vx)vc(vy)cv]

(εv − εc)2
, (28)

and the matrix elements of ∂ki
vj can be rewritten as(

∂ki
vj

)
vc

= ∂ki
[(vj )vc] + (vj )vc[i(ai)v − i(ai)c]

+ (vi)vc

(vj )vv − (vj )cc
εv − εc

, (29)

with (ai)v/c = 〈uv/c|∂ki
|uv/c〉. Using these formulas, the CPGE

photocurrent can be further reduced as

j (0)
x = 4

|E|2
ω

∂

∂kx

[
Im[(vx)vc(vy)cv]

(εv − εc)2

]
= −2

|E|2
ω

∂kx
�z. (30)

The nonlinear conductivity tensor is obtained by equating the
above expression and jx in terms of σ and E(t) [in Eq. (22)],
given by

jx = −iσxxy |E|2 + iσxyx |E|2 = −2iσxxy |E|2. (31)

Here we have used the antisymmetry of the imaginary part of
σ with respect to the last two indices. This leads to

σxxy = 1

iω

∫
[dk]∂kx

�z (32)

and reproduces the semiclassical formula for σxxy in Eq. (7).
We note that the factor τ/(1 − iωτ ) in the semiclassical
formula [Eq. (7)] is replaced by the factor i/ω in the above
formula because the τ → ∞ limit (clean limit) is effectively
taken in the Floquet perturbation theory.

Next we study SHG by using Floquet perturbation theory
and the two-band model in a similar manner to the CPGE. We
consider a system driven by linearly polarized light in the x

direction as Ex(t) = Ee−iωt + E∗eiωt and the SHG in the y

direction. The corresponding Floquet Hamiltonian is given by

HF = H0 + H1 + H2, (33)

(H0)mn =
(

εv − nω 0

0 εc − nω

)
δmn, (34)

(H1)mn = (−iA∗δmn−1 + iAδmn+1)vx, (35)

(H2)mn =
(

− (A∗)2

2
δmn−2 + |A|2δmn − A2

2
δmn+2

)
∂kx

vx.

(36)

We take |ψini〉 = |uv,n=0〉 as the unperturbed wave function
and keep the part of the Floquet Hamiltonian within the range
n = −2, . . . ,2. The velocity operator along the y direction is
given by

v̂y = vyδmn + (−iA∗δmn−1 + iAδmn+1)∂kx
vy

+
(

− (A∗)2

2
δmn−2 + |A|2δmn − A2

2
δmn+2

)
∂2
kx

vy. (37)
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By using Eq. (20), we obtain the Fourier component of the
current Jy = ∫

[dk]jy proportional to e−2iωt as

j (2ω)
y =

∑
n

{tr[|ψ〉〈ψ |v̂y]}n+2,n

= −2i
E2

iω

∂

∂kx

[
Im[(vx)vc(vy)cv]

(εv − εc)2

]
= i

E2

ω
∂kx

�z. (38)

Here we have again used the fact that the contributions
proportional to E2/ω2 vanish due to the TRS and, also,
dropped contributions with higher powers of ω. The above
expression indicates that the nonlinear conductivity tensor σyxx

is written as

σyxx = i

ω

∫
[dk]∂kx

�z. (39)

This again reproduces the semiclassical formula for σyxx in
Eq. (7).

We can extend the above analysis based on the Floquet
formalism to general cases with many bands and obtain the
same Berry curvature dipole formula. We sketch the derivation
in the following (for details, see the Appendix). We consider
the general Floquet Hamiltonian under light irradiation, which
is given by

HF = H0 + H1 + H2, (40)

with

H1 =
∑

i

Aivi, H2 = 1

2

∑
i,j

AiAj∂ki
vj , (41)

where H0 represents a static Hamiltonian with many bands.
Using the Floquet perturbation theory in Eq. (19) and the
expression for the current in Eq. (20), we obtain the general
expression for the nonlinear current response as

Jr = −
∑
i,j

AiAj

∫
[dk]

[∑
n,g

[f (εn) − f (εg)]

(
1

2

(vr )ng

(
∂ki

vj

)
gn

εn − (εg + 2ω)
+ (∂rvj )ng(vi)gn

εn − (εg + ω)

)

+
∑
n,g,m

(
f (εn)

εn − εm − ω
− f (εg)

εg − εm + ω

)
(vr )ng(vi)gm(vj )mn

εn − (εg + 2ω)

+
∑
n,g,m

f (εn)
(vj )nm(vr )mg(vi)gn

(εn − (εg + ω))(εn − (εm − ω))
+

∑
n

1

2
f (εn)(∂kr

∂ki
vj )nn

]
, (42)

with Fermi distribution function f (ε) [where f (εn) = 1(0) for
occupied (unoccupied) states]. When we expand the current
Jr with respect to ω, the lowest order contribution in ω is
proportional to ωA2 in the presence of TRS. In the case of
many bands, the Berry curvature dipole for the nth band is
written as

∂ki
�z,n = −2Im

[ 〈n|∂kx
H |m〉〈m|∂ky

H |n〉
(εn − εm)2

]
, (43)

where n runs over occupied bands and m runs over unoccupied
bands. Using this expression for the Berry curvature dipole, it
turns out that the lowest order contribution of Jy proportional
to ωA2 is written as

Jy = −iwA2
x

∫
[dk]f (εn)∂kx

�z,n, (44)

which reproduces the Berry curvature dipole formula, Eq. (7),
for SHG in the case of many bands. Details of the above
calculation for many band cases are described in the Appendix.

To summarize, we derived formulas for the CPGE and SHG
in the sufficiently low-frequency region in a fully quantum
mechanical way by using the Floquet perturbation theory. This
reproduces the semiclassical formula with the Berry curvature
dipole.

III. SEMICLASSICAL FORMULAS FOR NONLINEAR
OPTICAL EFFECTS

We study nonlinear optical effects in the presence of mag-
netic fields using the SCA. Deriving semiclassical formulas for

nonlinear magneto-optical effects is motivated in the following
senses. First, it is theoretically interesting to see how the
orbital magnetic moment m, which is the angular momentum
of the wave packet and also of geometrical origin, governs
nonlinear optical effects and modifies previous semiclassical
results for B = 0 in Refs. [17] and [18]. Second, the obtained
semiclassical formula for nonlinear magnetoconductivity that
includes all terms proportional to B2E is applicable to Weyl
semimetals and may explain the directional anisotropy of the
magnetoconductivity of Weyl semimetals recently reported
in Refs. [10] and [11], which we discuss in Sec. IV. Third,
TR-symmetric Weyl semimetals can support large nonlinear
Kerr rotation. The intraband contribution to SHG vanishes for
B = 0 in TR-symmetric Weyl semimetals, and the SHG signal
has a contribution linear in B. Thus application of B may lead
to giant nonlinear Kerr rotation.

We derive semiclassical formulas for nonlinear magneto-
optical effects up to the second order in E. It is convenient to
rewrite the equations of motion, (1), to collect time derivatives
on the left:

ṙ = 1

�D

[
∇kεk + eE × �k + e

�
(∇kεk · �k)B

]
, (45)

�k̇ = 1

D

[
− eE − e

�
∇kεk × B − e2

�
(E · B)�k

]
, (46)

D = 1 + e

�
B · �k. (47)
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The charge density ρ and current density j are given by

ρ = −e

∫
[dk]Df, (48)

j = −e

∫
[dk](D ṙ + ∇r × mk)f, (49)

with [dk] = dk/(2π )3, where the second term of j is a
contribution of the magnetization current. We note that the
factor D arises from a field-induced change in the volume
of the phase space [22]. In the following, we focus on the
uniform system. In this case, the expression of the current
density reduces to

j = −e

∫
[dk]

[
ṽk + e

�
E × �k + e

�
(ṽk · �k)B

]
f, (50)

where we have used

ṽ p = vk − (1/�)∇k(m · B), (51)

with vk = (1/�)∇kε
0
k .

Now we focus on nonlinear responses driven by monochro-
matic light with the electric field E(t) = Ee−iωt . We consider
current responses at orders E and E2 as follows. We write the
distribution function in Fourier components as

f = f0 + f1e
−iωt + f2e

−2iωt , (52)

where f0 is the unperturbed distribution function and other
terms appear in the presence of the electric field of the incident
light. The steady-state distribution function is determined by
the Boltzmann equation

df

dt
= f0 − f

τ
, (53)

where

df

dt
= k̇ · ∇kf + ∂tf. (54)

This gives a recursive equation for the Fourier components
fi . By combining the Fourier components fi and Eq. (50),
we obtain nonlinear current responses in powers of E. In
the following, we apply the above SCA to the linear current
responses and the second-order nonlinear optical effects in the
presence of magnetic fields.

A. Linear current responses

We first study the linear current responses with B. We derive
the semiclassical formula for the conductivity up to the second
order of B in terms of the Berry curvature and orbital magnetic
moment.

The current response of the frequency ω is obtained from f1

in Eq. (52). By equating terms proportional to e−iωt in Eq. (54),
we obtain[

− eE − e2

�
(E · B)�k

]
· ∇ pf0 − iωf1 = −f1

τ
, (55)

with ∇ p = (1/�)∇k, where we have dropped the term in-
volving (∇kεk) × B because it is perpendicular to ∇ pf0 =
(1/�)(∇kεk)∂εf0. This leads to

f1 = −τ

1 − iωτ

1

D

[
− eE − e2

�
(E · B)�k

]
· ∇ pf0. (56)

Now the current response linear in E is given by

j1 = eτ

1 − iωτ

∫
BZ

[dk]
1

D

{[
ṽk + e

�
(ṽk · �k)B

]
×

[
− eE − e2

�
(E · B)�k

]
· ∇ pf0 + e

�
E × �kf0

}
,

(57)

where f0 = θ (EF − εk − mk · B) with the step function
θ (x) = 0(x < 0),1(x � 0). This expression is reduced if we
focus on the case where the electric field E is applied along
the ith direction and the system preserves the TRS in the
absence of magnetic fields. Specifically, we consider terms up
to ∝B that are nonvanishing with the TRS by expanding as
1/D 
 1 + (e/�)B · �k, which leads to

j1 = eτ

1 − iωτ

∫
BZ

[dk]

{
− vkeE(vk)i∂εf

′
0

+ e

�
(E × �k)(m · B)∂εf

′
0

}
, (58)

with f ′
0 = θ (EF − εk), i.e., a distribution function when

B = 0. Here we have used the fact that ∂pi
, v p, �, and

m are odd under the TRS. The first term in the integral is
the metallic conductivity, while the second term describes
regular Hall conductivity linear in B (in contrast to anomalous
Hall conductivity, which is nonzero in the absence of B).
This second term indicates that the orbital magnetic moment
gives a semiclassical description related to Landau level
formation in the quantum limit. We note that there is no
B-linear contribution to the longitudinal conductivity σii

because the Onsager relation constrains the conductivity as
σij (B) = σji(−B) and the longitudinal conductivity should
be an even function of B.

Next, we derive the formula for the longitudinal magneto-
conductance. Its lowest order dependence on B is quadratic due
to the Onsager relation. The B2 contribution to the longitudinal
current response is explicitly written as

jB2 = e2τ

�

∫
BZ

[dk]

{
− e

�
E · ∇kf0(ε0)[−e(vk · �k)(B · �k)B − e�k · ∇k(m · B)B + e(B · �k)2vk + (B · �k)∇k(m · B)]

+
[

1

�
E · ∇k

(
∂f0(ε0)

∂ε
m · B

)
− e

�
(E · B)(�k · ∇kf0(ε0))

]
[e(vk · �k)B − e(B · �k)vk − ∂k(m · B)]

+ e

�
(E · B)

[
�k · ∂k

(
∂f0(ε0)

∂ε
m · B

)]
vk − 1

2
E · ∂k

[
∂2f0(ε0)

∂ε2
(m · B)2

]
vk

}
. (59)
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In addition to terms that contribute isotropically to the current density, there are several terms that contribute to the current density
specifically along B, which results in an anisotropic magnetoconductance if it is applied to Weyl semimetals as we discuss in
Sec. IV.

B. Second-order nonlinear optical effects

We move on to the second-order nonlinear optical effects, which include SHG and the photogalvanic effect. We derive the
general formulas which are applied to Weyl/Dirac semimetals in Sec. V.

We consider the SHG that is described by the current response of frequency 2ω. By equating terms proportional to e−2iωt in
the Boltzmann equation, (54), we obtain

1

D

[
− eE − e2

�
(E · B)�k

]
· ∇ pf1 − 2iωf2 = −f2

τ
, (60)

which leads to

f2 = τ 2

(1 − iωτ )(1 − 2iωτ )

1

D2

{[
− eE − e2

�
(E · B)�k

]
· ∇ p

}2

f0. (61)

The second-order current response of the frequency 2ω is given by

j2 = −e

∫
BZ

[dk]

{[
ṽk + e

�
(ṽk · �k)B

]
f2 + e

�
(E0 × �)f1

}

= −e

∫
BZ

[dk]

{[
ṽk + e

�
(ṽk · �k)B

]
τ 2

(1 − iωτ )(1 − 2iωτ )

1

D2

{[
− eE − e2

�
(E · B)�k

]
· ∇ p

}2

f0

+ e

�
E × �k

τ

1 − iωτ

1

D

[
− eE − e2

�
(E · B)�k

]
· ∇ pf0

}
. (62)

Now we focus on the case of linearly polarized light where the electric field is given by E(t) = Ee−iωt ei (ei being the unit
vector along the ith direction) and see how the above general formula can be simplified in several cases by assuming the TRS in
the following. First, when B = 0, Eq. (62) reduces to

j2(B = 0) = −eτ

1 − iωτ

∫
BZ

[dk]
e2

�
E2

i

(
ei × ∂pi

�k
)
f0. (63)

This recovers the previously obtained semiclassical formula, Eq. (7), for SHG. The above expression clarifies that the transverse
component of the SHG is described by the Berry curvature dipole ∂pi

�k. This Berry curvature dipole contribution can be nonzero
only when the inversion symmetry is broken since inversion symmetry constrains �k = �−k and causes cancellation of the
Berry curvature dipole between k and −k [17,18]. Second, we consider the case where the magnetic field B is nonzero. The
application of B leads to rotation of the polarization plane of the SHG, which is known as nonlinear Kerr rotation and is an
important nonlinear optical effect. We study the nonlinear Kerr rotation by keeping contributions up to linear in B. We start with
the case where E and B are perpendicular to each other (E · B = 0). The modification � j2 in the first order of B reads

� j2 = −eτ 2

(1 − iωτ )(1 − 2iωτ )

∫
BZ

[dk]e2E2
i

{[
−2vk

(
e

�
B · �k

)
− 1

�
∇k(m · B) + e

�
(vk · �k)B

]
∂2
pi

f ′
0 − (

∂2
pi

vk
)
(m · B)∂εf

′
0

}
.

(64)

Here we have used f0 = f ′
0 + (m · B)∂εf

′
0. The nonlinear Kerr rotation arises from the component of � j2 perpendicular to

j2(B = 0) and encodes the information on the Berry curvature � and the orbital magnetic moment m. We note that the term
∝ (vk · �k)B vanishes in the case of two-dimensional systems (where v p ⊥ � p). Finally, we consider the case with E · B �= 0.
The further modification �̃ j2 (in addition to � j2) up to the B linear term is given by

�̃ j2 = eτ 2

(1 − iωτ )(1 − 2iωτ )

1

D2

∫
BZ

[dk]
e3

�
E2

i Bivk
[ − 2�k · ∇ p∂pi

− (
∂pi

�k
) · ∇ p

]
f ′

0. (65)

Next we derive a semiclassical formula for the photogalvanic effect in the presence of B. The PGE causes static dc current in
the second order of E. The dc component of the distribution function is also modified at the second order of E as f0 → f0 + δf0.
The associated Boltzmann equation is written as

δf0

τ
=

[
−eE∗ − e2

�
(E∗ · B)�k

]
· ∇ pf1, (66)
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which is solved as

δf0 = τ 2

1 − iωτ

[
− eE∗ − e2

�
(E∗ · B)�k

][
− eE − e2

�
(E · B)�k

]
f0. (67)

This leads to the dc photovoltaic current δ j0 given by

δ j0 = −e

∫
BZ

[dk]

{[
vk − 1

�
∇k(m · B) + e

�
(vk · �k)B

]
δf0 + e

�
(E0

∗ × �)f1

}

= −e

∫
BZ

[dk]

{[
vk − 1

�
∇k(m · B) + e

�
(vk · �k)B

]
τ 2

1 − iωτ

1

D2

{[
− eE − e2

�
(E · B)�k

]
· ∇ p

}2

f0

+ e

�
E × �k

τ

1 − iωτ

1

D
[−eE − e2(E · B)�k] · ∇ pf0

}
, (68)

where we write E∗ = E in the second line, for simplicity. This
expression is analogous to j2 (i.e., SHG) and indicates that the
Berry curvature and the orbital magnetic moment of the Bloch
bands also govern the Hall angle of dc photocurrent in the
presence of an external magnetic field B.

IV. ANGLE-DEPENDENT MAGNETORESISTANCE

In this section, we study MR by using the SCA developed
in the previous section. In particular, we focus on the current
response J ∝ EB2 and study how the Berry curvature and
the orbital magnetic moment contribute to MR in Weyl
semimetals, since the interplay of these two quantities in the
transport properties of Weyl semimetals has not been fully
investigated except in a few studies [8,9,23,24]. The obtained
angle dependence of magnetoresistance is compared with
recent magnetotransport experiments for Dirac semimetals
[10,11].

We consider the Hamiltonian for Weyl semimetals given by

H = ηvF σ · p, (69)

where vF is the Fermi velocity and η = ±1 specifies the
chirality. In this case, the velocity operator, the Berry curvature,
and the orbital magnetic moment are written as

vk = vF k̂, (70)

� = −η
1

2k2
k̂, (71)

m = −η
evF

2k
k̂ (72)

for the conduction band, where k̂ denotes the unit vector
along k.

Now we apply the semiclassical formula, Eq. (59), for
the linear current response j1 proportional to B2 to Weyl
semimetals and study the angle-dependent MR. First, we
suppose that the electric field is applied in the z direction
as E = Eez , where ez denotes the unit vector along the z

direction. In this case, the current along the z direction (j1)z is
given by

(j1)z = 1

6π2�
τe2vF k2

F E + 1

30π2�3k2
F

τe4vF B2E (73a)

when E ‖ B and

(j1)z = 1

6π2�
τe2vF k2

F E − 1

60π2�3k2
F

τe4vF B2E (73b)

when E ⊥ B (e.g., B ‖ x̂), where we have assumed τω �
1. Here, the first term is the isotropic dc conductivity and
the second term is an anisotropic correction which originates
from the E · B term related to the chiral anomaly in Weyl
semimetals. The second term accounts for the negative MR
when E ‖ B and the positive MR when E ⊥ B. Thus the
semiclassical theory for the linear conductivity including the
effects of both � and m captures the directional anisotropy of
linear conductivity in the B field, which is usually considered
to be evidence of a Weyl fermion in transport measurements.

Next we discuss the full angle dependence of the current
response in the magnetic field. When the electric field is
applied in the direction tilted by θ from the direction of the
magnetic field B, the longitudinal magnetoconductivity σ (B)
is given by

σ (B) − σ (B = 0)

σ (B = 0)
= −1 + 3 cos2 θ

10

e2B2

�2k4
F

. (74)

Equation (74) does not depend on the chirality of the Weyl
node or on the band in which the chemical potential is located.
It shows that the MR is positive when E ⊥ B and decreases
to negative as θ → 0. If we separately look at contributions
to the MR from the Berry curvature and the orbital magnetic
moment, we find that either the Berry curvature or the orbital
magnetic moment alone gives a negative MR [Figs. 2(a)
and 2(b)], while the interplay between the Berry curvature and
the orbital magnetic moment gives a positive MR [Fig. 2(c)].
As a whole, Eq. (74) gives the angular dependences as shown
in Fig. 2(d). We note that the anisotropic magnetoconductance
in the semiclassical formula Eq. (74) is not solely described
by the contribution from the chiral anomaly. Specifically, the
contribution from the chiral anomaly discussed in Ref. [25] is
found in the term

−e4τ

�

∫
BZ

[dk](�k · ∇ pf0(ε0))(vk · �k)(E · B)B (75)

in Eq. (59) and gives a negative MR in Weyl semimetals. In
contrast, there are several terms involving the orbital magnetic
moment which lead to contributions of opposite signs.
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xx(B)- xx(B=0)]/ xx(B=0) 

(a) Berry curvature (b) Orbital magnetic moment m

(c) Interplay of  and m

(B2e2/h̄2k4
F )

(d) Total magneto-resistance

xx(B)- xx(B=0)]/ xx(B=0) (B2e2/h̄2k4
F )

xx(B)- xx(B=0)]/ xx(B=0) (B2e2/h̄2k4
F ) xx(B)- xx(B=0)]/ xx(B=0) (B2e2/h̄2k4

F )

FIG. 2. Angle dependence of longitudinal magnetoresistance (LMR) for Weyl semimetals derived from the semiclassical approach
[Eq. (59)]. Blue lines are polar plots of the LMR [ρxx(B) − ρxx(B = 0)]/ρxx(B = 0) as a function of the relative angle θ between E
and B. We show angle dependences of contributions to the LMR from (a) the Berry curvature, (b) the orbital magnetic moment, (c) the interplay
between the Berry curvature and the orbital magnetic moment, and (d) the total angle dependence of the LMR.

A similar angular dependence of the MR from Eq. (74)
in the weak-field region has been observed in magnetotrans-
port experiments on Dirac semimetals [10,11]. In particular,
Ref. [11] reported that the sign change of the MR occurs
around 45◦ in the low-B region for the Dirac semimetal
Na3Bi, which is consistent with our semiclassical result
shown in Fig. 2(d). We note that our calculation for Weyl
semimetals is also applicable to Dirac semimetals with the
mild assumption that the degenerate energy bands having

opposite chirality in Dirac semimetals are decoupled from each
other.

Finally, we present estimates for the above nonlinear
conductivities derived for Weyl semimetals. The directional
anisotropy of the linear conductivity is given by the ratio of
the two terms ∝B0 and ∝B2 in Eq. (73). The anisotropy ratio
amounts to 0.06(B/1 T)2 for typical parameters vF = 3 ×
105 m/s and EF = 10 meV for the Weyl semimetal material,
TaAs [26,27].
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V. NONLINEAR MAGNETO-OPTICAL RESPONSES IN
WEYL SEMIMETALS

In this section, we study the nonlinear optical responses
of Weyl semimetals in the presence of a magnetic field.
Specifically, we study the second harmonic generation and
the nonlinear Kerr rotation with B and discuss the fact that
Weyl semimetals can support large nonlinear Kerr rotation in
the infrared regime.

First, we note that SHG is vanishing in the absence of
magnetic fields when the Weyl fermion has a linear and
isotropic dispersion as in Eq. (69). The contribution from the
Berry curvature dipole to the SHG cancels within the Weyl
node after k integration. Thus, the application of B is necessary
in order for the SHG to be nonvanishing for isotropic Weyl
fermions. In this sense, SHG with B in Weyl semimetals is
a fundamental nonlinear optical effect which is related to the
monopole structure in the momentum space via the orbital
magnetic moment.

Now we consider the SHG of Weyl fermions in the presence
of a uniform magnetic field applied to the z direction [B =
(0,0,B)] and study the nonlinear current response proportional
to B. When the electric field is perpendicular to B, e.g., E =
(E,0,0), the nonlinear current response is given by

j2 =
(

0,0,
e4vF B

60π2�3ω2kF

E2

)
, (76)

where we have assumed τω � 1 by focusing on the high-
frequency regime. On the other hand, when the electric field
is applied in the z direction [E = (0,0,E)] and is parallel to
B, there is an additional contribution to SHG from the E · B
term related to the chiral anomaly of Weyl fermions. In this
case we obtain

j2 =
(

0,0,
2e4vF B

15π2�3ω2kF

E2

)
. (77)

This expression shows an enhancement of the SHG compared
to the case of E ⊥ B; the chiral anomaly enhances the SHG.
Since j2 ∝ k−1

F , the contribution to SHG proportional to B

becomes very large when the Fermi energy is close to the Weyl
point. This enhancement is a consequence of the divergence
of the Berry curvature and orbital magnetic moment near
the Weyl point. In this regard, the SHG of Weyl semimetals
under B is tied to the monopole physics in the momentum
space described by the Berry curvature. In practice, these
divergences are cut off by the energy broadening due to the
nonzero relaxation time τ . This cutoff takes place around
kF 
 1/(vF τ ). In addition, there is another cutoff that depends
on the strength of the electric field E. Since semiclassical
treatment for Weyl fermions is only valid when eEτ/� < kF

(otherwise interband effects become relevant because the
shift of wave number exceeds the Fermi wave number), the
divergence is also cut off around kF 
 eEτ/�.

The enhancement of SHG in Weyl semimetals can be
detected as a large Kerr rotation signal. In the case of a general
band structure, SHG can become nonzero even for B = 0 if
we include the effect of band bending, e.g., by introducing a
k2 term in H . This nonzero contribution to the SHG for B = 0
is, in general, not parallel to the above B-linear contribution
to the SHG. Therefore, when the magnetic field is applied, the

diverging B-linear contribution to SHG parallel to B leads
to a large rotation of the polarization angle of SHG and,
hence, a large nonlinear Kerr rotation. Incidentally, we note
that when higher order terms with respect to k are present
in the Hamiltonian such as k2 terms, additional terms having
higher powers in kF arise in the current response in Eq. (77).
However, when the Fermi energy is close to the Weyl point
and kF is small enough, these corrections become negligible.

Finally, we estimate the magnitude of the nonlinear
magneto-optical susceptibility, which is given by χ ≡
j2/(iω)ε0E

2. For the photon energy �ω = 0.1 eV in the
infrared region, the nonlinear susceptibility is estimated as
|χ | = 1500 × (B/1 T)pm/V from Eq. (77) by adopting the pa-
rameters, vF = 3 × 105 m/s and EF = 10 meV for the Weyl
semimetal material TaAs. For comparison, GaAs, which is a
representative SHG medium, shows nonlinear susceptibility
of χ 
 500 pm/V in the visible-light region [28]. Thus Weyl
semimetals potentially support large nonlinear Kerr rotation
from the Fermi surface effect for low photon energies. Since
a recent optical measurement in TaAs reported giant SHG
signals in the visible-light region [29], Weyl semimetals are
considered to be interesting nonlinear optical media in a wide
range of frequency.

VI. DISCUSSION

We have studied the CPGE and SHG in the low-frequency
limit from a fully quantum mechanical treatment using
Floquet perturbation theory. By doing so, we have reproduced
the expressions with the Berry curvature dipole that were
previously obtained from semiclassics. While we have focused
on second-order nonlinear optical effects in this paper, the
Floquet perturbation theory provides a systematic way to study
general nonlinear optical responses in the low-frequency limit.
Thus it will be an interesting issue to apply this method to
other higher order nonlinear optical effects and investigate
their geometrical meaning.

We have derived semiclassical formulas for the mag-
netoconductance and nonlinear magneto-optical effects by
taking into account the orbital magnetic moment. There is
an effort to partially incorporate interband effects in the
SCA [30]. Applying this method to isotropic Weyl fermions
with a linear dispersion does not lead to any correction to
our semiclassical formulas for magnetoconductance and SHG
derived in Secs. IV and V. However, in the case of a general
band dispersion, the interband contributions will generate
correction terms which are proportional to some inverse
powers of the energy band separation. Moreover, complete
formulas for these nonlinear optical effects can be derived by
using a quantum mechanical treatment. The quantum treatment
may be feasible for two-band systems like we employed to
deduce quantum formulas for the CPGE and SHG, while
it should become very complicated in cases of a general
number of bands. In particular, it will be interesting to see
how the Berry curvature and orbital magnetic moment arise
in the quantum mechanical treatment, as is possible for linear
responses for an arbitrary number of bands [8,9], and what the
corrections from the semiclassical formulas look like. These
issues are left as future problems.
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There exists another class of Weyl semimetals in which
Weyl points are created by applying magnetic fields and break-
ing time-reversal symmetry artificially in centrosymmetric
crystals. Such creation of Weyl semimetals with a B field
was recently reported in GdPtBi [31,32], and semiclassical
analysis of magnetoresistance for these materials has been
performed in Ref. [33]. It would also be interesting to apply our
semiclassical formula to nonlinear magneto-optical/transport
properties in these field-created Weyl semimetals.
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APPENDIX: DERIVATION OF THE BERRY CURVATURE
DIPOLE FORMULA FOR GENERAL BANDS

In this Appendix, we apply the Floquet perturbation theory
to systems with a general number of bands and derive the
formula for SHG in terms of the Berry curvature dipole. The
derivation proceeds in a similar manner to the two-band case
presented in Sec. II B but involves more band indices.

We consider a system irradiated with monochromatic light which is described by the time-dependent Hamiltonian

H̃ (t) = H ( �p + e �A(t)) = H 0 + H 1 + H 2 + . . . = H +
∑

i

(
∂ki

H
)
eAie

−iωt +
∑
i,j

1

2

(
∂ki

∂kj
H

)
e2AiAje

−2iωt + . . . , (A1)

where H 0 ≡ H is the static Hamiltonian in the absence of driving, and �A(t) = �Ae−iωt is the vector potential. For the time-periodic
Hamiltonian H̃ (t), the Floquet Hamiltonian is defined by

(HF )mn = 1

T

∫ T

0
dtei(m−n)�t H̃ (t) − n��δmn, (A2)

with Floquet indices m and n. In the following, we adopt a simplified notation where we write contributions Hi(t) to the Floquet
Hamiltonian HF just as Hi .

The standard perturbation theory gives the wave function for the perturbed Floquet Hamiltonian HF as

|ψñ〉 = |ñ〉 +
∑
g̃ �=ñ

H 1
g̃ñ

εñ − εg̃

|g̃〉 +
∑
ñ �=m̃

g̃ �=ñ

[
H 1

g̃m̃H 1
m̃ñ

(εñ−εm̃)(εñ − εg̃)
− H 1

ññH
1
g̃ñ

(εñ − εg̃)2
+ H 2

g̃ñ

εñ − εg̃

]
|g̃〉, (A3)

where |ñ〉 is the unperturbed wave function satisfying H |ñ〉 = εñ|ñ〉, and ñ labels the set of the band index and the Floquet index.
Here we note that H 1

ññ = 0 in the present case. The explicit form of the wave function ψn with band index n and any Floquet
index (say, 0) is given by

|ψn〉 = |n〉 + e
∑
n,g

(
∂ki

HAi

)
gn

εn − (εg + ω)
|g〉 + 1

2
e2

∑
n,g

(
∂ki

∂kj
HAiAj

)
gn

εn − (εg + 2ω)
|g〉 + e2

∑
n,m,g

[ (
∂kj

HAj

)
gm

(
∂ki

HAi

)
mn

(εn − (εm + ω))(εn − (εg + 2ω))

]
|g〉, (A4)

where |n〉 denotes the static wave function with band index n, εn denotes the static energy dispersion with band index n, and
Om,n = 〈m|O|n〉.

Now we consider the current response in the α direction, given by

Jα(t)= − e
∑

n

f (εn)
∑
m′,n′

{tr[|ψ(n,0)〉〈ψ(n,0)|v̂α]}m′n′e−i(m′−n′)ωt , (A5)

where |ψ(n,0)〉 is the perturbed wave function with band index n and Floquet index 0, and m′ and n′ denote the Floquet indices.
The Fermi distribution function f (ε) is given by f (εn) = 1 for occupied bands and f (εn) = 0 for unoccupied bands. Since we
consider the low-frequency limit where optical transition does not take place, we can assume that the occupation of the perturbed
states coincides with that of the unperturbed states. The operator v̂ is the Floquet representation of the time-dependent velocity
operator v(t), which is given by

(v̂i)m′n′ = 1

T

∫ T

0
dtei(m′−n′)ωtvi(t) (A6)

vi(t) = v0
i + v1

i + v2
i + . . . = ∂ki

H +
∑

j

(
∂ki

∂kj
H

)
eAje

−iωt +
∑
i,j

1

2

(
∂ki

∂kj
∂kl

H
)
e2AjAle

−2iωt + . . . . (A7)
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For the real external field �A(t) = �Ae−iωt + �Aeiωt , we obtain the second-order current response Jr along the r direction, which
is proportional to e−i2ωt , as

Jr = −e3
∑
i,j

AiAj

∫
[dk]

∑
n,g

[
1

2
f (εn)

(
∂ki

∂kj
H

)
gn

εn − (εg + 2ω)
〈n|∂kr

H |g〉 + 1

2
f (εn)

(
∂ki

∂kj
H

)
ng

εn − (εg − 2ω)
〈g|∂kr

H |n〉

+
∑
m

f (εn)

εn − εm − ω

(
∂kj

H
)
gm

(
∂ki

H
)
mn

εn − (εg + 2ω)
〈n|∂kr

H |g〉 +
∑
m

f (εn)

εn − εm + ω

(
∂ki

H
)
nm

(
∂kj

H
)
mg

εn − (εg − 2ω)
〈g|∂kr

H |n〉

+f (εn)

(
∂ki

H
)
gn

εn − (εg + ω)
〈n|∂kr

∂kj
H |g〉 + f (εn)

(
∂ki

H
)
ng

εn − (εg − ω)
〈g|∂kr

∂kj
H |n〉

+
∑
m

f (εn)

(
∂ki

H
)
gn

εn − (εg + ω)

(
∂kj

H
)
nm

εn − (εm − ω)
〈m|∂kr

H |g〉 + 1

2
f (εn)〈n|∂kr

∂ki
∂kj

H |n〉
]
. (A8)

This expression can be rewritten as

Jr = −e3
∑
i,j

AiAj

∫
[dk]

∑
n

[∑
g

1

2
(f (εn) − f (εg))

〈n|∂kr
H |g〉〈g|∂ki

∂kj
H |n〉

εn − (εg + 2ω)

+
∑
m,g

(
f (εn)

εn − εm − ω
− f (εg)

εg − εm + ω

) 〈n|∂kr
H |g〉〈g|∂ki

H |m〉〈m|∂kj
H |n〉

εn − (εg + 2ω)

+
∑

g

(f (εn) − f (εg))
〈n|∂kr

∂kj
H |g〉〈g|∂ki

H |n〉
εn − (εg + ω)

+
∑
m,g

f (εn)
〈n|∂kj

H |m〉〈m|∂kr
H |g〉〈g|∂ki

H |n〉
(εn − (εg + ω))(εn − (εm − ω))

+ 1

2
f (εn)〈n|∂kr

∂ki
∂kj

H |n〉
]
. (A9)

Since we are interested in the intraband effects in the low-frequency limit (ω much smaller than the band gap), we expand the
current Jr in terms of ω as Jr = J 0

r + J 1
r + J 2

r + . . ., with J n
r ∝ ωn. The lowest order term in ω is the zeroth-order term, which

is given by

J 0
r = −e3

∑
i,j

AiAj

∫
[dk]

∑
n

[∑
g

1

2
(f (εn) − f (εg))

〈n|∂kr
H |g〉〈g|∂ki

∂kj
H |n〉

εn − εg

+
′∑

m,g

(
f (εn)

εn − εm

− f (εg)

εg − εm

) 〈n|∂kr
H |g〉〈g|∂ki

H |m〉〈m|∂kj
H |n〉

εn − εg

+
′∑
g

(f (εn) − f (εg))
〈n|∂kr

∂kj
H |g〉〈g|∂ki

H |n〉
εn − εg

+
′∑

m,g

f (εn)
〈n|∂kj

H |m〉〈m|∂kr
H |g〉〈g|∂ki

H |n〉
(εn − εg)(εn − εm)

− 2
′∑
g

f (εn)
〈n|∂kr

H |g〉〈g|∂ki
H |n〉〈n|∂kj

H |n〉
(εn − εg)2

− 2
′∑
g

f (εg)
〈n|∂kr

H |g〉〈g|∂ki
H |g〉〈g|∂kj

H |n〉
(εn − εg)2

+
′∑
m

f (εn)
〈n|∂kj

H |m〉〈m|∂kr
H |n〉〈n|∂ki

H |n〉
(εn − εm)2

+
′∑
g

f (εn)
〈n|∂kj

H |n〉〈n|∂kr
H |g〉〈g|∂ki

H |n〉
(εn − εg)2

+ 1

2
e2f (εn)〈n|∂kr

∂ki
∂kj

H |n〉
]
. (A10)

Here
∑′

g (
∑′

m,g) denotes the summation where the band index g (m,g) runs over those that do not set the denominator to 0.
We note that the fifth to eighth terms are obtained by setting one energy denominator to be 1/ω and expanding the other energy
denominator up to ω2 in the second and the fourth terms in Eq. (A9). In addition, the time reversal symmetry, T = K , leads to
the symmetry properties of the Hamiltonian and its eigenstates given by

H (k) = H (−k), ε(k) = ε(−k), |n(k)〉 = 〈n(−k)|. (A11)

By using these properties that hold in the presence of TRS, we find that the above expression for J 0
r vanishes at the zeroth order.

Therefore, the lowest order term is actually the first-order term J 1
r .

245121-12



SEMICLASSICAL THEORY OF NONLINEAR MAGNETO- . . . PHYSICAL REVIEW B 94, 245121 (2016)

The first-order term in ω is written as

Jr = −e3ω
∑
i,j

AiAj

∫
[dk]

∑
n

[ ′∑
g

(f (εn) − f (εg))
〈n|∂kr

H |g〉〈g|∂ki
∂kj

H |n〉
(εn − εg)2

+ 2
′∑

m,g

(
f (εn)

εn − εm

− f (εg)

εg − εm

) 〈n|∂kr
H |g〉〈g|∂ki

H |m〉〈m|∂kj
H |n〉

(εn − εg)2

+
′∑

m,g

(
f (εn)

(εn − εm)2
+ f (εg)

(εg − εm)2

) 〈n|∂kr
H |g〉〈g|∂ki

H |m〉〈m|∂kj
H |n〉

εn − εg

− 4
′∑
g

f (εn)
〈n|∂kr

H |g〉〈g|∂ki
H |n〉〈n|∂kj

H |n〉
(εn − εg)3

− 4
′∑
g

f (εg)
〈n|∂kr

H |g〉〈g|∂ki
H |g〉〈g|∂kj

H |n〉
(εn − εg)3

+
′∑
g

(f (εn) − f (εg))
〈n|∂kr

∂kj
H |g〉〈g|∂ki

H |n〉
(εn − εg)2

−
′∑
m

f (εn)
〈n|∂kj

H |m〉〈m|∂kr
H |n〉〈n|∂ki

H |n〉
(εn − εm)3

+
′∑
g

f (εn)
〈n|∂kj

H |n〉〈n|∂kr
H |g〉〈g|∂ki

H |n〉
(εn − εg)3

−
′∑

m,g

f (εn)
〈n|∂kj

H |m〉〈m|∂kr
H |g〉〈g|∂ki

H |n〉
(εn − εg)(εn − εm)2

+
′∑

m,g

f (εn)
〈n|∂kj

H |m〉〈m|∂kr
H |g〉〈g|∂ki

H |n〉
(εn − εg)2(εn − εm)

]
. (A12)

By using the properties from the TRS, this can be reduced as

Jr = −2e3ω
∑
i,j

AiAj

∫
[dk]

∑
n

f (εn)

×
[ ′∑

g

f (εn)
〈n|∂kr

H |g〉〈g|∂ki
∂kj

H |n〉
(εn − εg)2

+ 2
′∑

m,g

1

εn − εm

〈n|∂kr
H |g〉〈g|∂ki

H |m〉〈m|∂kj
H |n〉

(εn − εg)2

+
′∑

m,g

1

(εn − εm)2

〈n|∂kr
H |g〉〈g|∂ki

H |m〉〈m|∂kj
H |n〉

εn − εg

− 3
′∑
g

〈n|∂kr
H |g〉〈g|∂ki

H |n〉〈n|∂kj
H |n〉

(εn − εg)3

+
′∑
g

〈n|∂kr
∂kj

H |g〉〈g|∂ki
H |n〉

(εn − εg)2
−

′∑
m,g

〈n|∂kj
H |m〉〈m|∂kr

H |g〉〈g|∂ki
H |n〉

(εn − εg)(εn − εm)2

]
. (A13)

Now let us consider the specific case relevant to the Berry curvature dipole formula. Namely, we suppose that E is applied
along the x direction and consider the current J in the y direction:

Jy = −2e3ωAxAx

∫
[dk]

∑
n

f (εn)

×
[ ′∑

g

f (εn)
〈n|∂ky

H |g〉〈g|∂kx
∂kx

H |n〉
(εn − εg)2

+ 2
′∑

m,g

1

εn − εm

〈n|∂ky
H |g〉〈g|∂kx

H |m〉〈m|∂kx
H |n〉

(εn − εg)2

−3
′∑
g

〈n|∂ky
H |g〉〈g|∂kx

H |n〉〈n|∂kx
H |n〉

(εn − εg)3
+

′∑
m,g

1

(εn − εm)2

〈n|∂ky
H |g〉〈g|∂kx

H |m〉〈m|∂kx
H |n〉

εn − εg

+
′∑
g

〈n|∂ky
∂kx

H |g〉〈g|∂kx
H |n〉

(εn − εg)2
−

′∑
m,g

〈n|∂kx
H |m〉〈m|∂ky

H |g〉〈g|∂kx
H |n〉

(εn − εg)(εn − εm)2

]
. (A14)

The k integral of the Berry curvature dipole �z,n for the nth band is explicitly written in many-band systems as∫
[dk]∂x�z,n(k)

= −2∂x

∫
[dk] Im[〈∂xn|∂yn〉] = i∂x

∫
[dk]

∑
g

[〈∂xn|g〉〈g|∂yn〉 − 〈∂yn|g〉〈g|∂xn〉]

= i∂x

∫
[dk]

′∑
g

[ 〈n|∂xH |g〉〈g|∂yH |n〉
(εn − εg)2

− 〈n|∂yH |g〉〈g|∂xH |n〉
(εn − εg)2

]
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= −2i

∫
[dk]

′∑
g

[ 〈n|∂yH |g〉〈∂xg|∂xH |n〉
(εn − εg)2

+ 〈n|∂yH |g〉〈g|∂x∂xH |n〉
(εn − εg)2

+ 〈n|∂yH |g〉〈g|∂xH |∂xn〉
(εn − εg)2

+ 〈∂xn|∂yH |g〉〈g|∂xH |n〉
(εn − εg)2

+〈n|∂x∂yH |g〉〈g|∂xH |n〉
(εn − εg)2

+ 〈n|∂yH |∂xg〉〈g|∂xH |n〉
(εn − εg)2

− 2
〈n|∂yH |g〉〈g|∂xH |n〉

(εn − εg)3
[(vx)nn − (vx)gg]

]

= −2i

∫
[dk]

′∑
g

[ 〈n|∂yH |g〉〈g|∂x∂xH |n〉
(εn − εg)2

+ 〈n|∂x∂yH |g〉〈g|∂xH |n〉
(εn − εg)2

− 2
〈n|∂yH |g〉〈g|∂xH |n〉

(εn − εg)3
[(vx)nn − (vx)gg]

]

+
′∑

g,m

[
− 〈n|∂yH |g〉〈g|∂xH |m〉〈m|∂xH |n〉

(εm − εg)(εn − εg)2
+ 〈n|∂yH |g〉〈g|∂xH |m〉〈m|∂xH |n〉

(εn − εm)(εn − εg)2

−〈n|∂xH |m〉〈m|∂yH |g〉〈g|∂xH |n〉
(εm − εn)(εn − εg)2

+ 〈n|∂yH |g〉〈g|∂xH |m〉〈m|∂xH |n〉
(εm − εg)(εn − εm)2

]
, (A15)

where we have used the TRS to simplify the expressions and the equation 〈n|∂km〉 = 〈n|v|m〉/(εm − εn). We note that the region
of the above k integration can be any T -symmetric region that includes both k and −k, especially, the Fermi sea satisfying
f (εn) = 1.

By using Eq. (A15), we finally obtain

Jy = −2e3ωAxAx

∫
[dk]

∑
n

f (εn)

×
[
∂x�z,n

−2i
+

′∑
g

〈n|∂yH |g〉〈g|∂xH |n〉〈n|∂xH |n〉
(εn − εg)3

+
′∑
g

1

(εn − εg)2

〈n|∂ky
H |g〉〈g|∂kx

H |g〉〈g|∂kx
H |n〉

εn − εg

+
′∑
g

1

εn − εg

〈n|∂ky
H |g〉〈g|∂kx

H |g〉〈g|∂kx
H |n〉

(εn − εg)2
− 3

′∑
g

〈n|∂ky
H |g〉〈g|∂kx

H |n〉〈n|∂kx
H |n〉

(εn − εg)3

+2
′∑
g

〈n|∂yH |g〉〈g|∂xH |n〉
(εn − εg)3

[(vx)nn − (vx)gg]

]

= −ie3ωAxAx

∫
[dk]∂x�z. (A16)

This indicates that the nonlinear conductivity for the SHG is given by

σyxx = ie3

ω

∫
[dk]

∑
n

f (εn)∂kx
�z,n, (A17)

which reproduces Eq. (44) in Sec. II B and proves the Berry curvature dipole formula for SHG in general cases with many bands.
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