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Dynamical Coulomb blockade theory of plasmon-mediated light emission from a tunnel junction
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Inelastic tunneling of electrons can generate the emission of photons with energies intuitively limited by the
applied bias voltage. However, experiments indicate that more complex processes involving the interaction of
electrons with plasmon polaritons lead to photon emission with overbias energies. We recently proposed a model
of this observation in Phys. Rev. Lett. 113, 066801 (2014), in analogy to the dynamical Coulomb blockade,
originally developed for treating the electromagnetic environment in mesoscopic circuits. This model describes
the correlated tunneling of two electrons interacting with a local plasmon-polariton mode, represented by a
resonant circuit, and shows that the overbias emission is due to the non-Gaussian fluctuations. Here we extend
our model to study the overbias emission at finite temperature. We find that the thermal smearing strongly masks
the overbias emission. Hence, the detection of the correlated tunneling processes requires temperatures kBT

much lower than the bias energy eV and the plasmon energy �ω0, a condition which is fortunately realized
experimentally.
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I. INTRODUCTION

Electron transport through a nanosystem displays, due
to the quantum nature of the underlying elementary pro-
cesses, a current that exhibits quantum noise with zero-
point fluctuations [1,2]. As a quantum object, the current is
associated to a time-dependent operator Î (t) in the Heisenberg
representation. Hence, the noise spectral density S(ω) =∫

dteiωt 〈Î (0)Î (t)〉 acquires a frequency-antisymmetric com-
ponent S(ω) �= S(−ω) because of the noncommuting current
operators at different times. This asymmetry can actually
be accessed by coupling the system to a detector [3,4].
The result is that the positive and negative branches of
S(ω) are related to the emission and absorption spectrum,
respectively. Concerning the emission processes, if the source
of noise is the system biased by a voltage V , intuitively one
expects that the maximum energy available for the tunneling
electron is eV , and, thus, the energy of an emitted photon
is limited to eV as well, as shown by several experiments
and theoretical investigations [5–15]. Such inelastic effects in
tunneling junctions are interesting because they can help to
reveal unusual phenomena like electron-electron correlation
and electron-plasmon effects.

In regard to experimental measurements and realizations
of current noise detection, one of the first proposals was a
quantum tunneling detector consisting of a double quantum
dot (DQD) coupled to the leads of a nearby mesoscopic
conductor [16], in which the inelastic current through the DQD
measures the equilibrium and nonequilibrium fluctuations
in the conductor [17]. Additionally, the light emission of
electrons tunneling from a scanning tunneling microscope
(STM) to a metallic surface has already been studied and used
as a probe of the shot noise at optical frequencies for many
years [18–22].

Using a single electron scattering picture and at zero
temperature of the system, the Pauli principle blocks inelastic
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tunneling transitions with energy exchange larger than the
energy difference between the two Fermi seas, consisting
of noninteracting electrons in the leads. The emitted light
spectrum is then limited in frequency by the bias voltage
according to �ω < eV . i.e., the detector signals are in the
sub-bias energy range E < eV ; see Fig. 1(a).

However, some experiments [23–29] reveal the unexpected
feature of light emitted at energy exceeding the bias voltage
�ω > eV . Such an overbias spectrum appears as reminiscent
of the surface plasmon-polariton (SPP) modes which can be
also observed via other methods. Using essentially energy
considerations, such a process can be attributed to two
simultaneously tunneling electrons providing enough energy
to explain the overbias emission [30,31]. Similar findings
have also been reported in photon emission from Josephson
junctions [32–38] and molecular films [39–42] with fluores-
cent emission of photons with energies above the threshold
energy. In order to understand these diverse systems, a detailed
understanding of the electron tunneling processes involved is
necessary [43].

In a previous Letter [30], we developed a theoretical
framework for the description of the plasmon-mediated light
emission by a tunnel contact based on dynamical Coulomb
blockade. In qualitative terms, in an elemental tunneling event,
an electron gains energy eV at bias voltage V but must pay a
charging cost of Ec ∼ e2/C with C the junction capacitance.
Hence, after tunneling, a nonequilibrium situation occurs since
the charge on the junction and the charge imposed by the volt-
age source are different. Now, when an impedance is connected
in series to the tunnel junction, it allows us to discharge and
dissipate energy, thus reducing Coulomb charging effects. In
other words, the electromagnetic environment of the junction
crucially affects the charge tunneling events. The effect on the
tunneling is captured by the probability P (E) of emitting an
energy amount E to the electromagnetic environment. The
so-called P (E) function is related to the spectral density
of voltage fluctuations, which in turn is determined by the
impedance of the environment [44,45].
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FIG. 1. Sketch of electron tunneling processes. (a) One electron
tunnels through the barrier and excites the surface plasmon polariton
(SPP), which eventually emits a photon with energy |ε| < eV . (b)
The two coherent electrons tunnel through the barrier, creating an
overbias SPP excitation and leading to the overbias light emission
with energy |ε| > eV .

Going beyond the simple tunneling events, this framework
captures the coherent two-electron tunneling processes, in
which each electron contributes an energy Ei � eV (i = 1,2)
but the overall process creates an excitation in the broadened
SPP spectrum with an energy exceeding the bias voltage E1 +
E2 > eV , as shown in Fig. 1(b). Afterwards, the relaxation of
the SPP’s energy finally leads to the overbias light emission. By
modeling the SPP as a broadened, damped resonator, at zero
temperature we have quantitatively reproduced the experimen-
tally observed bias-voltage-dependent emission spectrum [29].

Here, we extend our model described in Ref. [30] to
include a finite temperature in the general expression for the
tunneling rate. First, we confirm that the non-Gaussian voltage
fluctuations in the tunnel junction explain the light emission
with energy above the bias voltage, �ω > eV , in the limit of
low temperature. Second, we provide a quantitative estimation
for the typical temperature above which overbias emission is
masked by thermal effects.

Indeed, finite temperature affects either the rate associated
to the Gaussian voltage fluctuations or the rate associated to
the non-Gaussian voltage fluctuations. For the Gaussian rate,
we find that increasing the temperature gradually smears out
the sharp boundary at emission energy E = eV which occurs
in the limit of vanishing temperature. For the non-Gaussian
rate, finite temperature smooths the characteristic cusp of the
overbias emission which is obtained at zero temperature. Such
effects are prominent even in the relatively low temperature
regime, namely kBT ∼ 10−2

�� with � ∼ ω0, the average
position of the SPP spectrum, or � ∼ η, its broadening.
These results point out that the overbias emission spectrum
is sensitive to finite temperature effects. However, remarkably,
the non-Gaussian rate can still represent the leading term in
the overbias range E > eV for sufficiently low temperatures.
Hence, by analyzing the temperature dependence, the bias
voltage dependence and their interplay for the individual rates,
i.e., the Gaussian and the non-Gaussian one, we discuss how
to distinguish finite temperature effects from the expected
“zero-temperature” overbias emission.

The structure of the paper is as follows. We describe the
model and the theoretical methods based on the Keldysh action
in Sec. II as well as the expression for the detection rate. In
Sec. III, we calculate the total rate formed by two separate
contributions, i.e., the Gaussian part and the non-Gaussian part,
and analyze the rate behavior as a function of temperature and

T
α
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ϕ

FIG. 2. Sketch of a STM contact with bias voltage V . The
electrons interact via the SPP mode that is mimicked by the
LRC resonant circuit. Photons emitted from this tunnel junction
are absorbed by the detector, i.e., a two-level system with energy
separation ε, leading to the absorption process characterized by the
transition probability T . The coupling α between the detector and the
tunnel system is weak in concordance with the experiment [29].

voltage bias. We discuss our conclusions in Sec. IV. Details of
the rate derivation are given in the Appendix.

II. MODEL

We model the tunneling from the STM tip to the surface
in an electromagnetic environment, according to standard
DCB theory [3,44,45], as the circuit diagram depicted in
Fig. 2. The tunneling is described by a tunnel conductor that
has a dimensionless conductance gc = RQ/Rc with RQ =
h/2e2 and Rc being the quantum and tunneling resistances,
respectively. The junction is coupled to a damped LC circuit,
modeled by an impedance zω = iz0ωω0/(ω2

0 − ω2 + iωη),
where ω0 = 1/

√
LC is the resonance frequency of the SPP

mode, η = 1/RC models the damping, and z0 = √
L/C/RQ

is the scaled characteristic impedance. The interaction between
the tunnel junction and the SPP occurs in this model via the
dynamical voltage fluctuations on the node between the tunnel
junction and the LRC circuit. These voltage fluctuations can
be expressed by the phase variable ϕ(t) = e

�

∫ t

−∞ dtV (t ′).
For the photon detection, we choose a simple two-level

system with energy difference ε and transition probability
T to absorb or emit photons. Formally the system can be
described by a Hamiltonian Hdetec = (ε + αV )σz/2 + T σx

with the unperturbed eigenstates |±〉 with energies ±ε/2,
respectively. The coupling α between the STM junction and the
photon detector is set to be weak, since the photon detectors
in a typical experiment are far away from the junction. We
can calculate the transition rate from the transition probability
P−→+(t) = |〈−(t)|+〉|2 to lowest order in the coupling T .
Using Fermi’s golden rule and setting � = 1, the transition
rate at energy ε in the detector due to the fluctuations of
ϕ(t) [44–46] reads

	(ε) = |T |2
∫

dt〈eiαϕ(t)e−iαϕ(0)〉eiεt . (1)

This rate formula corresponds to emission or absorption for
ε > 0 and ε < 0, respectively. In this work we study only
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the absorption rate, and therefore we have to consider only
negative energies ε < 0. Our central theoretical task is the
calculation of 	(ε < 0) to the lowest order in the detector
coupling constant, i.e., α.

We employ the path integral method to evaluate
〈eiαϕ(t)e−iαϕ(0)〉. Using the Keldysh actions of the conductor,
Sc, and the circuit, Se, the correlator can be represented as

〈eiαϕ(t)e−iαϕ(0)〉 =
∫

D[
] exp{−iSe[
] − iSc[
]

+ iα[−ϕ+(0) + ϕ−(t)]}, (2)

where the two-component phase 
 = (φ,χ )T with φ = (ϕ+ +
ϕ−)/2 and χ = ϕ+ − ϕ−, and the real fields ϕ±(t) are defined
on the forward and backward Keldysh contours, respectively.
Later in the Keldysh action, the real fields can be written as
ϕ±

ω = φω ± 1
2χω in frequency space.

The action of the damped LC oscillator acting as the
environment on the tunnel conductor, is quadratic in the
fields [47,48] and given by

Se =
∫

dω

2π

T

−ωAω
ω ,Aω =− i

2

(
0 − ω

z−ω
ω
zω

W (ω)
{ 1
zω

}
)

,

with W (ω) = ω coth(ω/2T ). Here T denotes the temperature
and we have set kB = 1. The action Sc can be expressed in
terms of Keldysh Green’s functions ǦL,R for the free electrons
on the left (L) and right (R) sides of the tunneling barrier [49]:

Sc = i

8
gc

∫
dtdt ′Tr{ǦL(t,t ′),ǦR(t ′ − t)} (3)

in the tunneling limit gc � 1 [50]. With the help of the
equilibrium Keldysh Green’s function

Ǧ(ω) =
(

1 − 2f (ω) 2f (ω)
2[1 − f (ω)] 2f (ω) − 1

)
, (4)

containing the Fermi function f (ω) = [exp(ω/T ) + 1]−1,
we can write ǦR(ω) = Ǧ(ω − eV ) and hence Ǧ(t) =∫

dω exp(−iωt)Ǧ(ω)/2π . Again using the Fourier transfor-
mation, we write ǦL(t,t ′) = Ǔ †(t)Ǧ(t − t ′)Ǔ (t ′) with the
counting fields introduced as

Ǔ (t) =
(

e−iϕ+(t) 0
0 e−iϕ−(t)

)
. (5)

Due to the nonquadratic contribution to the action of the
conductor Sc in Eq. (3), the correlator cannot be calculated
exactly and we need an approximation scheme. Here, we use
the cumulant expansion for the action Sc by which we obtain
the result

	(ε) = 	G(ε) + 	nG(ε) + O(λ2) . (6)

The first Gaussian term scales as 	G(ε) ∼ 	0 =
(2π )2α2|T |2gcz

2
0/ω0 whereas the second non-Gaussian

terms scales as 	nG ∼ gcz
2
0	0 pointing out that the validity

of our expansion is based on the smallness of the expansion
parameter λ = gcz

2
0.

III. RESULTS

A. Gaussian contribution

A first approximation is obtained by considering only the
quadratic part of the conductor action, in which the whole
path integral becomes Gaussian and, in the limit of vanishing
voltage V = 0, corresponds to the well-known results from
P(E) theory. The quadratic part of the conductor action reads

SG
c =

∫
dω

2π

T

−ωBω
ω , Bω = − i

2

(
0 −ωgc

ωgc Sc(ω)

)
,

with the symmetrized quantum noise of a tunnel contact
Sc(ω) = 1

2gc(W (ω + eV ) + W (ω − eV )) ≡ gcŴ (ω). At T =
0 temperature, the symmetrized quantum noise vanishes for
|ω| > eV thus we can already conclude that, even if just the
Gaussian part of the conductor action is included, Eq. (1) can
only describe photon emission with energies limited by the
bias voltage.

Combining all the quadratic parts from both the LRC circuit
and the conductor in a single matrix,

Dω ≡ 1

2π
(Aω + Bω) = − i

4π

(
0 − ω

z̃−ω
ω
z̃ω

S(ω)

)
,

with S(ω) = Sc(ω) + W (ω)
{1/zω}. Then, the correlation
function 〈eiαϕ(t)e−iαϕ(0)〉 ≡ eα2J (t) can be calculated. As a
result, one finds

J (t) =
∫

dω
|z̃ω|2
ω2

St (ω)(e−iωt − 1), (7)

where

St (ω) = 2π (S(ω) + ω
{1/z̃ω})
= 2πgc[Ŵ (ω) + ω] + 2π [W (ω) + ω]
{1/zω}

is the total nonsymmetrized noise spectral density. The
impedance z̃ω = zω/(1 + zωgc) is the parallel connection of
the tunnel junction and the environmental impedance playing
the role of the “effective environment” to the detector. This
means that the factor gc leads to an increased damping
of the resonator, which can be absorbed in a renormalized
η → η + 1/RcC and will be ignored henceforth. From Eq. (1),
in the lowest order in α2, we obtain the rate in scaled units,

	G(ε) = 2πα2|T |2 |z̃ε |2
ε2

St (ε) , (8)

which is consistent with the known emission rate at finite
temperature.

In the limiting case T → 0,W (ω) → |ω| and the result (8)
reduces to the one obtained in Ref. [30], namely

	G(ε) = 	0 Rη(ε) θ (eV + ε)

(
eV + ε

ω0

)
(T = 0) , (9)

in which we set the dimensionless resonance shape func-
tion Rη(ε) = 1/[(ε2/ω2

0 − 1)
2 + ε2η2/ω2

0]. In this limit the
maximum energy eV for a photon emission due to inelastic
transitions is eV as a consequence of the sharp Fermi surfaces
on both sides of the tunnel junction, and the emission spectrum
has indeed a cutoff at |ε| = eV . In Fig. 3 we give an example
of the Gaussian emission spectrum at zero temperature for
three different values of the bias voltage at different damping
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FIG. 3. The Gaussian contribution to the emission spectrum for
different broadenings, at zero temperature for three different values
of the bias voltage: (a) voltage below the resonance eV = 0.8ω0, (b)
voltage at the resonance eV = ω0, (c) voltage above the resonance
eV = 1.5ω0. In all cases, the threshold occurs at |ε| = eV . The SPP
resonance becomes visible once the threshold is larger than ω0. The
smaller the broadening η is, the sharper the SPP peak becomes.

parameters η. At a voltage below the resonance eV < ω0 in
Fig. 3(a), the broadening has only a small influence on the
emission spectrum and no peak occurs in the spectrum.

The SPP resonance is visible only when the bias voltage
becomes comparable or larger than the resonance ω0, as shown
in Figs. 3(b) and 3(c). For instance, in Fig. 3(b), close to
the threshold eV the emission is enhanced, but the threshold
remains clearly visible. In the limit of large bias voltage
eV > ω0 [Fig. 3(c)], the full resonance is reflected in the
emission spectrum, and its shape is essentially determined
by the resonance function appearing as a prefactor to the noise
in Eq. (9). Hence, the maximum is ∼1/η2 and can be strongly
increased in high-quality resonators or well-defined plasmonic
modes.

At finite temperature we can cast the Gaussian rate as

	G(ε) = 	0Rη(ε)

[
Ŵ (ε) + ε

ω0
+

(
1

gcz0

)
W (ε) + ε

ω0

]
, (10)
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FIG. 4. (a) The Gaussian contribution to the emission spectrum
for different temperatures with the bias voltage eV/ω0 = 0.8. As the
temperature is increased, the cutoff at the bias eV is washed out.
In addition, more electrons are involved in the tunneling processes,
leading to an increased rate. (b) The Gaussian contribution to the
emission spectrum for different bias voltages. The SPP peak is
more pronounced when the bias voltage exceeds the resonance
energy ω0. In all cases, the sharp threshold for −ε > eV that exists
at zero temperature is smoothened at finite temperature, which is
already achieved at the surprisingly small but finite temperature
T = ω0/30. The broadening parameter in both figures is chosen as
η = 0.3ω0, whereas the product of the tunneling conductance and the
characteristic impedance of the resonator is set to gcz0 = 1.

and the clear cutoff at T = 0 due to the Fermi distribution is
smoothed out.

Figure 4(a) shows the emission rate for different temper-
atures at a voltage below the resonance eV = 0.8ω0 and for
gcz0 = 1. Different values of the ratio gcz0 do not change
the result significantly provided that eV  T because the
noise of the intrinsic thermal contribution of the plasmon—
corresponding to the second term in Eq. (10)—scales as
exp[−eV/T ] around the cutoff |ε| = eV and it is hence
exponentially small. Since a finite temperature softens the
sharp cutoff at |ε| = eV that exists at zero temperature, the
SPP resonance can come into play even at an energy lower
than the bias voltage, thus contributing an overbias emission
as well. The resonance strongly enhances the thermally excited
overbias emission. It is remarkable that the step at eV is
already almost invisible at a small temperature of just a
few % of ω0. This can be traced back to the thermally
excited quasiparticles in the lead with the higher chemical
potential—corresponding to the first term in Eq. (10)—so that
the thermal tail at the resonance is ∼ exp[−(ω0 − eV )/T ] with
ω0 ∼ eV and therefore exponentially larger than the intrinsic
thermal contribution of the plasmon.
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Figure 4(b) shows the emission rate for different bias
voltages at low temperature T = ω0/30. In all cases, from
bias voltages below the resonance eV < ω0 to bias voltages
above the resonance eV > ω0, we have the disappearance of
the zero temperature cutoff at |ε| = eV . As long as the voltage
becomes larger than eV > ω0, the SPP resonance becomes
visible in the emission spectrum in a similar way to the case
of vanishing temperature T = 0. In other words, at finite and
small temperatures T � ω0, we have substantial corrections
to the zero-temperature result for the Gaussian rate around the
cutoff at |ε| = eV .

B. Non-Gaussian contribution

Although single-electron tunneling events produce signa-
tures of the overbias SPP peak at finite temperature, we will
now turn to the nonquadratic part of the action Sc describing
the electron-electron correlation that gives contributions to the
overbias emission. As pointed out in Ref. [30], comparing the
absolute orders of magnitude, the non-Gaussian phase fluctua-
tions are smaller than the dominating Gaussian fluctuations due
to the small environmental impedance gcz

2
ω � 1. However, the

non-Gaussian rate represents the only one contribution to the
total rate in the overbias region |ε|  eV at T = 0. We aim
to understand in which range of parameters, for sufficiently
low temperature and well inside the overbias region |ε| > eV ,
the non-Gaussian rate can continue to dominate over the
thermal Gaussian rate. Before discussing the results for the
non-Gaussian rates, we report the main steps for calculating
such a rate. Further details are given in the Appendix.

First, from Eqs. (3)–(5), we expand the action of the
coherent conductor to the fourth order of ϕ while the higher-
order terms can be neglected due to the factor gcz

2
ω � 1,

yielding S = Se + SG
c + S(3)

c + S(4)
c + O(
5). Second, using

exp[−iS(3)
c − iS(4)

c ] ≈ 1 − iS(3)
c − iS(4)

c , in accordance with
the approximation above, we can write the path integral as

〈eiαϕ(t)e−iαϕ(0)〉 � eα2J (t)− i
〈〈
S(3)

c

〉〉 − i
〈〈
S(4)

c

〉〉
, (11)

in which we used the Gaussian average 〈〈· · · 〉〉 ≡∫
D[
](· · · )e

∫
dω{−i
T

−ωDω
ω+iαbT
ω (t)
ω} and bω(t) = (e−iωt −

1, − (e−iωt + 1)/2)T . After expanding for small α, the first
term in Eq. (11) yields the Gaussian rate discussed in the
previous section. ConcerningS(3)

c , it is an odd term which gives
a nonvanishing result only to the order α3 and we neglect it
for α � 1. Thus, we focus on the fourth term which is given

in frequency space by

S(4)
c = 1

12

1

(2π )4

i

8
gc

∫
dωdω′dω′′

× {(2[F (ω)+F (−ω)]−3[F1(−ω−ω′)+F2(−ω−ω′)])

× [ϕ+(ω′)ϕ+(ω)ϕ+(ω′′)ϕ+(−ω − ω′ − ω′′)

+ϕ−(ω′)ϕ−(ω)ϕ−(ω′′)ϕ−(−ω − ω′ − ω′′)]

− 4F (−ω)ϕ+(ω)ϕ−(ω′)ϕ−(ω′′)ϕ−(−ω−ω′−ω′′)

− 4F (ω)ϕ−(ω)ϕ+(ω′)ϕ+(ω′′)ϕ+(−ω−ω′−ω′′)

+ 6F1(−ω−ω′)ϕ+(ω)ϕ+(ω′)ϕ−(ω′′)ϕ−(−ω−ω′−ω′′)

+ 6F2(−ω−ω′)ϕ−(ω)ϕ−(ω′)ϕ+(ω′′)ϕ+(−ω−ω′−ω′′)},
with

F1(ω) = (−ω − eV ) + W (−ω − eV ),

F2(ω) = (ω + eV ) + W (ω + eV ),

F (ω) = F1(ω) + F2(−ω) .

For the field ϕ±
ω , we list the results:

〈〈
ω〉〉
=

〈〈
φω

χω

〉〉
= 1

2
D−1

ω b−ω(1 + O[α2z2])

= 2πiα

([
S(ω) |z̃ω|2

ω2 − 1
2

z̃ω

ω

]
eiωt − [

S(ω) |z̃ω|2
ω2 + 1

2
z̃ω

ω

]
− z̃−ω

ω
eiωt + z̃−ω

ω

)

and
〈〈

ω
T

−ω

〉〉 =
(〈〈φωφ−ω〉〉 〈〈φωχ−ω〉〉

〈〈χωφ−ω〉〉 〈〈χωχ−ω〉〉

)

= − i

2
D−1

ω = 2π

(
S(ω) |z̃ω|2

ω2
z̃ω

ω

− z̃−ω

ω
0

)
.

In the weak coupling limit, α � 1, corresponding to weak
detection that is the experimentally relevant regime, the main
order pairings of averages appearing in S(4)

c are of the type
〈〈ϕω〉〉〈〈ϕ−ω〉〉〈〈ϕω′ϕ−ω′ 〉〉 and they are proportional to ∼α2.
Such terms can be calculated using Wick’s theorem to find all
possible pairings of single and double averages. Finally, we
consider only the lowest order terms in ∼g2

c in order to obtain
the following expression for the non-Gaussian contribution:

	nG = πg2
cα

2|T |2
2

|z̃ε |2
ε2

∫ ∞

0
dω

{ |z̃ω|2
ω2

(Ŵ (ω) − W (ω))[−2Ŵ (ε) + (Ŵ (ω + ε) + Ŵ (ω − ε))]

+ 2(Ŵ (ε) − W (ε))
Re{z̃ε}

ε

Re{z̃ω}
ω

[Ŵ (ω + ε) − Ŵ (ω − ε)]

+ 2(Ŵ (ε) − W (ε))
Im{z̃ε}

ε

Im{z̃ω}
ω

[2W (eV ) − 2Ŵ (ω) − 2Ŵ (ε) + Ŵ (ω + ε) + Ŵ (ω − ε)]

}
. (12)

More details on the derivation of this expression can be found
in the Appendix.

Similarly as for the Gaussian fluctuations, we recover our
former results [30] in the limit T → 0. Examples of the
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FIG. 5. The non-Gaussian contribution at zero temperature to the
emission spectrum for different broadenings. There is a kink for
|ε| = eV whereas the resonance peak appears always at |ε| = ω0.
Parameters are the same as in Fig. 3.

non-Gaussian rate at zero temperature are given in Fig. 5
scaled with λ	0 and with λ = gcz

2
0, our expansion parameter.

The non-Gaussian rate yields a contribution in the underbias
as well as in the overbias regime. Moreover, the non-Gaussian
rate here calculated to lowest order in α and gc has also a
high-energy cutoff at |ε| = 2eV above which 	nG = 0. The
latter result is in agreement with the picture of two correlated
electrons involved in a single photon emission whose energy
is now limited by �ω < 2eV . Such a cutoff is less pronounced
than the sharp cutoff of the Gaussian rate at |ε| = eV although
it is evident in the experimental data (see next section and
Fig. 11). As for the Gaussian case in Fig. 3, we plot in Fig. 5
the three different cases corresponding to bias voltages below
or above the resonance eV < ω0 or eV > ω0, and the resonant
case eV = ω0.

In the first case eV < ω0, Fig. 5(a), the curve for the
non-Gaussian rate shows a characteristic cusp at the threshold
|ε| = eV . Such a curve has also peaks in both the underbias
region |ε| < eV as well as in the overbias region |ε| > eV

in correspondence with the resonance of the SPP mode at
|ε| = ω0. The overbias emission at T = 0 corresponds to
the first line of Eq. (12). However, in the underbias region

0. 0.3 0.6 0.9 1.2

0.002

0.004

0.006

0.008

0.5
0.4
0.3
0.2
0.1
Η Ω0

Ω0

nG
0

FIG. 6. The non-Gaussian contribution at zero temperature to
the emission spectrum for different broadenings. The bias voltage
is eV = 0.55ω0 such that the two-electron energy cutoff is at
2eV = 1.1ω0.

|ε| < eV , the non-Gaussian rate is dominated by the leading
Gaussian contribution so that the first peak hardly can be
distinguished, and one expects that the overbias emission rate
is distinctly resolved around the resonance ω0 > eV only.

For bias voltages at the resonance eV = ω0, Fig. 5(b), the
two peaks associated with the non-Gaussian rate merges into
a single peak and the curve shows a kink at the threshold |ε| =
eV . In this case the non-Gaussian rate has still a noticeable
contribution in the overbias regime |ε| > eV in terms of the
tail of the resonance peak centered at the threshold.

Then, for the last case, eV > ω0, shown in Fig. 5(c), the
non-Gaussian rate behaves in a way similar to the Gaussian rate
in Fig. 5(c) with a single peak at the resonance |ε| = ω. Such a
peak is now located well inside the underbias region in which
the non-Gaussian rate is dominated by the Gaussian rate.

Finally, we consider the case when the SPP resonance ω0

is quite close to the two-electron energy cutoff 2eV , which is
shown in Fig. 6. Here we can see, unlike Fig. 5(a) where the
SPP resonance ω0 is far away from the 2eV cutoff, that the
overbias peak can still be present although strongly weakened.

Thus we can conclude that overbias photon emission due
to the non-Gaussian voltage fluctuations in mesoscopic tunnel
junctions is, a priori, always a possible effect even far away
from the resonance of the plasma-polariton modes, but the
effect’s magnitude can be smaller than the limit of a photon de-
tector. On the contrary, the overbias photon emission becomes
a substantial effect provided that the system has a resonant
plasmonic mode at a frequency in the overbias range eV � ω0

and below the cutoff for the two electrons emission ω0 < 2eV .
We discuss now the effects of a finite temperature for the

non-Gaussian rate for the case eV < ω0. Some examples are
shown in Fig. 7 with an intrinsic broadening of the SPP mode
η = 0.3ω0.

In order to distinguish between the low and high tempera-
ture regimes, a priori we can compare the broadening η with
the thermal smearing expected at finite temperature ∼kBT .
Then one expects that the non-Gaussian rate continues to
exhibit sharp features in the low temperature range, defined
by kBT < η, and that it becomes a smooth, smeared function
as the temperature approaches the broadening kBT � η. In
Fig. 7, we can see that, increasing the temperature, the two
distinct peaks merge into a single peak and the kink at the
bias voltage |ε| = eV is weakened concealing any overbias
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FIG. 7. The non-Gaussian contribution to the emission spectrum
for different temperatures at the bias voltage eV/ω0 = 0.8 and
η = 0.3ω0. Due to the increased temperature, the kink at the bias
disappears and the two peaks are merged into a single peak.

signatures. Remarkably, this merging occurs even at relatively
low temperature T ∼ 10−2ω0 compared to the broadening of
the mode η ∼ 10−1ω0 pointing out that the overbias is highly
sensitive to finite temperature.

On the other hand, increasing the temperature enhances
the height of the peak in a similar way as the Gaussian
rate, as discussed in the previous section. In other words,
above the threshold |ε| > eV and at finite temperature, one
cannot discriminate the overbias emission due to the Gaussian
fluctuations—associated to single electron processes—from
the overbias emission due to the non-Gaussian fluctuations—
associated to two-electron processes. In order to resolve such
processes, we have to consider the low temperature range.

In Fig. 8, we discuss the behavior of the non-Gaussian
rate at low temperature, T = ω0/30, as varying the damping
η when the resonance is close to the two-electron cutoff
2eV = 1.1ω0. By comparing with the Gaussian part under the
same condition—the inset of Fig. 8—we notice that at finite
temperature, since the bias voltage eV , that is important for
the single electron emission, is far away from the resonance,
the Gaussian part around the resonance is small as it is
due to the temperature smearing of the Fermi distribution.
Meanwhile, the non-Gaussian part can represent the larger
contribution in the case of a sharp resonance.

0.5
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0.2
0.1
Η Ω0

0. 0.2 0.4 0.6 0.8 1. 1.2 1.4

0.002
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G 0

FIG. 8. The non-Gaussian contribution at finite temperature T =
ω0/30 to the emission spectrum for different broadenings, at 2eV =
1.1ω0, viz. the SPP resonance dominates near the 2eV cutoff. The
inset shows the Gaussian contribution around the SPP resonance.
Thus, in this case, with proper λ, even at finite temperature, the
overbias due to the two-electron emission (non-Gaussian part) can
dominate the Gaussian one.

0 1 2
0.
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0.3

0.1
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Λ
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0

FIG. 9. The total rate for different dimensionless factors λ = gcz
2
0

at the bias voltage V = 1.32 V. The overbias peak increases with
increasing λ, which determines the weight of the non-Gaussian part
to the total rate. The temperature is chosen to be the room temperature
βω0 = ω0/kBT = 72, and the SPP resonance energy is taken to be
ω0 = 1.8 eV with the broadening η = 0.2 eV.

C. Total rate and comparison with the experiments

For the total tunneling rate, we have to take the Gaussian
as well as the non-Gaussian rates into account. In order to
compare the theoretical results with the experimental data of
G. Schull and co-workers [29], in this section we plot the
rate explicitly as a function of energy (eV ) for a SPP mode
centered at ω0 = 1.8 eV and broadening η = 0.2 eV. As is
known from Eq. (5) and Eq. (6), these two rates are normalized
by a dimensionless factor of λ = gcz

2
0. Then as λ increases, the

non-Gaussian rate gradually gives the dominant contribution to
the total emission rate in the overbias energy regime, leading to
the overbias emission peak becoming more visible (see Fig. 9).
However, for small λ, within the validity of our expansion,
the non-Gaussian features are weak and smeared out by the
Gaussian properties due to the finite temperature.

We investigate the temperature dependence of the total rate
in Fig. 10 in logarithmic scale, in which the black line shows
the zero temperature case, giving the clear kink at the bias
voltage eV , described in Ref. [30]. Figure 10 shows how the
rate sensitively depends on the temperature; the clear kink
at the bias voltage is quickly softened even at small finite
temperatures, and the strong effect of the temperature appears
when the temperature has the same order of the factor eV −

0
0.02
0.05
0.1
0.15
0.2

kBT Ω0

1. 1.2 1.4 1.6 1.8 2. 2.2

4

3

2

1

eV]

Lo
g 1

0[
0]

FIG. 10. The logarithmic total emission rate at the bias voltage
V = 1.32 V for different temperatures. The kink at the bias voltage
becomes more distinct at lower temperature. The SPP resonance
energy is taken to be ω0 = 1.8 eV, λ = 0.2, and the broadening is
η = 0.2 eV.
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FIG. 11. The light emission spectrum on a logarithmic scale as
a function of bias voltage at (a) the low temperature βω0 = 3000
and (b) room temperature βω0 = 72. In panel (a), the clear threshold
behavior reproduces the experimental findings [29] for the parameter
λ = 0.227. In panel (b), the threshold at the bias voltage −ε = eV is
less evident. This behavior depends sensitively on the temperature.
Here, we use the parameter λ = 0.2. In both cases, the SPP resonance
energy is taken to be ω0 = 1.8 eV, and the broadening is η = 0.2 eV.

ω0, leading to the single overbias peak as the temperature is
increased.

Moreover, for comparison with the experimental results
obtained by G. Schull and co-workers [29], we need first to
determine the coupling parameter λ, which determines the
weight between the Gaussian and non-Gaussian contributions
and the width of the SPP resonance η.

The width can be directly obtained from the experimental
results in Ref. [29], resulting in η ≈ 0.2ω0. The coupling
parameter is determined by scaling the peak value at −ε = ω0

for the low bias V = 1.32 V by a factor of 300 versus the
peak at the bias V = 2.15 V, and this yields λ = 0.227.
The resulting voltage- and energy-dependent emission rate is
shown in Fig. 11(a) at the experimental temperature T � 7 K.
For comparison, we also show the rate at room temperature
T � 300 K for λ = 0.2 in Fig. 11(b).

Since the experimental temperature is very low compared
to the frequency scale of the SPP mode ω0 � 20.9 103K , the

kB T Ω0

I G
2
e

0
Ω

0,
I n

G
2
e

0
Ω

0

0.05 0.1 0.15 0.2 0.25 0.30.
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2 e IG2 e
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1.5  V
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FIG. 12. The temperature dependence of the scaled intensity for
the Gaussian and non-Gaussian contribution. The SPP resonance
energy is taken to be ω0 = 1.8 eV with the broadening η = 0.2 eV.

rate in Fig. 11(a) exhibits a distinct threshold at −ε = eV ,
and the clear overbias peaks at the SPP resonance due to the
non-Gaussian contributions, which gives a good explanation
and agreement with Ref. [29]. By contrast, at room temperature
[Fig. 11(b)], we find that the sharp threshold behavior at −ε =
eV has been weakened and is relaxing into the overbias SPP
resonance due to the smoothed distribution function under the
temperature effect. Meanwhile, the temperature effect has also
sensitively hidden the two-electron energy cutoff line −ε =
2eV , leading to the long and small tail into the energy larger
than 2eV .

Furthermore, we study the properties of the intensity of the
overbias light emission as a function of the temperature. Since
the non-Gaussian part has the prefactor λ = gcz

2
0 compared

to the Gaussian part, we consider the Gaussian and non-
Gaussian emission separately and define their intensities as
I 2e

G,nG = ∫ 2eV

eV
	G,nGdε, respectively. In Fig. 12, we observe

that both the Gaussian and non-Gaussian intensities increase
with temperature in the temperature range shown in the figure.
It is interesting to note that for high enough temperature
the heating effect smears out the Fermi edge and leads to
a saturation of the non-Gaussian emission. Furthermore, we
find that the intensities do not increase monotonically with
the bias voltages. Hence, it would be interesting to study
the temperature dependence of the overbias light emission,
in order to distinguish thermally induced emission from the
pure quantum effect at low temperatures.

IV. CONCLUSION

To summarize, motivated by the experimental observation
of photons emitted by tunnel junctions carrying the energy
larger than the bias voltage |ε| > eV , we have developed a
theoretical model to describe the electron-SPP mode interac-
tion based on the dynamical Coulomb blockade theory.

In combination with the Keldysh path integral formalism,
by treating the Gaussian and non-Gaussian contributions sepa-
rately, our theory has shown that the non-Gaussian fluctuations
give rise to the overbias photon emission, which can explain
and reproduce the experimentally observed photon emission
with energies larger than the single-particle energy limit eV .
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Furthermore, due to the smeared edge of the Fermi distribution
function at finite temperature, our result also shows that the
electron tunneling is sensitively affected by the temperature,
thus influencing the overbias emission. The critical point at the
bias voltage −ε = eV is strongly weakened, and the overbias
peak becomes a mixture of the Gaussian and non-Gaussian
noise. In addition, we also consider the interesting case when
the bias voltage is far from the SPP resonance; here we set
the resonance close to the two-electron energy limit, and we
argue that this regime is suitable to distinguish the Gaussian
and non-Gaussian contributions even at finite temperature and
in the case of sharp resonance. Finally, we investigate the tem-
perature dependence of the photon intensities in the overbias
region at different bias voltages and show that it allows us to
distinguish the quantum emission from a pure heating effect.
In conclusion, our work enables us to model the light emission
due to the electron-SPP mode interaction in nanosize contacts
and can be applied to more complex junctions.
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APPENDIX: EXPANSION

Here, we describe some useful intermediate results for
the derivation of the non-Gaussian rate, Eq. (12), and the

expansion of the action of the tunnel conductor Sc to the
fourth order in the fluctuating fields. According to the Gaussian
averages 〈〈
ω〉〉 and 〈〈
ω
T

−ω〉〉, we obtain

〈〈ϕ+(ω)〉〉 = iα[Y (ω)eiωt − X(ω)],

〈〈ϕ−(ω)〉〉 = iα[Q(ω)eiωt − P (ω)],

〈〈ϕ+
ω ϕ+

ω′ 〉〉 = 2πX(ω)δ(ω + ω′),

〈〈ϕ+
ω ϕ−

ω′ 〉〉 = 2πY (ω)δ(ω + ω′),

〈〈ϕ−
ω ϕ+

ω′ 〉〉 = 2πP (ω)δ(ω + ω′),

〈〈ϕ−
ω ϕ−

ω′ 〉〉 = 2πQ(ω)δ(ω + ω′),

with

X(ω) = Snc(ω)
|z̃ω|2
ω2

+ 1

ω2
[W (ω)Re{z̃ω} + iωIm{z̃ω}],

Y (ω) = Snc(ω)
|z̃ω|2
ω2

+ 1

ω2
[W (ω) − ω]Re{z̃ω},

P (ω) = Snc(ω)
|z̃ω|2
ω2

+ 1

ω2
[W (ω) + ω]Re{z̃ω},

Q(ω) = Snc(ω)
|z̃ω|2
ω2

+ 1

ω2
[W (ω)Re{z̃ω} − iωIm{z̃ω}],

with Snc(ω) = gc[ 1
2W (ω + eV ) + 1

2W (ω − eV ) − W (ω)].
After performing the symmetrization over ω, we obtain

〈〈
S(4)

c

〉〉 = − iπα2gc

16

∫∫
dωdω′{[Y (ω′)eiω′t −X(ω′)] [Y (−ω′)e−iω′t −X(−ω′)][X(ω)[−F (0)+2F s(ω)+2F s(ω′)−2F ss(−ω−ω′)]

+Q(ω)F (0) − P (ω)F (ω) − Y (ω)F (−ω)] + [Q(ω′)eiω′t − P (ω′)][Q(−ω′)e−iω′t − P (−ω′)][Q(ω)[−F (0)+2F s(ω)

+ 2F s(ω′) − 2F ss(−ω−ω′)] − P (ω)F (ω) − Y (ω)F (−ω) + X(ω)F (0)] + [Y (ω′)eiω′t − X(ω′)][Q(−ω′)e−iω′t

−P (−ω′)][ − [Q(ω) + X(ω)]F (−ω′) + Y (ω)F (−ω − ω′) + P (ω)F (ω − ω′)] + [Q(ω′)eiω′t − P (ω′)][Y (−ω′)e−iω′t

−X(−ω′)][ − [Q(ω) + X(ω)]F (ω′) + Y (ω)F (−ω + ω′) + P (ω)F (ω + ω′)]}
with the defined functions F s(ω) = [F (ω) + F (−ω)]/2 and F ss(−ω − ω′) = [F (−ω − ω′) + F (−ω + ω′) + F (ω − ω′) +
F (ω + ω′)]/4, in which F (ω) = F1(ω) + F2(−ω) = (−ω − eV ) + W (−ω − eV ) + (−ω + eV ) + W (−ω + eV ) as given in
the text.

One can show that the terms proportional to eiω′t and the ones proportional to e−iω′t are interchanged under the operation
ω′ → −ω′. Using

∫
eiωt eiεt dt = 2πδ(ω + ε) and keeping the terms in the lowest order of gcZ

2
0 , the non-Gaussian rate Eq. (12)

can be expressed as

	
(4)
nG = π2α2|T |2gc

4

∫
dω{Y (−ε)X(ε)[X(ω)[−F (0) + 2F s(ω) + 2F s(ε) − 2F ss(−ω + ε)] − P (ω)F (ω) − Y (ω)F (−ω)

+Q(ω)F (0)] + Q(−ε)P (ε)[Q(ω)[−F (0) + 2F s(ω) + 2F s(ε) − 2F ss(−ω + ε)] − P (ω)F (ω) − Y (ω)F (−ω)

+X(ω)F (0)] + Y (−ε)P (ε)( − [Q(ω) + X(ω)]F (ε) + Y (ω)F (−ω + ε) + P (ω)F (ω + ε))

+Q(−ε)X(ε)( − [Q(ω) + X(ω)]F (−ε) + Y (ω)F (−ω − ε) + P (ω)F (ω − ε))}.
This expression can be cast as Eq. (12) in the main text after replacing all the functions, i.e., X,Y,P,Q, and F , by their definitions.
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[21] N. L. Schneider, J. T. Lü, M. Brandbyge, and R. Berndt, Phys.
Rev. Lett. 109, 186601 (2012).

[22] A. Burtzlaff, N. L. Schneider, A. Weismann, and R. Berndt,
Surf. Sci. 643, 10 (2016).

[23] G. Hoffmann, R. Berndt, and P. Johansson, Phys. Rev. Lett. 90,
046803 (2003).

[24] N. L. Schneider, G. Schull, and R. Berndt, Phys. Rev. Lett. 105,
026601 (2010).

[25] A. Downes, P. Dumas, and M. Welland, Appl. Phys. Lett. 81,
1252 (2002).

[26] R. Pechou, R. Coratger, F. Ajustron, and J. Beauvillain, Appl.
Phys. Lett. 72, 671 (1998).

[27] J. W. Gadzuk and E. W. Plummer, Phys. Rev. Lett. 26, 92
(1971).

[28] N. L. Schneider, P. Johansson, and R. Berndt, Phys. Rev. B 87,
045409 (2013).
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