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We construct a bosonic analog of a two-dimensional topological Dirac semimetal (DSM). The low-energy
description of the most basic 2D DSM model consists of two Dirac cones at positions ±k0 in momentum space.
The local stability of the Dirac cones is guaranteed by a composite symmetry ZT I

2 , where T is time reversal and I
is inversion. This model also exhibits interesting time-reversal and inversion symmetry breaking electromagnetic
responses. In this work we construct a bosonic version by replacing each Dirac cone with a copy of the O(4)
nonlinear sigma model (NLSM) with topological theta term and theta angle θ = ±π . One copy of this NLSM
also describes the gapless surface termination of the 3D bosonic topological insulator (BTI). We compute the
time-reversal and inversion symmetry breaking electromagnetic responses for our model and show that they are
twice the value one gets in the DSM case matching what one might expect from, for example, a bosonic Chern
insulator. We also investigate the stability of the BSM model and find that the composite ZT I

2 symmetry again
plays an important role. Along the way we clarify many aspects of the surface theory of the BTI including the
electromagnetic response, the charges and statistics of vortex excitations, and the stability to symmetry-allowed
perturbations. We briefly comment on the relation between the various descriptions of the O(4) NLSM with
θ = π used in this paper (a dual vortex description and a description in terms of four massless fermions) and the
recently proposed dual description of the BTI surface in terms of 2 + 1-dimensional quantum electrodynamics
with two flavors of fermion (N = 2 QED3). In a set of four Appendixes we review some of the tools used in the
paper and also derive some of the more technical results.
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I. INTRODUCTION

Massless 2+1-D Dirac fermions are one of the most
well-studied systems in condensed matter physics. Such
fermions often appear in relativistic field theories [1], but more
importantly are known to be the low-energy description of the
electronic structure of some 2D materials, e.g., graphene [2],
and as the effective theory of the surface states of time-reversal
invariant 3+1-D topological insulators [3]. In fact, in the latter
two contexts alone, there have been thousands of articles in
the past decade that discuss the properties of this fermion
system.

The impetus for the intense focus on 2+1-D Dirac fermions
was the experimental discovery of graphene [2]. Years earlier
[4,5] it had been theoretically predicted that the electronic
band structure of graphene near the Fermi level would be
linear dispersing, gapless cones, i.e., massless Dirac fermions.
Indeed, the unique signature of the Dirac fermions was quickly
confirmed in quantum Hall measurements on graphene [2].
Graphene itself has four Dirac cones, two more than the mini-
mum of two required to satisfy the fermion doubling theorem
in 2+1-D systems with time-reversal invariance. This theorem
implies that a 2+1-D material with time-reversal symmetry
cannot harbor an odd number of gapless Dirac cones. Hence,
the system will have a semimetallic nature with an even
number of pointlike Fermi surfaces and is often referred to
as a topological Dirac semimetal (DSM). Remarkably, this
2+1-D (semi)metal is relatively stable upon the requirement of
some additional constraints: (i) intercone scattering across the
Brillouin zone is suppressed (translation symmetry is sufficient
for noninteracting fermions), (ii) intracone gapping terms

are forbidden (minimally we need the composite symmetry
of time reversal combined with inversion), and (iii) the
system does not form a superconductor (we need to preserve
U (1)c). With these conditions the 2+1-D DSM forms a
robust topological semimetal phase. Interestingly, if we relax
condition (ii) then the system will form a gapped insulator but
will typically have an unusual electromagnetic response (e.g.,
a quantum anomalous Hall effect [6] or a charge polarization
[7]).

We can find examples of systems with an odd number of
massless Dirac cones as well. If we do not require time-reversal
symmetry then there exist 2+1-D lattice models which have
an odd number of Dirac cones, e.g., a Chern insulator model
tuned to the topological critical point represents such a system
[6]. On the other hand, there is another way to avoid the
Fermion doubling theorem while maintaining time reversal
(T ). However, this requires something more drastic, i.e., we
can produce an odd number of 2+1-D Dirac cones, and
maintainT , by considering the surface of a 3+1-DT -invariant
(electron) topological insulator (TI). The nontrivial Z2 3+1-
D topological phase is known to have an odd number of
massless Dirac cones on its surface with a characteristic
spin-momentum locking feature of the states on the Fermi
surface. Additionally, there must be at least one massless
Dirac cone located at a time-reversal invariant momentum in
the Brillouin zone. This is unlike the generic 2+1-D DSM
for which the Dirac cones can exist at arbitrary points in the
Brillouin zone [8]. It is well known that theories with an odd
number of 2+1-D massless Dirac cones typically exhibit the
parity anomaly [1], and there are usually subtle features that
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must be carefully examined when considering the properties
of such systems.

More recently there have been rapid developments in
understanding symmetry-protected topological (SPT) phases
with interactions [9–26]. One development in which we are
particularly interested is the prediction that there could be
bosonic analogs of the electron topological insulators. Some
examples are the bosonic integer quantum Hall effect (BIQHE)
[15,16,27–33] and the 3D T -invariant bosonic topological
insulator (BTI) [17,18,22,34]. The former is characterized by
its quantized Hall conductance, which must come in integer
multiples of 2e2/h, while the latter is characterized by a
quantized magnetoelectric polarizability with a � angle of
2π instead of the usual value of π for the nontrivial phase of
the electron topological insulator [35]. These bosonic phases
are not topologically ordered, but they are SPTs that require
interactions to exist; at zeroth order the interactions serve to
prevent the system of bosons from forming a trivial Bose
condensate.

Consider, for a moment, the 3+1-D BTI. In analogy to the
electron TI we expect the surface states to exhibit unusual
properties. Indeed, for one example, the surface theory can
exhibit an effectively 2+1-D T -breaking phase with a Hall
conductance of ±e2/h which is forbidden for a purely 2+1-D
BIQHE phase. To understand the properties of this exotic
surface state several equivalent representations of the surface
theory have been given in the literature: (i) a network model of
quasi-1D strips that are arrayed to form a surface and coupled,
(ii) a dual description of the surface bosonic theory in terms
of dual vortices, and (iii) an effective field-theory description
in terms of the O(4) nonlinear sigma model (NLSM) with
a topological theta term with coefficient θ = π . All three of
these representations of the surface were discussed in Ref. [17].
The description in terms of the O(4) NLSM with θ = π was
also discussed in Ref. [36]. Very recently, inspired by new
developments in the description of the electron TI surface
[37–39], a new dual description of the BTI surface in terms of
2 + 1-D quantum electrodynamics with two fermion flavors
(N = 2 QED3) was proposed [40]. This new dual description
was then derived in a coupled wires construction in Ref. [41].
When any one of these theories is tuned to criticality it
represents a surface state in a symmetry-preserving gapless
phase.

In this paper our goal is to develop a thorough understanding
of the surface of the 3+1-D BTI and then to subsequently
combine multiple copies of the theory to form a symmetry
preserving bosonic semimetal state that can exist intrinsically
in 2+1-D without breaking some requisite symmetries. This
type of semimetal represents the bosonic analog of a 2+1-D
DSM. We will present an effective theory for the bosonic
semimetal and explore in detail the requirements for its stabil-
ity, the resulting electromagnetic responses, and possibilities
for neighboring gapped phases with and without intrinsic
topological order. We then provide an explicit coupled wires
construction of this semimetal model.

Our paper is organized as follows: In Sec. II we give an
overview of our main results, and in Sec. III we review the
properties of the 2+1-D fermion Dirac semimetal. Next, in
Sec. IV, we review some properties of the surface theory of
the 3+1-D T -invariant BTI and provide additional results

and a synthesis of previous work. In Sec. V we discuss our
effective theory for the 2+1-D bosonic semimetal built from
multiple copies of the bosonic TI surface states, including
the quasitopological electromagnetic response, and the sta-
bility/instabilities of this critical state. In Sec. VI we derive
a criterion for identifying a gapless semimetal phase from
the value of its polarization response. Finally, in Sec. VII
we provide the details of the appropriate wire bundles and
couplings to generate the bosonic semimetal using a coupled-
wire array. Following the conclusions we have a set of detailed
Appendixes that review some of the technical tools used in the
paper and also contain explicit derivations of some of our more
technical results.

II. MOTIVATION AND OVERVIEW OF RESULTS

In this section we provide additional background motiva-
tion, describe the logic behind our construction of a bosonic
analog of a topological DSM, and give an overview of our
results. Henceforth, we call such a system a bosonic semimetal
(BSM). Readers interested in the technical details of the paper
can refer to the specific sections for more information. As
mentioned above, the main goal of this paper is to construct a
model of gapless bosons in 2+1-D which shares many of the
properties of the minimal two-node DSM of free fermions
studied, for example, in Ref. [7]. The main properties we
will be interested in are: (1) the electromagnetic response
of the system to perturbations which break time-reversal or
inversion symmetry and (2) the perturbative stability of the
gapless, low-energy effective theory. As for any topological
semimetal, translation symmetry is an important ingredient as
it prevents any scattering processes between the different Dirac
or bosonic “cones” (which are generically located at different
points in momentum space). Indeed, in our BSM effective
theory, translation symmetry will forbid perturbations which
could drive the system into a gapped state with only a trivial
electromagnetic response.

Before we begin let us make a note about units. In this paper
we consider systems constructed from fermions or bosons
which all carry a single unit of electric charge e. For most
of the paper we work in units where e = 1 but will restore the
charge e in all final response formulas. We also take � = 1,
which means that the conductance quantum e2

h
= 1

2π
in our

units. We always express Hall conductances in units of e2

h
.

We start out in Sec. III by reviewing the continuum
description of the two-node DSM. We focus our review on the
time-reversal and inversion symmetry breaking electromag-
netic responses of the DSM and also the local (in momentum
space) stability of the Dirac cones in the DSM. If the DSM
is perturbed by gap-inducing terms that break T or I then
the respective electromagnetic responses of the DSM take the
forms

LT = e2

4π
εμνλAμ∂νAλ (2.1a)

LI = e

2π
εμνλBμ∂νAλ, (2.1b)

where Aμ is the potential for the external electromagnetic
field, and Bμ is another three-vector field whose meaning
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is as follows. The two Dirac cones of the DSM are located
at different points in the Brillouin zone with a wave-vector
difference of 2Bi [for simplicity we choose their locations to be
at k± = ±(Bx,By)], and the two cones are separated in energy
by an amount 2Bt . The effective Lagrangian LT represents
a 2+1-D quantum Hall response with a Hall conductance
of 1, while LI represents a charge polarization and orbital
magnetization response whose precise meaning was discussed
in Ref. [7] and which we review in Sec. VII. We note that we
have suppressed a sign in these terms that tracks the nature of
the inversion or time-reversal breaking.

Typically point-node semimetals are unstable in 2+1-D
unless extra symmetries are imposed. The stability of the
DSM is due in part to the translation symmetry of the system.
This symmetry prevents scattering processes between Dirac
cones at different locations in the Brillouin zone. The local
stability (in momentum space) of each Dirac cone in the DSM
(at the level of free fermions) is then guaranteed by U (1)c
charge conservation symmetry and a composite symmetry
ZT I

2 , consisting of a time-reversal transformation combined
with an inversion transformation. These two symmetries forbid
translation invariant terms which could gap out a single Dirac
cone independently of any of the others.

Having reviewed the DSM, we can make the following
observation about a minimal, two-cone DSM which directly
informs our construction of a BSM model. Since a single Dirac
cone is the surface theory for the 3+1-D electron topological
insulator (ETI) [3], the degrees of freedom in the two-node
DSM can be viewed as being constructed from two copies
of the ETI surface theory but with the two copies separated
in momentum space. We are therefore motivated to construct
a model for a BSM from two copies of the surface theory
for the 3D bosonic topological insulator (BTI) but with those
two copies also separated in momentum space. According to
Ref. [17], one representation of the surface theory of the BTI
is the O(4) NLSM with theta term and θ = π , and it is this
theory which we discuss next.

In Sec. IV we give a lengthy review of the properties of the
O(4) NLSM with θ = π as it appears on the surface of the BTI.
There are two reasons for giving an extended discussion of the
BTI surface theory: (1) Understanding just one copy of this
theory is a prerequisite for understanding our BSM effective
theory, which consists of two copies of the surface theory,
and (2) we provide alternate derivations (and also proofs in
Appendixes B and C) for some of the properties of this model.
These discussions, and some additional results, lend further
support to many of the claims about this model that have
already appeared in the literature. In particular we provide an
extended discussion on the stability of the gapless nature of
the O(4) surface theory that we will require for our discussion
of the BSM theory.

To begin, we recall that the O(4) NLSM can be equivalently
formulated in terms of an SU (2) matrix field

U =
(

b1 −b∗
2

b2 b∗
1

)
, (2.2)

where the components b1 and b2 are interpreted as representing
physical bosons on the surface of the BTI. As such, they
transform under the physical U (1)c charge conservation

symmetry as bI → eiχbI for I = 1,2 (in units where the
boson charge e = 1). This theory also has a time-reversal
symmetry ZT

2 under which b1 and b2 are separately invariant.
The action for this model includes the conventional NLSM
“kinetic energy” term, and the topological theta term,

Sθ [U ] = 1

24π2

∫
d3x εμνλtr[(U †∂μU )(U †∂νU )(U †∂λU )] ,

(2.3)
where tr[· · · ] is the usual trace operation. In the action, the
theta term is multiplied by a parameter θ , which is an angular
variable defined modulo 2π . For the surface theory of the BTI
we have θ = π [17]. In Sec. IV we review the calculation of the
time-reversal breaking electromagnetic response of this theory
via its dual vortex description (developed in Refs. [17,42]) and
also discuss an alternate method for calculating this response
that confirms this result. We also comment on the relation
between the descriptions of the BTI surface used in this paper
and the recently proposed dual description of the BTI surface
in terms of N = 2 QED3 [40,41]. We then go on to give a
careful discussion of the effects that perturbations allowed by
the U (1)c and ZT

2 symmetries have on the surface theory. These
perturbations were only discussed briefly in Ref. [17]. Finally,
we review the construction of the symmetry-preserving Z2

topologically ordered surface phase of the BTI which was first
derived in Ref. [17].

After all of this setup we are ready to introduce an
effective theory of the BSM. In Sec. V we introduce a system
with two copies of the O(4) NLSM with theta term. One
copy has θ = π and the other copy has θ = −π , and just
as in the case of the fermionic DSM, the two copies of
the O(4) NLSM are located at positions k± = ±(Bx,By) in
momentum space. In our description of the effective theory we
discern how charge conservation, translation, time-reversal,
and inversion symmetries act on the fields in the model,
and then compute the time-reversal and inversion breaking
electromagnetic responses analogous to those found in the
fermion DSM. We find that these responses also exist in the
BSM case and have exactly twice the value of the responses
in Eq. (2.1) for the free fermion DSM. This doubling of the
response for bosonic vs fermionic systems is similar to what
happens for the case of the ETI and BTI in 3D and also the
integer quantum Hall effects for fermions and bosons in 2D
[15,17].

We then go on to give a partial discussion of the stability
of our theory. We argue that the translation symmetry prevents
us from coupling one copy of the theory to the other copy
in order to drive the system into a trivial insulating state
and that the combined ZT I

2 symmetry ensures the stability
of each individual O(4) NLSM. Finally, we discuss some 2D
topologically ordered phases which can be accessed from our
BSM model by condensing suitable bound states of the vortices
in the theory. In particular, we find a phase with Z2 × Z2

topological order which breaks either the time-reversal or the
inversion symmetry of the original BSM model. This phase is
essentially two copies of the Z2 topologically ordered phase
found in Ref. [17] but in which the time-reversal and the
inversion symmetry of the BSM exchange the two copies.
We also discuss phases with Z2 topological order which break
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either the inversion or the time-reversal symmetry of the BSM
model.

In Sec. VI we give a different perspective on the stability
of any semimetal phase by relating the gaplessness of the
semimetal to its polarization response. In particular, we con-
sider three broad classes of 2D gapped phases with translation
symmetry which can have a polarization response, and we
show that for these classes of gapped phases the polarization in
the x or y direction (in the presence of inversion symmetry) is
always of the form r e

2a0
, where r ∈ Q is a rational number and

a0 is the lattice spacing. In addition, for each class of gapped
phase we are able to relate the number r to simple measurable
properties of that phase. A crucial point is that the three
classes of gapped phases that we consider are representative
of all gapped 2D phases with translation symmetry which
could be expected to exhibit a polarization response. Our
result then implies that a generic (i.e., nonrational) value of
the polarization in a system with translation symmetry, and
in particular a continuously tunable polarization, indicates a
gapless semimetal phase. This shows that the gaplessness of
the semimetal is directly related to its physically measurable
polarization response. Since this response is expected to be
reasonably robust, this also provides additional evidence for
the stability of the semimetal phase itself.

Finally, in Sec. VII we give an explicit construction of
the BSM model using an array of coupled 1D wires. This
construction is motivated by the fact that 2+1-D fermion
DSMs can be constructed out of arrays of coupled wires [7].
A building block for the simplest two-node DSM of fermions
is a wire with a single 1+1-D massless Dirac fermion. When
coupled, arrays of these wires may exhibit three related phases:
(i) if an array of these wires is dominated by an intrawire
topological tunneling term then the system becomes a 2+1-D
weak topological insulator that exhibits a charge polarization
parallel to the wires, (ii) if the array is dominated by an
interwire topological tunneling term then the array forms a
Chern insulator phase with an integer Hall conductivity of
±e2/h, or (iii) if there is significant competition between an
intrawire and interwire tunneling there can be a parent critical
phase, i.e., a DSM, which is unstable to the formation of phase
(ii) if time reversal is broken and unstable to phase (i) if the
Dirac nodes meet at the boundary of the Brillouin zone and
annihilate.

A key observation of this construction is that a wire with
a single 1+1-D Dirac fermion can be thought of as a narrow
strip of a σxy = e2/h integer quantum Hall system. Hence,
by analogy, we can immediately propose a 1+1-D bosonic
wire model to serve as the building block for a coupled-wire
construction of our 2+1-D BSM state: a narrow strip of the
BIQHE, which will contain the degrees of freedom from both
edges. An edge of the BIQHE can be described by an SU (2)1

Wess-Zumino-Witten (WZW) conformal field theory (CFT)
[15,17], therefore our 1+1-D bosonic wires will consist of
two (time-reversed) copies of an SU (2)1 WZW theory. The
fields in each wire consist of bosons which carry charge 1
under the U (1)c symmetry.

It has been known for some time that one copy of the
O(4) NLSM with θ = π can be obtained from an array of
coupled wires in which each wire contains a single SU (2)1

WZW theory [17,42,43]. After giving a brief review of this

result, we then show how our BSM model can be derived
starting with 1+1-D bosonic wires containing two SU (2)1

WZW theories. We construct interwire tunneling terms which
not only give the desired O(4) NLSM’s with theta angles π

and −π , but also shift the two copies of the O(4) NLSM’s
to the locations k± = ±(Bx,By) in momentum space (our
specific construction gives the case with Bx = 0). We then
show how to assign transformations under time-reversal and
inversion symmetry to the fields in the coupled wires model
so that the transformations of the fields in the BSM model
are recovered in the continuum limit. We conclude Sec. VII
with a discussion of the different physical interpretations of
the coupled wire constructions of the DSM and BSM models,
and we also indicate how inversion and time-reversal breaking
perturbations of the BSM model can be explored within its
quasi-1D coupled wire description.

In Appendix A we review the canonical quantization of the
O(4) NLSM and also work out the commutators for this theory
when expressed in terms of the constrained bosonic variables
b1 and b2. This information is used in Sec. IV to investigate the
effects of symmetry-allowed perturbations on the BTI surface
theory and also in Sec. V to discuss the stability of the BSM
model to symmetry-allowed perturbations. In Appendix B we
study a family of exact, finite energy vortex solutions to the
NLSM equations of motion, and we compute the quantum
numbers carried by global excitations in the background of a
single vortex. In particular, we are able to prove the result, first
argued for in Ref. [17], that the main effect of the theta term
in the O(4) NLSM is to attach a charge θ

2π
of the boson b1

to vortices in the phase of b2, and vice versa. In Appendix C
we discuss the role of the theta term of the O(4) NLSM in
the Minkowski spacetime path integral of the theory. Finally,
in Appendix D we resolve an apparent paradox associated
with our alternative calculation, via auxiliary fermions, of the
time-reversal breaking electromagnetic response of the BTI
surface theory.

III. REVIEW OF THE FREE-FERMION DIRAC
SEMIMETAL

Before going into the details of our construction of a bosonic
analog of a Dirac semimetal (DSM), we first give a review
of the free fermion DSM for the simple case of two Dirac
points in the Brillouin zone. Our review closely follows the
discussion in Ref. [7], in which the electromagnetic responses
of various topological semimetals were derived. Specifically,
we discuss a square lattice model of a DSM, its symmetry
requirements, its low-energy description, the time-reversal and
inversion symmetry breaking electromagnetic responses of the
system, and finally the local stability of the Dirac nodes.
A particularly important point is that the local stability of
the DSM, which means the stability against perturbations
that can gap out individual Dirac cones, is guaranteed by
enforcing a composite symmetry ZT I

2 , whose action consists
of a time-reversal transformation composed with an inversion
transformation. This composite symmetry will also play an
important role in our bosonic semimetal model.

We also note here that the surface theory of the 3D electron
topological insulator (ETI) is a single Dirac fermion. We
may therefore view the simple two cone DSM as a theory
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constructed from similar degrees of freedom as two copies of
the surface theory of the 3D ETI (but with the two copies of
the theory having opposite helicity). This observation is the
motivation for our construction of a bosonic semimetal from
two copies of the surface theory of the 3D bosonic topological
insulator (BTI), which is an O(4) NLSM with theta term and
theta angle θ = ±π . We return to this point in later sections.

A. Lattice model of a DSM

We now describe a lattice model, discussed in more detail
in Ref. [7], which realizes a DSM phase for a certain range
of parameters. The model consists of two species/orbitals of
spinless fermions at half filling on the square lattice. We
therefore have a two-component complex fermion operator
�cn at each site n = (nx,ny) of the square lattice. We take
the lattice spacing a0 = 1. A number of symmetries play an
important role in this system. They are discrete translation
symmetry, U (1)c charge conservation symmetry, ZT

2 time-
reversal symmetry, and ZI

2 inversion symmetry. The fermions
carry charge 1, so they transform under U (1)c as

U (1)c : �cn → eiχ �cn, (3.1)

where χ is a constant phase. The action of the time-reversal and
inversion symmetries on the fermions is given in terms of the
antiunitary operator T and the unitary operator I, respectively.
We will specify the action of these operators on the complex
fermions after introducing the DSM model.

The Bloch Hamiltonian of this model takes the form

H2D(k) = sin(kx)σx + (1 − m − cos(kx) − ty cos(ky))σ z,

(3.2)

where σa , a = x,y,z are the Pauli matrices acting on the orbital
space. The sin(kx) term represents a complex hopping for
fermions in the x direction, while the terms multiplying σ z

represent a mass term as well as real hopping terms in the x

and y directions. This system has time-reversal and inversion
symmetry where T and I act on the fermions as

T �cnT −1 = σ z�cn (3.3)

and

I�cnI−1 = σ z�c−n. (3.4)

We see that both time-reversal and inversion symmetry act with
opposite signs on the two species of fermion. We note that the
inversion symmetry also negates the spatial coordinate, and T
is antiunitary.

The energies of the two bands of this model as a function
of k are given by

E(k)± = ±
√

sin2(kx) + (1 − m − cos(kx) − ty cos(ky))2.

(3.5)

When ty = 0 and m = 0, this model has a band touching at
kx = 0 for any value of ky . However, for nonzero m and ty the
bands touch only at isolated points along the line kx = 0 in
the Brillouin zone. The location of these points is determined
by the ratio of m and ty . We focus our attention on the regime
of m > 0 but m � 2 (at m = 2 the band touching moves to

kx = π ). In this regime the low-energy physics of this system
is completely described by two continuum Dirac Hamiltonians
obtained by linearizing around the two band touchings. These
band touchings are located at the points k± = (0,±By) in the
Brillouin zone, where By is the positive solution, in the first
Brillouin zone, to the equation m + ty cos(By) = 0.

Performing a k · P expansion around k± we find the low-
energy Dirac Hamiltonians H±(k)

H±(k) = kxσ
x ± ty sin(By)(ky ∓ By)σ z. (3.6)

We emphasize that these two low-energy Hamiltonians have
opposite signs on their ky terms. This means that the two
Dirac fermions which emerge at low energy in this model
have opposite helicity, i.e., the Berry phase for electrons on
the two Fermi surfaces when the chemical potential is tuned
away from the Dirac points have opposite signs. This form
of the low-energy Hamiltonian for each Dirac point leads us
directly to the continuum description of the DSM.

B. Continuum description of the DSM

For the continuum description of the DSM, we take as
our starting point an effective Hamiltonian for two continuum
Dirac fermions ψA and ψB with opposite helicity (which is
exactly what we found in the linearized Bloch Hamiltonian
for the DSM model). We then shift the zero in momentum in
the ky direction by By . This leads to the Hamiltonian

HDSM (k) = kxI ⊗ σx + kyσ
z ⊗ σ z − ByI ⊗ σ z, (3.7)

where for simplicity we have taken ty sin(By) = 1 to make the
dispersion of the Dirac cones isotropic. In position space the
original lattice fermions �cn may be written at low energies in
terms of the two continuum Dirac fermions ψA and ψB as

�cn

a0
∼ ψA(x)eiByy + ψB(x)e−iByy, (3.8)

where x = (x,y) = (nxa0,nya0), and we have temporarily re-
stored the lattice spacing. Now we define the multicomponent
fermion operator � = (ψA,ψB)T . One can show that I and T
act on � as

I�(x)I−1 = σx ⊗ σ z�(−x) (3.9)

and

T �T −1 = σx ⊗ σ z�. (3.10)

In particular, these operators exchange ψA and ψB , i.e., they
each map fermions from one Dirac cone to the other.

At this point we may go ahead and generically allow for an
offset Bx to the kx location of the Dirac points, as well as an
offset Bt between the energies of the two Dirac points. This
leads to the effective Hamiltonian

HDSM (k) = kxI ⊗ σx − Bxσ
z ⊗ σx + kyσ

z ⊗ σ z

−ByI ⊗ σ z + Btσ
z ⊗ I. (3.11)

To more clearly see the final structure we can pass to a
Lagrangian formulation of this system. The Lagrangian has
the form

L = �̄(i /∂ + /A + (σ z ⊗ I)/B)�, (3.12)
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where we define the gamma matrices γ 0 = I ⊗ σy, γ 1 =
−iI ⊗ σ z, and γ 2 = iσ z ⊗ σx , and where �̄ = �†γ 0. We
have also employed the Feynman slash notation /∂ = γ μ∂μ,
etc., and included minimal coupling to the external electro-
magnetic field Aμ connected to the U (1)c symmetry.

C. Electromagnetic response of the DSM

We now briefly review the electromagnetic response of
the DSM to time-reversal and inversion symmetry breaking
perturbations. The two mass terms

�I = I ⊗ σy (3.13)

�T = σ z ⊗ σy (3.14)

are the only matrices that anticommute with the kinetic energy
terms of the DSM Hamiltonian in Eq. (3.11) and preserve
translation invariance (i.e., they do not couple ψA to ψB , which
are located at different points in momentum space). The first
term �I breaks inversion symmetry, while the second term
�T breaks time-reversal symmetry.

As shown in Ref. [7], perturbing the system with a term
−m�T leads to the 2D electromagnetic response LT from
Eq. (2.1), i.e., it induces a quantum anomalous Hall effect
with Chern number/Hall conductance [6] σxy = ±e2/h. On
the other hand, perturbing the system with −m�I leads to
the quasi-1D electromagnetic response LI from Eq. (2.1).
This response indicates that, when starting from the gapped,
inversion breaking phase and taking m → 0, the DSM limit
will have a charge polarization and/or orbital magnetization.
In fact, the response does not depend on the magnitude of m

at all, and the dependence on m enters only as a global sign
sgn(m) multiplying the response formula. Interestingly, this
second response term depends crucially on the properties of
the Dirac nodes, i.e., their relative positions in momentum and
energy.

D. Combined T I symmetry ensures local stability
of the Dirac cones

We end this section with a quick comment about the stability
of the DSM. We saw in the previous section that the only mass
terms that we can add to Eq. (3.11) which are allowed by
translation symmetry are the terms �T and �I . If we add only
one of these mass terms to the system then it will gap out both
of the Dirac cones. However, suppose we tried to add a linear
combination of these two mass terms. The two possible linear
combinations are

�± = 1
2 (�I ± �T ). (3.15)

Adding just one of these terms would gap out either ψA

(add �+) or ψB (add �−). However, both of these terms
are forbidden by the composite symmetry T I. Therefore, the
local stability of the Dirac cones is guaranteed by the combined
time-reversal times inversion symmetry T I [44]. If we enforce
this symmetry, then it is impossible to gap out one of the Dirac
cones independently of the other cone, and hence they can only
be removed if they are perturbed enough to collide with each
other in momentum space. This means that with translation

T I and U (1)c preserved the DSM is a (perturbatively) stable
2+1-D semimetal phase.

IV. THE SURFACE THEORY OF THE BOSONIC
TOPOLOGICAL INSULATOR

In this section we review, and also clarify some aspects
of, the surface theory of the 3+1-D BTI. Since our BSM
model is constructed from two copies of the surface theory of
the BTI, it is essential that we discuss this theory in detail.
The surface theory of the BTI was first derived in Ref. [17],
where it was obtained from a network model constructed from
coupled edge theories of the BIQH state (we briefly discuss this
network model in Sec. VII). The authors of Ref. [17] then used
this theory, as well as a dual vortex description of the theory,
to derive many possible surface phases for the BTI. These
different possible surface phases were further investigated and
clarified in Ref. [18] which utilized monopole configurations
of the external gauge field to probe the properties of the various
phases.

In this section we provide a detailed account of the surface
theory of the BTI, which is equivalent to an O(4) NLSM with
theta term and theta angle θ = π . We first discuss the basic
properties of this theory and also the transformations of the
O(4) field under the physical symmetry group of the BTI. We
then give a summary of the dual description of the theory but
from a different point of view than the one given in Ref. [17].
We then show how the time-reversal symmetry breaking
electromagnetic response of the BTI surface can be obtained
from the dual description. We also describe an alternative
method for calculating the electromagnetic response of the
theory. This method uses a well-known formula derived by
Abanov and Wiegmann in Ref. [45], which allows one to
write the original O(4) NLSM as a path integral over a set of
auxiliary fermions which couple to the O(4) field. Since the
O(4) NLSM is such a difficult system to study, having two
different methods for calculating the response which give the
same answer is strong corroborating evidence. We next discuss
the stability of the gapless theory. In particular, we carefully
study the effects of symmetry-allowed perturbations, some of
which were briefly discussed in Ref. [17]. Finally, we end
the section with a brief review of the symmetry-preserving,
topologically ordered surface phase for the BTI proposed in
Ref. [17]. After all of this is complete we will be ready to
discuss the properties of the bosonic semimetal state.

A. The O(4) NLSM with theta term

In this subsection we review the description of the sur-
face of the bosonic topological insulator (BTI) in terms of
one 2+1-D O(4) nonlinear sigma model (NLSM) with a
topological theta term having θ = π . The O(4) NLSM field
N = (N1,N2,N3,N4) is a real-valued unit vector field (i.e.,
N · N = 1). The action for this theory with a general theta
angle takes the form

S =
∫

d3x
1

g
(∂μNa)(∂μNa) − θSθ [N], (4.1)
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where we sum over all repeated indices (μ = t,x,y and
a = 1,2,3,4), and the theta term is

Sθ [N] = 1

12π2

∫
d3x εμνλεabcdN

a∂μNb∂νN
c∂λN

d. (4.2)

The coefficient g is a positive coupling constant. Small g

favors an ordered phase in which Na is constant everywhere in
spacetime, while large g favors a disordered phase. The theta
term only plays a role in the disordered phase, so we assume
that we are working in the large g regime.

For the description of the surface of the BTI, it is more
convenient to use a formulation of the O(4) NLSM in terms
of an SU (2) matrix U which is related to the unit vector N via
U = N4I + ∑3

a=1 iNaσ a . In terms of U the action takes the
form

S =
∫

d3x
1

2g
tr[∂μU †∂μU ] − θSθ [U ], (4.3)

where now

Sθ [U ] = 1

24π2

∫
d3x εμνλtr[(U †∂μU )(U †∂νU )(U †∂λU )],

(4.4)

and tr[. . . ] denotes the usual trace operation for matrices. In
this form, the O(4) NLSM is also known as the SU (2) principal
chiral nonlinear sigma model (PCNLSM).

The renormalization group (RG) flows of general SU (N )
PCNLSM’s in the (g,θ ) plane were studied qualitatively in
Ref. [46]. In that paper the authors argued that the theory with
θ = π could either be gapless or have a degenerate ground
state. In the gapless case they predicted an RG fixed point at
θ = π and g = g∗ for some finite g∗, while for the degenerate
case they predicted that g flows off to positive infinity. In
this paper we focus only on the first possibility of a gapless
theory. We might also suspect that the O(4) NLSM at θ = π

is gapless on the grounds that its lower dimensional cousin,
the O(3) NLSM with θ = π , was also shown to be gapless in
Ref. [47].

For the description of the BTI surface, one writes U in
terms of two complex fields b1 and b2 as

U =
(

b1 −b∗
2

b2 b∗
1

)
, (4.5)

where b1 and b2 are subject to the constraint
∑2

I=1 |bI |2 = 1,
which is equivalent to the original constraint N · N = 1 of the
O(4) NLSM. We should think of b1 and b2 as representing the
physical bosonic degrees of freedom on the surface of the BTI,
and so we will refer to bI , I = 1,2, as “bosonic fields” for the
rest of the paper. Using these fields we see that the O(4) NLSM
can be viewed as being essentially a theory of two complex
scalar fields b1 and b2, however, these fields interact with each
other due to (i) the constraint

∑
I |bI |2 = 1 and (ii) the theta

term Sθ [U ].
The BTI is a gapped bosonic phase of matter protected by

U (1)c charge conservation symmetry and ZT
2 time-reversal

symmetry. Under these symmetries the bosonic fields bI

transform as

U (1)c : bI → eiχbI (4.6)

ZT
2 : bI (t,x) → bI (−t,x), (4.7)

for I = 1,2, where x = (x,y) denotes the spatial coordinates.
These transformations give the total symmetry group the
structure U (1)c � ZT

2 , where the semidirect product “�”
indicates that the U (1)c and ZT

2 transformations do not
commute with each other. As we explain in the next few
paragraphs, the O(4) NLSM theory with a theta term only
possesses this time-reversal symmetry when θ is an integer
multiple of π .

To see why the only time-reversal symmetric values of θ are
θ = nπ, n ∈ Z, we first make a transformation to Euclidean
spacetime. Euclidean time is defined by τ = it , and the theta
term in Euclidean spacetime has the form

Sθ,E[N] = − i

12π2

∫
d3xE εμνλεabcdN

a∂μNb∂νN
c∂λN

d,

(4.8)

where d3xE = dτd2x is the integration measure for Euclidean
spacetime, and now μ,ν,λ = τ,x,y. The theta term is now
imaginary, which means that e−θSθ,E [N] appears as a phase
factor in the Euclidean path integral. Under a time-reversal
transformation we send t → −t , i → −i (since this symmetry
is antiunitary), and bI (t,x) → bI (−t,x). Since τ = it , τ is
invariant under this transformation. Therefore we find that
under time reversal Sθ,E[N] → −Sθ,E[N] [48].

If we impose boundary conditions on N such that N tends to
a fixed configuration N0 at infinity in all directions of Euclidean
spacetime, then we may identify Euclidean spacetime with the
sphere S3. The sphere S3 is also the configuration space for
the O(4) NLSM, so in this situation the theta term becomes
quantized,

1

12π2

∫
d3xE εμνλεabcdN

a∂μNb∂νN
c∂λN

d = nI ∈ Z,

(4.9)

where nI is the instanton number of the field configuration N.
The quantization of this integral follows from the homotopy
group π3(S3) = Z. In fact, the theta term is just the pull-
back to spacetime of the volume form on S3. Since Euclidean
spacetime (with the boundary conditions discussed above) is
just another copy of S3, the integral is required to be an integer,
which just counts the number of times that the spacetime S3

wraps around the configuration space (also S3) of the O(4)
NLSM field N.

In the Euclidean path integral, the theta term appears in an
exponential, e−θSθ,E [N] = eiθnI , which shows that the parameter
θ is only defined modulo 2π . We have already seen that a time-
reversal transformation sends θ → −θ . It is then immediate
to see that the only time-reversal symmetric values of θ are
θ = nπ , n ∈ Z, since it is only these values of θ which satisfy
θ ≡ −θ mod 2π . It was shown in Ref. [17] that the gapless
surface termination of the BTI is described by the O(4) NLSM
with θ = π, and hence preserves time-reversal symmetry.

Another comment can be made about the interpretation of
the theta term in Euclidean spacetime. It was shown in Ref. [42]
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that the one-instanton configuration of the O(4) field N can be
re-interpreted in terms of vortex configurations of the bosonic
fields b1 and b2. Recall that a vortex of the field bI is a point
in space around which the phase of bI winds by 2π . In 2+1-D
the spacetime trajectory, or worldline, of a vortex is just a line
(or curve) in spacetime. In Euclidean spacetime (compactified
to the sphere S3 via appropriate boundary conditions), the
worldlines of vortices become closed loops. In Ref. [42] it was
shown that the one-instanton configuration of the field N is
equivalent to a linking configuration in which the worldline
of a vortex in the phase of b1 links exactly once with a
worldline of a vortex in the phase of b2. Since this configuration
contributes a phase of eiθ to the Euclidean path integral, the
authors of Ref. [42] interpreted this to mean that a vortex in
b1 and a vortex in b2 have a mutual statistical angle of θ .
This means that a braiding process in which a vortex in b1

makes a complete circuit around a vortex in b2 should result
in an overall phase factor eiθ for the wave functional of the
quantum field theory. This result was then used in Ref. [17]
to deduce a topologically ordered surface phase for the BTI.
We will review this topologically ordered phase at the end
of this section. We remark in passing that similar arguments
were also used in Ref. [49] to deduce the braiding statistics of
particle and looplike excitations in gauged SPT phases from
their description in terms of NLSM’s with theta term.

It is clear from the discussion in the preceding paragraphs
that the theta term plays an important role in the physics of the
O(4) NLSM. However, in this section we relied extensively
on the interpretation of the theta term in Euclidean spacetime
to understand its special properties. To better understand the
quantum mechanics of the O(4) NLSM with theta term, it
is desirable to understand the role the theta term plays in the
Minkowksi spacetime path integral. In Appendix C we explain
the precise interpretation of the theta term in Minkowksi
spacetime and show that the theta term does indeed contribute
a phase eiθ to the path integral for configurations of the O(4)
field in which a vortex in the boson b2 makes a complete circuit
around a vortex in b1. This result confirms the interpretation
of the theta term given by Senthil and Fisher in Ref. [42],
which was based on an analysis of the theory in Euclidean
spacetime. In addition, following an argument from Ref. [50],
this result implies that a bound state of a vortex in b1 and a
vortex in b2 carries intrinsic angular momentum J = θ

2π
. At

θ = π we have J = 1
2 , which means that the vortex bound

state is a fermion, as was discussed in Ref. [17].

B. Time-reversal breaking response

In this section we discuss the calculation of the time-
reversal breaking electromagnetic response of the O(4) NLSM
with θ = π . This response is in principle obtained by coupling
the NLSM to the external electromagnetic field Aμ, turning on
a small time-reversal breaking perturbation, integrating out
the matter fields b1 and b2, and then setting the time-reversal
breaking perturbation to zero. In practice, however, it is very
difficult to integrate out the NLSM field directly, and so we
make use of two alternative and completely different methods
for calculating the time-reversal breaking response of the
theory. The fact that these two methods give the same answer
strongly suggests that the answer is the correct one, even

though it has not, as yet, been checked with a direct calculation
in the O(4) NLSM.

1. Method 1: Dual vortex description

The first method for calculating the time-reversal breaking
response of the BTI surface is to use the dual vortex description
of the O(4) NLSM which becomes possible at the special
value of θ = π . This dual vortex description was first obtained
in Ref. [42] using a lattice formulation of the theory. The
continuum version of this dual vortex theory was then used
extensively in Ref. [17] to study the possible surface phases of
the BTI. In this section we give a review of this dual description
from an alternative perspective that is complementary to that
given in Refs. [17,42].

We have already explained how the O(4) NLSM can be
regarded as a theory of two complex scalar fields b1 and b2

subject to the constraint
∑

I |bI |2 = 1. This constraint has a
strong effect on the physics of vortices in the fields b1 and b2.
Recall that a vortex in the field b1 is a point in space around
which the phase of b1 winds by 2π . At such a point the phase
of b1 is undefined, and so the amplitude of b1 must vanish at
that point. However, since the fields b1 and b2 are subject to
the constraint discussed above, this means that in the core of
a vortex in b1 we have |b2| = 1. This indicates that vortices in
b1 can trap charge of b2 and vice versa. In fact, in Minkowski
spacetime the main effect of the theta term is to attach charge
θ

2π
of boson b1 to vortices in b2 and vice versa. A heuristic

argument for this effect was given in Ref. [17]. In Appendix B
we prove this result explicitly by computing the charges of
global excitations on the background of certain exact vortex
solutions of the NLSM equations of motion.

We first give a short review of the dual vortex description
of the theory of an ordinary charged scalar field in 2+1-D and
refer the reader to Ref. [51] for a more detailed description of
this technique. Consider first an ordinary complex scalar field
b, with a Lagrangian of the form

L = |(∂μ − iAμ)b|2 − μ

2
|b|2 − λ

4
|b|4 + . . . . (4.10)

For later convenience we write b in a density phase represen-
tation as b = ρeiϑ . When μ < 0 this system has a symmetry-
broken ground state in which ρ = ρ̄ =

√
−μ

λ
and the phase

of b is locked to a particular value (thus spontaneously
breaking the original U (1)c symmetry under b → eiχb). The
low-energy excitations about this ground state are the gapless
fluctuations of the phase ϑ of b (the Goldstone modes), which
are described by

L = ρ̄2(∂μϑ − Aμ)2 + . . . . (4.11)

The fluctuations ϑ consist of two parts, ϑ = ϑs + ϑv . The
smooth part ϑs consists of small fluctuations around the fixed
vacuum value of ϑ . The second part ϑv consists of vortices
in which the phase winds by some multiple of 2π around the
vacuum manifold (i.e., the circle defined by |b| = ρ̄).

In the usual boson-vortex duality a sequence of transfor-
mations is now applied to the Lagrangian Eq. (4.11) (more
precisely, these transformations are applied to the path integral)
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to obtain a final Lagrangian of the form

L = |(∂μ − iαμ)φ|2 − μ̃

2
|φ|2 − λ̃

4
|φ|4 + . . .

− 1

4ρ̄2

(
1

2π
εμνλ∂ναλ

)2

− 1

2π
εμνλAμ∂ναλ. (4.12)

This expression features two new fields: the gauge field αμ

and the complex scalar field φ. The field αμ is a noncompact
gauge field which is introduced to represent the conserved
number current Jμ of the original bosons b via the equation
Jμ = 1

2π
εμνλ∂ναλ. Noncompactness of αμ is just the statement

that εμνλ∂μ∂ναλ = 0, which guarantees the conservation of Jμ.
The excitations of the complex scalar field φ represent vortices
in the phase of the original boson b. The vortex current of b,
defined by Kμ = 1

2π
εμνλ∂ν∂λϑ

v , is given in this representation
by the number current of φ as Kμ = i(φ ∂μφ∗ − φ∗∂μφ) (in
other words, the U (1) charge of φ is the vortex number). We
have also included a number of potential energy terms which
could appear in the action for the vortex field φ.

We now apply this technique to the boson b2 in the O(4)
NLSM while leaving b1 untransformed (a nearly identical
discussion can be had if one chooses to dualize b1 and leave b2

fixed instead). We therefore define a complex scalar field φ2,+
which creates a vortex in the phase of b2. From the discussion
earlier in this section, and the results of Appendix B, φ2,+
carries charge θ

2π
under the U (1)c symmetry. We represent

the conserved number current J
μ

2 of b2 using the noncompact
gauge field α2,μ.

At this point, the dual vortex description of the O(4) NLSM
with general angle θ takes the form

L = 1

g
|(∂μ − iAμ)b1|2+

∣∣∣∣
(

∂μ−iα2,μ − i
θ

2π
Aμ

)
φ2,+

∣∣∣∣
2

+ . . .

− 1

κ2

(
1

2π
εμνλ∂να2,λ

)2

− 1

2π
εμνλAμ∂να2,λ, (4.13)

where the ellipses stand for possible potential energy terms.
The field φ2,+ carries charge of both the dual gauge field α2,μ

and the external field Aμ. The theta term is entirely responsible
for the coupling of φ2,+ to Aμ. Finally, the constant κ2 is
given by κ2 = g

4ρ̄2
2
, where ρ̄2 is the absolute value of b2 in the

condensed phase.
Interestingly, exactly at the special value θ = π , it becomes

possible to replace our description of the theory in terms of
b1 and φ2,+ with a much more symmetric dual description
in terms of two types of vortices φ2,+ and φ2,−, as we now
explain. At θ = π , the vortex φ2,+ carries charge 1

2 of boson
b1. In this case the composite field

φ2,− = φ2,+b∗
1 (4.14)

carries charge − 1
2 of boson b1 (note that we are using ∗ to

represent antiparticles). The field φ2,− can be understood as
a vortex-anti-boson bound state, and at θ = π it is a natural
object to consider because of the fact that it carries the same
magnitude of charge as the original vortex φ2,+ (note that we
can always define φ2,− in this way for any value of θ , but this
field only transforms nicely under the symmetries of the theory
when θ = π ).

Further justification for the introduction of the field φ2,−
can be obtained by recalling that at the special value θ = π ,
the time-reversal symmetry of the O(4) NLSM is restored.
It follows that the vortex φ2,+ should have a well-defined
transformation under time reversal when θ = π . Vortices
should transform into antivortices under the action of time
reversal, since time reversal is an antiunitary symmetry. On
the other hand, the time-reversal partner of φ2,+ should have
the same U (1)c charge as φ2,+ in order to preserve the structure
of the symmetry group of the BTI. It turns out that φ∗

2,− has
just the right properties to be the partner of φ2,+ under the
time-reversal operation.

We see then that at the special value θ = π , the dual
description of the O(4) NLSM is given most naturally in terms
of the two-component vortex field �2 = (φ2,+,φ2,−)T , which
transforms under the U (1)c and ZT

2 symmetries according to

U (1)c : �2 → e
i
χ

2 σ z

�2 (4.15)

ZT
2 : �2(t,x) → σx�∗

2(−t,x). (4.16)

In terms of the pair of vortex fields making up �2, the final
dual action takes the form

L =
∑
s=±

∣∣∣(∂μ − iα2,μ − i
s

2
Aμ

)
φ2,s

∣∣∣2
+ . . .

− 1

κ2

(
1

2π
εμνλ∂να2,λ

)2

− 1

2π
εμνλAμ∂να2,λ,

(4.17)

where again the ellipses stand for possible potential energy
terms. Note that the two species of vortex carry the same
charge of α2,μ but opposite charge of Aμ.

As stated in Ref. [17], the original boson field b1 is now
represented approximately by

b1 = φ2,+φ∗
2,−, (4.18)

i.e., it is a bound state of a vortex (φ2,+) and an antivortex
(φ∗

2,−). We should, however, take a moment to consider this
equation carefully. Interestingly, the two sides of this equation
do not have the same dimensions. The field b1 is dimensionless,
while the complex scalar fields φ2,+ and φ2,− carry dimensions

of (length)−
1
2 [this is true because the vortex current Kμ has

dimensions of (length)−2]. A more precise version of this
equation would be to write

b1 ∼ g φ2,+φ∗
2,−, (4.19)

where g is the NLSM coupling which has units of length and
where an arbitrary dimensionless constant could be included
on the right-hand side of this equation.

The time-reversal breaking response of the O(4) NLSM
at θ = π can now be explored using the dual description in
Eq. (4.17). A gapped, time-reversal breaking phase is realized
when, for example, φ2,+ condenses and φ2,− becomes gapped,
or vice versa. In order to induce this phase, one needs to include
in Eq. (4.17) a potential energy of the form

V (�2) = μ�
†
2σ

z� + λ+|φ2,+|4 + λ−|φ2,−|4, (4.20)
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where λ± are both positive. The choice of which vortex
condenses and which is gapped depends on the sign of μ. Note
that the term �

†
2σ

z� explicitly breaks time-reversal symmetry.
When φ2,+ condenses and φ2,− is gapped, we may (at

low energies) set φ2,− = 0 and φ2,+ = const. to find that
the minimum energy configuration is realized when α2,μ =
− 1

2Aμ, which yields the response

Leff = e2

4π
eμνλAμ∂νAλ, (4.21)

where we have restored the charge e. This response yields a
“half” bosonic quantum Hall effect with σxy = 1

2
2e2

h
. If we had

instead condensed φ2,− and gapped out φ2,+, we would have
found the same response but with the opposite sign.

2. Method 2: Abanov-Wiegmann integration over fermions

The second method for calculating the time-reversal break-
ing response of the BTI surface uses a formula due to Abanov
and Wiegmann [45] which allows one to express the O(4)
NLSM with theta term as a path integral over a set of auxiliary
fermions. The fermions in this construction must also carry
charge under the physical U (1)c symmetry, so we can directly
couple the fermions to the U (1)c gauge field Aμ and then
integrate out the fermions to deduce the electromagnetic
response of the system. A similar approach was used recently
in Ref. [52] to calculate the electromagnetic response of a
bosonic integer quantum Hall state in 4+1-D.

The starting point for this construction is a multicomponent
fermionic field � = (ψ1,ψ2,ψ3,ψ4)T , where each of ψa ,
a = 1,2,3,4, is a two-component Dirac fermion in 2+1-D. In
what follows we use tensor product notation in order to treat
spinor and “isospace” indices on equal footing. All indices
are traced over in the evaluation of the fermion path integral.
The rightmost 2 × 2 matrix in the tensor products acts on the
spinor indices of ψa , while the left and middle matrices in the
tensor products act on the isospace indices.

We define two sets of gamma matrices γ μ and �a by

γ 0 = I ⊗ I ⊗ σy (4.22a)

γ 1 = −iI ⊗ I ⊗ σ z (4.22b)

γ 2 = iI ⊗ I ⊗ σx, (4.22c)

and

�1 = σx ⊗ σx ⊗ I (4.23a)

�2 = σy ⊗ σx ⊗ I (4.23b)

�3 = σ z ⊗ σx ⊗ I (4.23c)

�4 = I ⊗ σy ⊗ I, (4.23d)

where I is the 2 × 2 identity matrix. In this case we can also
define a fifth matrix for the second set,

�5 = I ⊗ σ z ⊗ I. (4.24)

The first set of gamma matrices obey a Clifford Algebra
in Lorentz signature, {γ μ,γ ν} = 2ημνI8×8, and are used to
construct the derivative operator for the Dirac action. The
second set obeys a Euclidean Clifford Algebra, {�a,�b} =

2δabI8×8, and is used to construct the mass terms which couple
� to the O(4) field N.

According to Ref. [45], a fermionic action of the form

Lf = �̄

(
i /∂ − cos(ν)M�5 − sin(ν)M

4∑
a=1

Na�a

)
�,

(4.25)

with large mass M > 0 will produce, after integration over the
fermions, an O(4) NLSM of the form of Eq. (4.1) with the
theta angle given by

θ = π
(
1 − 9

8 cos(ν) + 1
8 cos(3ν)

)
. (4.26)

Taking ν = π
2 gives θ = π . The evaluation of this fermion path

integral is not completely straightforward, and so we refer the
reader to Ref. [45] as well as Ref. [53] for explanations of this
calculation.

If we set ν = π
2 − δ for small δ, then the action takes the

form

Lf = �̄

(
i /∂ − (Mδ)�5 − M

4∑
a=1

Na�a

)
�. (4.27)

Since the only time-reversal invariant values of θ are multiples
of π , this corresponds to adding a small time-reversal breaking
perturbation to the action [we would now get θ ≈ π (1 − 3

2δ)
after integrating out the fermions]. We now calculate the
response of the theory in the presence of this perturbation
and then take the limit δ → 0.

Before we proceed with the calculation, we mention the
following puzzle. The calculation in Ref. [45] is controlled
by an expansion in powers of M−1, so we must take M to
be large for this expansion to make sense. On the other hand,
the coupling constant g of the O(4) NLSM is related to M

via a formula of the form M ∝ 1/g. For M large we seem
to obtain an O(4) NLSM in the ordered (small g) phase,
whereas we are interested in studying the disordered (large g)
phase. It is therefore not immediately clear why the calculation
in this subsection agrees with the response calculation of
Ref. [17] using the dual vortex theory, which we reviewed in
the previous subsection. We resolve this puzzle in Appendix D,
where we use the Abanov-Wiegmann formula to argue that
the theory Sf = ∫

d3x i�̄ /∂� of four massless fermions ψa

must possess exactly the same topological response as the
original O(4) NLSM at θ = π . In the rest of this section we
will therefore calculate the response of the fermions ψa to the
time-reversal breaking mass term −(Mδ)�̄�5�. According
to the arguments in Appendix D, this response (or at least its
topological part), should be identical to the response of the
O(4) NLSM at θ = π .

Before we can do this we need to determine the charges qa

of the four Dirac fermions ψa . These charges should be chosen
so that the coupling term

∑4
a=1 Na�̄�a� is invariant under

the U (1)c symmetry. Each fermion ψa is assumed to transform
as

U (1)c : ψa → eiqaχψa. (4.28)

245110-10



BOSONIC ANALOG OF A TOPOLOGICAL DIRAC . . . PHYSICAL REVIEW B 94, 245110 (2016)

The transformation of the O(4) field under the U (1)c symmetry
was described in Eq. (4.6). Using the relation

b1 = N4 + iN3 (4.29)

b2 = −N2 + iN1, (4.30)

and the explicit form of the matrices �a , we find that in order
for the term

∑4
a=1 Na�̄�a� to be invariant under U (1)c, the

charges qa must satisfy the matrix equation⎛
⎜⎝

−1 0 0 1
0 −1 1 0

−1 1 0 0
0 0 −1 1

⎞
⎟⎠

⎛
⎜⎝

q1

q2

q3

q4

⎞
⎟⎠ =

⎛
⎜⎝

1
1

−1
1

⎞
⎟⎠. (4.31)

This matrix has a null vector (1,1,1,1)T , so the solution of
the system is not unique. One possible way to parametrize a
general solution is ⎛

⎜⎝
q1

q2

q3

q4

⎞
⎟⎠ =

⎛
⎜⎝

q̄

−1 + q̄

q̄

1 + q̄

⎞
⎟⎠, (4.32)

where the parameter q̄ is completely arbitrary because of the
nonuniqueness of the solution. In what follows, we keep q̄ to
be some arbitrary number. Importantly, when we calculate a
physical quantity pertaining to the O(4) NLSM we will see
that the answer is independent of q̄.

We now define the diagonal matrix of charges Q =
diag(q1,q2,q3,q4) ⊗ I, given explicitly by

Q = q̄I ⊗ I ⊗ I + 1
2 (σ z ⊗ σ z ⊗ I − σ z ⊗ I ⊗ I), (4.33)

(note that it acts as the identity on the spinor indices of the
fermions) and then use this matrix to couple � to Aμ to obtain
the action

Lf,gauge = �̄

(
i /∂ − (Mδ)�5 − M

4∑
a=1

Na�a + Q /A

)
�.

(4.34)

We now integrate out the fermions and collect the lowest order
terms in derivatives involving only Aμ, because those terms
will give the dominant contribution to the electromagnetic
response. For completeness we give a basic outline of this
calculation below.

Since we are currently only interested in the electromag-
netic response of the fermions, we set Na = 0 for the response
calculation. Integrating out � then gives

Seff[Aμ] = −i ln det
(
i /∂ − (Mδ)�5 + Q /A

)
= −iTr ln

(
i /∂ − (Mδ)�5 + Q /A

)
, (4.35)

where Tr[. . . ] indicates a trace over spacetime, spinor, and
isospace indices. We now write

Seff[Aμ] = −iTr ln(i /∂ − (Mδ)�5)

− iTr ln[1 + (i /∂ − (Mδ)�5)−1(Q /A)], (4.36)

and expand the second term using ln(1 + x) =∑∞
n=1(−1)n+1 xn

n
.

Here is a technical point. The effective action we wrote
down is divergent for δ → 0. Therefore a procedure is needed
to define the effective action for δ = 0. Let us indicate the
dependence of the effective action on δ by writing it as
Seff[Aμ,δ]. We follow Ref. [1] and define the renormalized
effective action at δ = 0 by

SR
eff[Aμ,0] = Seff[Aμ,0] − lim

δ→∞
Seff[Aμ,δ]. (4.37)

The second term in this expression also has a divergent term
which cancels the divergence from the first term. Now as
δ → ∞, the second term gives a finite contribution, which
is a Chern-Simons term. We find that

SR
eff[Aμ,0] = 1

2
trI [Q2�5]

sgn(δ)

4π

∫
d3x eμνλAμ∂νAλ,

(4.38)

where trI [. . . ] denotes a trace over isospace indices only (the
trace over spacetime and spinor indices has already been
performed). Since 1

2 trI [Q2�5] = −1, the final response is
given by

LR
eff = −sgn(δ)

e2

4π
εμνλAμ∂νAλ, (4.39)

where we have restored the charge e. The answer depends on
sgn(δ) and not sgn(δM) because the mass M is assumed pos-
itive in the Abanov-Wiegmann method. Note that the result is
independent of q̄ (the arbitrary offset to the charges of the four
fermions ψa), which is expected because we have calculated
a physical quantity related to the O(4) NLSM at θ = π .

C. Connection to the dual description of the BTI surface
in terms of N = 2 QED3

In this section we briefly comment on the relationship
between the descriptions of the BTI surface theory discussed
above: (i) the dual vortex description, (ii) the description in
terms of Abanov-Wiegmann fermions, and (iii) the recently
proposed dual description of the BTI surface in terms of 2 + 1-
D quantum electrodynamics with two flavors of Dirac fermion,
also known as N = 2 QED3 [40] (a quasi-1D derivation of this
dual description was later given in Ref. [41]).

Before writing down the dual description of Ref. [40],
we first remind the reader that in their original study of
the BTI in Ref. [17], Vishwanath and Senthil assigned an
additional “pseudospin” quantum number to the bosons b1 and
b2 for convenience, with b1 carrying spin 1 and b2 carrying
spin −1. We refer to the U (1) symmetry associated with
pseudospin conservation as U (1)s . Under this symmetry the
bosons transform as

U (1)s : b1 → eiξ b1, (4.40a)

b2 → e−iξ b2. (4.40b)

The fermions in the N = 2 QED3 description of the BTI
surface are charged under this U (1)s symmetry.

The N = 2 QED3 description of the BTI surface consists
of two flavors of Dirac fermions, χ1 and χ2, which can
be combined into one multicomponent spinor X = (χ1,χ2)T .
These fermions do not carry any U (1)c charge, but χ1 carries
spin 1 while χ2 carries spin −1. The time-reversal symmetry
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TABLE I. Charges and spins of the composite vortices of the
form φ1,±φ2,±. As was discussed in Ref. [17], and as we show in
Appendix C, a bound state of a vortex in b1 and a vortex in b2 is a
fermion.

φ1,+φ2,+ φ1,+φ2,− φ1,−φ2,+ φ1,−φ2,−

q 1 0 0 −1
s 0 −1 1 0

of the BTI acts on X like a particle-hole transformation. Both
fermions also carry charge 1 of a dual noncompact gauge field
αμ, whose curl represents the total number current J

μ
tot of the

bosons on the BTI surface via J
μ
tot = 1

2π
εμνλ∂ναλ. The dual

Lagrangian takes the form

L =X̄(i(I ⊗ γ μ)∂μ + (σ z ⊗ γ μ)As
μ + (I ⊗ γ μ)αμ)X

− 1

2π
εμνλAc

μ∂ναλ, (4.41)

where γ μ are the usual 2 × 2 gamma matrices for 2 + 1
dimensional Dirac fermions [e.g., the matrices from Eq. (4.22)
without the additional identity matrices in the tensor product],
X̄ = X†(I ⊗ γ 0), Ac

μ is the external electromagnetic field
(denoted simply by “Aμ” in the other sections of this paper),
and As

μ is a new external U (1) gauge field which probes the
U (1)s symmetry.

We now speculate on the relation between the fermions
χ1 and χ2, the vortices φ1,± and φ2,± from the dual vortex
description of the BTI surface, and the four Abanov-Wiegmann
fermions ψa . Out of the four vortices φ1,± and φ2,±, we may
form four composite vortices φ1,±φ2,± by taking every possible
combination of “+” and “−” vortices of species 1 and 2.
As discussed in Ref. [17], and as we show in Appendix C,
when θ = π a bound state of a vortex in b1 and a vortex in
b2 is a fermion. This means that the four composite vortices
φ1,±φ2,± are in fact fermions. The charges and spins of these
four composite vortices can be easily determined, and they are
shown in Table I. The spins sa of the four Abanov-Wiegmann
fermions ψa can also be calculated, using the same method
used to determine their charges qa (just like the charges, the
spins are also determined only up to an arbitrary offset s̄, which
we ignore here). The charges and spins of the four Abanov-
Wiegmann fermions are shown in Table II. Interestingly, each
composite vortex has precisely the same charge and spin as
one of the Abanov-Wiegmann fermions.

Since the composite vortices have precisely the same
charges and spins as the Abanov-Wiegmann fermions, and
since the composite vortices in the O(4) NLSM at θ = π are
known to be fermions, we conjecture that these objects should

TABLE II. Charges and spins of the fermions ψa used in
the Abanov-Wiegmann formula for the O(4) NLSM (ignoring the
arbitrary offsets q̄ and s̄ discussed in the main text).

ψ1 ψ2 ψ3 ψ4

q 0 −1 0 1
s 1 0 −1 0

be identified with each other. Furthermore, we propose that
the fermions χ1 and χ2 from the N = 2 QED3 description
can be identified with ψ1 and ψ3, respectively, which in turn
correspond to the composite vortices φ1,−φ2,+ and φ1,+φ2,−.
The particle-hole-like transformation of χ1 and χ2 under time
reversal then follows immediately from the transformations of
the vortices under time reversal. Also, since the individual
vortices φI,± couple to the noncompact gauge fields αI,μ,
where the conserved current of boson bI is given by J

μ

I =
1

2π
εμνλ∂ναI,λ, the composite vortices are coupled to the total

gauge field αμ = α1,μ + α2,μ, whose curl represents the total
boson number current. This is the exact same gauge field which
χ1 and χ2 couple to in the N = 2 QED3 description. It would be
an interesting challenge for future investigations to provide a
derivation of the N = 2 QED3 description of the BTI surface
directly from the description in terms of an O(4) NLSM at
θ = π . Such a derivation would provide the details necessary
to support the picture we have presented here.

D. Symmetry-breaking phases accessible from the dual theory

In this section we will complete our discussion, following
Ref. [17], of the symmetry-breaking phases of the surface of
the BTI which are accessible from the dual vortex description
of the O(4) NLSM at θ = π . We have already seen that
condensing just one vortex, say φ2,+, and gapping out the other
one leads to a phase which breaks time-reversal symmetry. In
that case it was necessary to add the time-reversal breaking
term �

†
2σ

z�2 to the Lagrangian to simultaneously gap out
one vortex and force the other vortex to condense.

There are two other basic options for condensing and/or
gapping out the vortices in the dual theory. These options are:
(i) condense both vortices and (ii) gap both vortices. Both
options lead to a superfluid phase which can be understood
as a phase in which one of the original fields b1 or b2

condenses. To identify which boson is condensing in each
case, it is convenient to separately gauge the U (1) symmetries
corresponding to b1 → eiχb1 and b2 → eiχb2. We couple b1

to the external field A1,μ and b2 to the external field A2,μ. In
this case the dual theory takes the form (recall that φ2,± carry
charge ± 1

2 of the boson b1)

L =
∑
s=±

∣∣∣∣
(

∂μ − iα2,μ − i
s

2
A1,μ

)
φ2,s

∣∣∣∣
2

+ . . .

− 1

κ2
(εμνλ∂να2,λ)2 − 1

2π
εμνλA2,μ∂να2,λ. (4.42)

Consider first the phase obtained by condensing both φ2,+
and φ2,−. To be precise, we consider the condensation 〈φ2,+〉 =
〈φ2,−〉∗ = v, which does not break ZT

2 . In this case we get a
Higgs term for the gauge field α2,μ and the external field A1,μ.
The gauge field α2,μ, which represents the Goldstone boson
of a condensate of b2, is therefore gapped and can be safely
integrated out. The resulting action contains only a Higgs term
for A1,μ, and so the phase where both φ2,+ and φ2,− condense
can be identified with the phase where b1 condenses.

Next consider the second case in which φ2,+ and φ2,− are
both gapped. We can then set φ2,+ and φ2,− equal to zero to
study the low energy properties of this phase. At this point the
gauge field α2,μ can be integrated out to give a Higgs term for
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A2,μ, and so the phase where both φ2,+ and φ2,− are gapped
can be identified with the phase in which b2 condenses. Finally,
we note that the dual vortex theory can be driven into either of
these two phases by a potential that does not break the U (1)c or
ZT

2 symmetries, which means that the superfluid phase of the
BTI surface spontaneously breaks the U (1)c symmetry (and it
does not break the time-reversal symmetry).

E. Symmetry-allowed perturbations

In this section we carefully investigate the effects of
symmetry-allowed perturbations on the BTI surface. This
is important as we want to understand the stability of the
gapless phase of the surface, and hence the related 2+1-D
semimetal, as explicitly as possible. In Ref. [17] Vishwanath
and Senthil initially studied the O(4) NLSM at θ = π

assuming a larger symmetry group consisting not only of
U (1)c charge conservation and ZT

2 time reversal, but also an
additional U (1)s “pseudospin” conservation symmetry and a
Zs

2 “spin-flip” symmetry. The action of the U (1)s symmetry on
the bosons bI was already given in Eq. (4.40). The Zs

2 spin-flip
symmetry acts as

Zs
2 : b1 ↔ b2. (4.43)

In the presence of these additional symmetries, interspecies
tunneling terms of the form b∗

1b2 + b∗
2b1, as well as chemical

potential terms of the form μ1|b1|2 + μ2|b2|2 (with μ1 �= μ2),
cannot be added to the Lagrangian. However, the BTI is
supposed to be protected by U (1)c and ZT

2 symmetry alone. It
is therefore essential to understand the effects that such terms
can have on the O(4) NLSM at θ = π , since we are allowed
to add these terms to the Lagrangian in the generic case when
the extra U (1)s and Zs

2 symmetries are broken.
Interspecies tunneling and chemical potential terms can

have a drastic effect on the physics of the O(4) NLSM with
theta term. However, we will show that these terms always
drive the system into a symmetry-breaking phase. To show this
we make use of the commutation relations of the O(4) NLSM
fields in the canonical formalism. Because of the constraint
between the bosonic fields bI , these commutation relations
must be derived using the Dirac Bracket formalism, and we
review their derivation in Appendix A.

There is a simple way to understand why interspecies
tunneling and chemical potential terms can have a strong
effect on the physics of the O(4) NLSM with theta term.
When these terms are strong, they can drive the fields into
a configuration in which the theta term vanishes identically.
This is easiest to see when the theta term is written in Hopf
coordinates on the sphere S3. In Hopf coordinates the fields b1

and b2 are parameterized as b1 = sin(η)eiϑ1 , b2 = cos(η)eiϑ2

with η ∈ [0,π/2], and ϑ1,ϑ2 ∈ [0,2π ), and the theta term takes
the form

Sθ [U ] = 1

2π2

∫
d3x cos(η) sin(η)εμνλ∂μη∂νϑ1∂λϑ2.

(4.44)

The interspecies tunneling and chemical potential terms take
the form

b∗
1b2 + b∗

2b1 = 2 cos(η) sin(η) cos(ϑ1 − ϑ2), (4.45)

and

μ1|b1|2 + μ2|b2|2 = μ1 cos2(η) + μ2 sin2(η)

= μ1 + (μ2 − μ1) sin2(η). (4.46)

Consider the interspecies tunneling term. When it is strong,
the lowest energy configurations of the O(4) field are those
configurations which have ϑ1 = ϑ2 + nπ for some integer n

which is even or odd depending on the sign of the coefficient
of this term. It is easy to see that the theta term vanishes
identically on this kind of field configuration. The analysis of
the chemical potential term is even simpler. Depending on the
sign of μ2 − μ1, the lowest energy configurations are those
with sin(η) = 0 or sin(η) = 1. In either case η is a constant
and so the theta term completely vanishes. This analysis makes
it clear that a more thorough understanding of the effects of
symmetry-allowed perturbations on the BTI surface is needed.

1. Interspecies tunneling

We now show that interspecies tunneling terms such as
b∗

1b2 + b∗
2b1, and even interaction terms such as (b∗

1b2)n +
(b∗

2b1)n for n � 1, do not condense (i.e., have zero expectation
value) in any time-reversal invariant state |�〉. This means that
interspecies tunneling terms can only condense in the ground
state of the system if that ground state breaks time-reversal
symmetry. It also means that weak interspecies tunneling terms
should have a negligible effect on the gapless time-reversal
invariant ground state of the O(4) NLSM with θ = π .

To show that these expectation values vanish, we canoni-
cally quantize the theory and study the (equal-time) commuta-
tion relations of the operators bI (x), their hermitian conjugates
b
†
I (x), and their canonically conjugate momenta. We discuss

the canonical quantization of this system in Appendix A. The
only commutation relation we will need here is

[bI (x),πJ (y)] = i
(
δIJ − 1

2bI (x)b†J (y)
)
δ(2)(x − y), (4.47)

where πI = ∂L/∂(∂tbI ) is the momentum conjugate to bI .
Consider this commutation relation first in the case where
I = J , say for I = J = 1. We have

[b1(x),π1(y)] = i
(
1 − 1

2b1(x)b†1(y)
)
δ(2)(x − y). (4.48)

In the Hilbert space the action of the time-reversal symmetry
ZT

2 is represented by an antiunitary operator T , obeying
T 2 = 1, which acts on the boson operators bI (x) as

T bI (x)T −1 = bI (x). (4.49)

Then we must have

T πI (x)T −1 = −πI (x), (4.50)

in order for the commutation relations to be invariant under
conjugation by T . Now suppose we have a state |�〉 of the
system which is time-reversal invariant, i.e., T |�〉 = |�〉.
Then the expectation value 〈�|O|�〉 of any operator O which
is odd under time reversal, T OT −1 = −O, must vanish.

We now apply this reasoning to the off-diagonal commuta-
tion relation

[b1(x),π2(y)] = −i 1
2b1(x)b†2(y)δ(2)(x − y). (4.51)

If we take the expectation value of both sides of this equation
in the state |�〉, then the expectation value of the left-hand
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side vanishes since all operators on the left-hand side are odd
under the action of T . We are left with the equation

0 = −i 1
2 〈�|b1(x)b†2(y)|�〉δ(2)(x − y), (4.52)

and integrating both sides of this equation over y yields the
final result

〈�|b1(x)b†2(x)|�〉 = 0. (4.53)

So we find that the operator b1(x)b†2(x) has zero expectation
value in any time-reversal invariant state |�〉. Going further, we
may first multiply both sides of Eq. (4.51) by any time-reversal
invariant operator Õ(x) and then take an expectation value in
|�〉 to find that

〈�|Õ(x)b1(x)b†2(x)|�〉 = 0. (4.54)

For example we could take Õ(x) = (b1(x)b†2(x))n−1 to find
that the expectation value of (b1(x)b†2(x))n vanishes for any
n � 1. We can conclude from this analysis that if interspecies
tunneling and interaction terms of the form (b∗

1b2)n + (b∗
2b1)n

do condense in the ground state of the system, then that
ground state must break time-reversal symmetry. However,
our analysis is not limited to just these terms, since there are
many more possible choices for the form of the operator Õ(x)
which we are allowed to insert.

2. Chemical potential

We now discuss the effects of the chemical potential term
on the quantum theory. In a theory of two independent complex
scalar fields, a chemical potential term, combined with suitable
quartic terms in the potential, can have many possible effects
on the fields in the theory. For example, both scalar fields
could become gapped, or they could both condense, or one
scalar field could become gapped and the other scalar field
could condense. But the O(4) NLSM is not a theory of two
independent complex scalar fields. Instead, the fields b1 and b2

obey the very important constraint
∑

I |bI |2 = 1. In fact, with
the help of the constraint, any chemical potential term can be
re-written as

μ1|b1|2 + μ2|b2|2 = 1
2 (μ1 + μ2) + 1

2 (μ1 − μ2)(|b1|2−|b2|2).

(4.55)

This result indicates that for the O(4) NLSM, the effect of a
general quartic potential of the form

V (b1,b2) = μ1|b1|2 + μ2|b2|2 + λ1|b1|4 + λ2|b2|4, (4.56)

is to cause one of the fields b1 or b2 to condense and to cause the
other field to become gapped. The choice of which of b1 or b2

is condensed and which is gapped depends only on the sign of
μ1 − μ2 (assuming that λ1 and λ2 are positive). In particular, it
seems that it is impossible to write down any potential which
could cause both b1 and b2 to condense. Further evidence
for this conclusion can be obtained from an analysis of the
commutation relations of the theory, as we now show.

Consider a state |�〉 which represents a superfluid ground
state of the O(4) NLSM for the boson b1. In such a state
the U (1) symmetry b1 → eiχb1 is spontaneously broken, and
〈�|b1|�〉 �= 0. In general, the state |�〉 is not an eigenstate of
the operator b1, or even of the phase of b1 (this can be seen from

the form of the symmetry broken ground state for the phase
excitations of an ordinary complex scalar field shown in Chap.
11 of Ref. [54], for example). Below we show that in the special
case where |�〉 is an eigenstate of b1, it is possible to prove that
〈�|b2|�〉 = 0. For the general case where |�〉 is not an eigen-
state of b1, we must instead rely on the qualitative argument
presented above, and another argument which we present be-
low which is based on the expression for b2 in terms of the vor-
tices φ1,± in b1 [Eq. (4.19) with the indices 1 and 2 swapped].

For now we assume that |�〉 is an eigenstate of the
operators b1(x) and b

†
1(x), and that b1(x)|�〉 = α|�〉 and

b
†
1(x)|�〉 = β|�〉, where α and β are complex numbers which

do not depend on x. The relation 〈�|b1(x)|�〉 = 〈�|b†1(x)|�〉∗
implies that β = α∗. Now assume that α �= 0 and take the
expectation value of Eq. (4.51) in the state |�〉. The left-hand
side vanishes and we find

0 = −i
α∗

2
〈�|b†2(y)|�〉δ(2)(x − y). (4.57)

Since we assumed that α �= 0, we are forced to conclude that
〈�|b†2(x)|�〉 = 0, which shows that b2 cannot condense in an
eigenstate of b1 (which we have argued is a representative
ground state of the superfluid phase of b1). Similarly, we can
show that b1 cannot condense in an eigenstate of b2.

Another intuitive way of seeing that b2 cannot condense in a
superfluid ground state of b1 is to recall that b2 can be expressed
in terms of the two kinds of vortices in b1 as b2 ∼ φ1,+φ∗

1,−.
In a superfluid ground state of b1 we expect that the vortices
φ1,± in b1 are gapped (i.e., not condensed), which means that
we should also have 〈b2〉 = 0 in such a state.

We conclude that the main effect of a chemical potential
term (combined with suitable quartic terms) is to spon-
taneously break the U (1)c symmetry, since this term will
condense one of b1 or b2 and gap out the other one. Our
analysis of the commutation relations confirms that the vacuum
expectation value of one boson always vanishes in a state which
represents a superfluid ground state of the other boson.

F. Symmetry-preserving state with topological order

In Ref. [17] Vishwanath and Senthil showed that it was
possible for the surface phase of the BTI to retain the full
U (1)c � ZT

2 symmetry while gapped, but at the expense of
having intrinsic topological order, and they went on to derive
a specific topologically ordered state for the BTI surface.
That same topologically ordered state was constructed in
Ref. [55] using a coupled wires construction consisting of
bosonic integer quantum Hall effect edge modes decorated
with toric code/Z2 topological order (Abelian Chern-Simons
theory with K matrix given by ±2σx) edge modes. In this
section we briefly review the construction of this topologically
ordered state via vortex condensation in the O(4) NLSM with
θ = π as shown in Ref. [17].

Recall the interpretation of the theta term that was derived
in Ref. [42] (see also our Appendix C). According to Ref. [42],
in the O(4) NLSM with θ = π , a braiding process in which a
vortex in the phase of b1 makes a full circuit around a vortex
in the phase of b2 results in an overall phase of eiπ in the
path integral for the theory. In other words, the vortex in b1
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and the vortex in b2 can be regarded as anyons with a mutual
statistical angle of π .

In the O(4) NLSM at θ = π , all quasiparticles with
nontrivial statistics can be built just from the fundamental
vortices φ1,+ and φ2,+. Indeed, recall that the other two vortices
φ1,− and φ2,− should really be understood as bound states
of a vortex and a boson: φ1,− ∼ φ1,+b∗

2 and φ2,− ∼ φ2,+b∗
1,

and are hence not topologically distinguishable from φ1,+ and
φ2,+. This means that the two vortices φ1,+ and φ2,+ should be
sufficient building blocks to describe any topologically ordered
states derived from this system. According to the arguments
given in the previous paragraph, these two vortices have a
mutual statistical angle of π , i.e., they are mutual semions.
Also, a composite of a vortex with itself, such as (φ1,+)2,
should be regarded as trivial (topologically equivalent to the
vacuum quasiparticle), since that object has the exact same
quantum numbers as the boson b2 and braids trivially with all
other quasiparticles. This property is partly responsible for the
Z2 structure of the topological order discussed below.

We can now consider condensing some field O which is
a composite of the vortices. Standard reasoning then tells
us that any quasiparticles that have trivial mutual statistics
with O will survive as anyons in the state obtained by
condensing O. In Ref. [17] Vishwanath and Senthil construct
a topologically ordered phase for the surface of the BTI by
choosing to condense O = φ1,+φ1,− in such a way that 〈O〉
is real. Since ZT

2 maps O → O∗, this condensation does
not break time-reversal symmetry. In addition, O is invariant
under U (1)c, so the resulting phase actually retains the full
U (1)c � ZT

2 symmetry of the BTI.
We see that both φ1,+ and φ2,+ have trivial mutual statistics

with O, so these vortices both survive as quasiparticles
in the condensed state. The condensed state therefore has
quasiparticle content (recall that fusing a vortex with itself
gives a trivial excitation)

{1,φ1,+, φ2,+, φ1,+φ2,+}, (4.58)

where “1” is the trivial (vacuum) quasiparticle and φ1,+φ2,+ is
the composite of the two vortices φ1,+ and φ2,+. The composite
vortex φ1,+φ2,+ is actually a fermion. The exchange and
mutual statistics of these quasiparticles is shown in Table III.
These quasiparticles with the braiding statistics shown in
Table III form aZ2 topological order which is characterized by
a K matrix K = 2σx and charge vector �t = (1,1)T . In a purely

TABLE III. Exchange and mutual statistics for the quasiparticles
contained in the topologically ordered surface phase of the BTI which
is accessed by condensing the composite field O = φ1,+φ1,−. The
diagonal entries in the table (exchange statistics) are the phase for
a process in which two identical particles exchange positions (so
a phase of π represents fermions), while the off-diagonal entries
(mutual statistics) are the phase picked up when a particle of one type
makes a complete circuit around a particle of a different type.

φ1,+ φ2,+ φ1,+φ2,+

φ1,+ 0 π π

φ2,+ π 0 π

φ1,+φ2,+ π π π

2D system which admits an edge to the vacuum, such a system
would exhibit a charge Hall conductance of �t · (K−1�t) = 1
(it is nonzero and therefore breaks time-reversal symmetry),
which hints that the topologically-ordered state on the surface
of the BTI realizes time-reversal symmetry in a way which is
forbidden in a real 2D system [17].

V. THE BOSONIC SEMIMETAL MODEL: TWO O(4)
NLSM’s WITH θ = ±π

In this section we introduce our bosonic semimetal (BSM)
model. The model is constructed from two copies of the O(4)
NLSM with theta term, and we take one copy to have θ = π

and the other copy to have θ = −π . The intuition behind the
construction of our model is as follows. Recall that the surface
theory of the 3D ETI is a single massless 2+1-D Dirac fermion.
The two-cone DSM phase in 2+1-D can then be viewed as
being constructed from two copies of the surface theory of the
3D ETI, with the two copies separated in momentum space and
having opposite helicity. For our BSM model we instead take
two copies of the O(4) NLSM with |θ | = π , (i.e., two copies
of the surface theory of the BTI), but we take the two copies
to have opposite signs of θ , which is the bosonic analog of the
helicity of the 2+1-D Dirac fermion. One way to see this is in
the construction by Abanov and Wiegmann in Ref. [45], where
the helicity of the auxiliary fermions directly determines the
sign of the theta angle in the resulting O(4) NLSM.

This section is broken up into several subsections as fol-
lows. We first define our BSM model and the transformations
of the fields in the model under U (1)c charge conservation
symmetry, U (1)t “translation” symmetry (to be defined), ZT

2
time-reversal symmetry, and ZI

2 inversion symmetry. We then
discuss the dual description of our BSM model and derive
the action of the different symmetries on the vortex fields in
the dual theory. Finally, we calculate the time-reversal and
inversion breaking electromagnetic responses of our BSM
model (again using two different methods) and compare the
result with that of the 2+1-D DSM model discussed in Ref. [7]
and reviewed in Sec. III. We then discuss the stability of
the model and find that the composite ZT I

2 symmetry again
plays an important role. Finally, we close the section with a
discussion of phases with Z2 and Z2 × Z2 topological order
which can be accessed from our BSM model by condensing a
composite of the vortices appearing in the dual description of
the model. We show that these phases break either the time-
reversal or the inversion symmetry of the BSM model. This
is interesting because the gapped phases which do not have
topological order also must break one of these two symmetries.

A. BSM model and symmetries

Our BSM model consists of two copies of an O(4) NLSM
with theta term, called “A” and “B” copies, with the theta
angles for the two copies being θA = π and θB = −π . We
write the model in terms of SU (2) matrices UA and UB , which
are each expressed in terms of bosonic fields bI,A and bI,B ,
I = 1,2, as in Eq. (4.5). The action for the system is

S =
∫

d3x

[
1

2g
tr[∂μU

†
A∂μUA + (A → B)]

−πSθ [UA] + πSθ [UB]

]
, (5.1)
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where the explicit form of the theta term was given in Eq. (4.4).
The fields in the BSM model transform under U (1)c charge

conservation symmetry, U (1)t “translation” symmetry, ZT
2

time-reversal symmetry, and ZI
2 inversion symmetry. In this

section we explain the action of each of these symmetries on
the fields bI,A and bI,B in the model. Just as for the DSM,
the composite symmetry ZT I

2 , consisting of a time-reversal
transformation followed by an inversion transformation, will
be important for guaranteeing the stability of the gapless phase
of our model.

The fields transform under the U (1)c symmetry as

U (1)c : bI,A/B → eiχbI,A/B. (5.2)

This just indicates that each bosonic field bI,A/B carries charge
1 of the external gauge field Aμ. Under the “translation” U (1)
symmetry, U (1)t , the fields transform as

U (1)t : bI,A → eiξ bI,A (5.3a)

bI,B → e−iξ bI,B . (5.3b)

To explain the physical meaning of this U (1) translation
symmetry, we need to imagine that our BSM model has been
obtained in the low-energy continuum limit of a bosonic lattice
model, as we now explain. Let us assume that the fields
bI,A and bI,B arise from the low-energy continuum limit of
a bosonic lattice model and that they are related to the lattice
boson operators in a way similar to the DSM case illustrated
in Eq. (3.8). In other words, the combinations eik+bI,A and
eik−bI,B appear in the expression for the lattice boson operator,
indicating that the continuum fields bI,A and bI,B are located
at positions k± = ±(Bx,By) in momentum space. We provide
an explicit example of such a model using a coupled-wire
construction in the next section.

To model this momentum shift, the kinetic term in the
Lagrangian for the fields bI,A and bI,B will feature a minimal
coupling to the vector field Bμ (and just as in the DSM case,
we also allow for a relative energy offset given by Bt ). The
translation properties of the fields bI,A and bI,B can then be
thought of in terms of carrying charges 1 and −1, respectively,
of the field Bμ, and the action is invariant under the U (1)t gauge
transformation in which the bosonic fields transform according
to Eq. (5.3) while Bμ → Bμ + ∂μξ . This is the physical origin
of the U (1)t symmetry [56].

We now discuss the discrete symmetries ZI
2 , ZT

2 , and ZT I
2 .

We take ZI
2 and ZT

2 to act on the bosonic fields as

ZI
2 : bI,A(t,x) → bI,B(t, − x) (5.4)

ZT
2 : bI,A(t,x) → bI,B (−t,x), (5.5)

and vice versa. The composite symmetry ZT I
2 then acts as

ZT I
2 : bI,A(t,x) → bI,A(−t, − x), (5.6)

with an identical transformation for bI,B (t,x). In the canonical
formalism, the action of time reversal is represented by
the antiunitary operator T , and the action of inversion is
represented by the unitary operator I. From the symmetry
transformations defined above we can see that these operators
satisfy the identities T 2 = 1, I2 = 1, and [T ,I] = 0, which
implies that (T I)2 = 1 as well.

Just as in the fermionic DSM case, the composite ZT I
2

symmetry is important for ensuring the local (in momentum
space) stability of each O(4) NLSM copy in our BSM model.
We will have more to say on this subject later in this section,
but for now we note the following important property of the
ZT I

2 symmetry for the BSM model. In the BSM model it is
actually the ZT I

2 symmetry which fixes the theta angles θA and
θB to be multiples of π , just as the ZT

2 symmetry guaranteed
this property for the BTI surface theory. Therefore, from this
general argument, the gaplessness of the BSM model (which
can occur only when the theta angles are odd multiples of π )
depends crucially on this symmetry.

B. Dual vortex description of the BSM model

We now turn to the dual vortex description of our BSM
model, using the dual description of one O(4) model which
we reviewed in Sec. IV. We choose to employ the dual vortex
description in terms of vortices in b2,A and b2,B , although a
description starting in terms of vortices in b1,A and b1,B is also
possible. For the “A” NLSM, vortices in b2,A are represented
by the two-component field �

(A)
2 = (φ(A)

2,+,φ
(A)
2,−)T . For the “B”

copy of the NLSM, vortices in b2,B are represented by the
two-component field �

(B)
2 = (φ(B)

2,+,φ
(B)
2,−)T .

As discussed in Sec. IV, and as we explicitly prove in Ap-
pendix B, a vortex in the phase of one boson binds a charge of
θ

2π
of the other boson. This result holds for any U (1) symmetry

under which the bosons are charged; for example, the U (1)c
and U (1)t symmetries in our case. This means that under the
U (1)c and U (1)t symmetries, the field �

(A)
2 transforms as

U (1)c : �
(A)
2 → e

i
χ

2 σ z

�
(A)
2 (5.7)

U (1)t : �
(A)
2 → e

i
ξ

2 σ z

�
(A)
2 . (5.8)

On the other hand, the “B” copy of the O(4) NLSM in
our BSM model has theta angle θB = −π . The elementary
vortices φ

(B)
1,+ and φ

(B)
2,+ now both carry charges − 1

2 and 1
2

under the U (1)c and U (1)t symmetries, respectively. The
“−” vortices must now be defined as φ

(B)
2,− = φ

(B)
2,+b1,B and

φ
(B)
1,− = φ

(B)
1,+b2,B . Unlike for the “A” copy, these relations

involve the bosons bI,B and not the antibosons b∗
I,B since

θB = −π and not +π. We then find that under the U (1)c and
U (1)t symmetries, the field �

(B)
2 transforms as

U (1)c : �
(B)
2 → e

−i
χ

2 σ z

�
(B)
2 (5.9)

U (1)t : �
(B)
2 → e

i
ξ

2 σ z

�
(B)
2 . (5.10)

In terms of the fields �
(A)
2 and �

(B)
2 , the dual description of

the BSM model has the Lagrangian L = L(A) + L(B), with

L(A) =
∑
s=±

∣∣∣∣
[
∂μ − iα

(A)
2,μ − i

s

2
(Aμ + Bμ)

]
φ

(A)
2,s

∣∣∣∣
2

− 1

κ2,A

(
1

2π
εμνλ∂να

(A)
2,λ

)2

− 1

2π
εμνλ(Aμ + Bμ)∂να

(A)
2,λ , (5.11)
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and

L(B) =
∑
s=±

∣∣∣∣
[
∂μ − iα

(B)
2,μ + i

s

2
(Aμ − Bμ)

]
φ

(B)
2,s

∣∣∣∣
2

− 1

κ2,B

(
1

2π
εμνλ∂να

(B)
2,λ

)2

− 1

2π
εμνλ(Aμ − Bμ)∂να

(B)
2,λ . (5.12)

In these expressions, 1
2π

εμνλ∂να
(A)
2,λ and 1

2π
εμνλ∂να

(B)
2,λ represent

the number currents of the bosons b2,A and b2,B , respectively.
We have included coupling to the external probe fields Aμ and
Bμ associated with the two U (1) symmetries U (1)c and U (1)t .
It is also possible to add various potential energy terms to these
dual Lagrangians.

C. Transformation of vortices under T and I symmetries

In this section we deduce the transformations of the vortices
under the ZT

2 and ZI
2 symmetries. First we note that because

of the quantum numbers carried by the vortex fields, we have
the approximate relations

b1,A ∼ φ
(A),∗
2,− φ

(A)
2,+ (5.13)

b1,B ∼ φ
(B),∗
2,+ φ

(B)
2,−, (5.14)

which are just Eq. (4.19) written for the two copies of the O(4)
NLSM and taking into account the fact that the “B” copy of the
O(4) NLSM has θB = −π . Also, recall that a dimensionful
quantity like g, the NLSM coupling constant, is needed to
balance the units in this equation, but we ignore that subtlety
here. We now deduce the transformations of the vortices under
ZT

2 and ZI
2 by requiring that the transformations of the vortices

under these symmetries reproduce the transformations of b1,A

and b1,B under the symmetries, and that the action of the
symmetries on the vortices is consistent with the general
structure of the symmetry group.

Consider first the inversion symmetry. Inversion commutes
with the U (1)c symmetry, whereas it negates the U (1)t charge.
In addition, since inversion is a unitary symmetry, it should
take vortices to vortices, not antivortices (conjugation by
the operator I does not negate the phase of bI,A/B ). We
have only two options: either �

(A)
2 (t,x) → σx�

(B)
2 (t, − x)

or �
(A)
2 (t,x) → iσ y�

(B)
2 (t, − x). Only the first option is

consistent with Eq. (5.4). We hence find that

ZI
2 : �

(A)
2 (t,x) → σx�

(B)
2 (t, − x), (5.15)

and vice versa.
Next consider time-reversal symmetry. Time reversal is an-

tiunitary, so it should take vortices to antivortices (conjugation
byT does negate the phase of bI,A/B ). In addition, time reversal
preserves the U (1)c charge and negates the U (1)t charge. The
only two possibilities are then �

(A)
2 (t,x) → �

(B),∗
2 (−t,x) or

�
(A)
2 (t,x) → σ z�

(B),∗
2 (−t,x). Only the first option is consistent

with Eq. (5.5), so we find that

ZT
2 : �

(A)
2 (t,x) → �

(B),∗
2 (−t,x), (5.16)

and vice versa.

We see that the time-reversal and inversion symmetry
continue to commute with each other when acting on the
vortices. The combined ZT I

2 symmetry then acts on the
vortices as

ZT I
2 : �

(A)
2 (t,x) → σx�

(A),∗
2 (−t, − x), (5.17)

and similarly for �
(B)
2 .

D. Time-reversal and inversion breaking mass terms,
electromagnetic response, and a bosonic Chern insulator

Now that we know how the vortex fields transform under
the various symmetries, we can use the dual vortex theory to
calculate the responses of our BSM model to time-reversal and
inversion breaking perturbations. Analogous to the fermion
DSM, we can define a time-reversal breaking mass term for
the vortices,

�T = �
(A),∗
2 σ z�

(A)
2 − �

(B),∗
2 σ z�

(B)
2 , (5.18)

and also an inversion breaking mass term

�I = �
(A),∗
2 σ z�

(A)
2 + �

(B),∗
2 σ z�

(B)
2 . (5.19)

The term �T is odd under ZT
2 but even under ZI

2 . On the other
hand, �I is even under ZT

2 but odd under ZI
2 .

Now let us consider the electromagnetic response in these
two gapped phases. Suppose we add the time-reversal breaking
mass term μ�T to the vortex potential energy. If μ < 0 (and
in the presence of suitable quartic terms in the vortex action),
this will cause φ

(A)
2,− and φ

(B)
2,+ to become gapped, and φ

(A)
2,+ and

φ
(B)
2,− to condense. In this case we can then integrate out φ

(A)
2,−

and φ
(B)
2,+. A mean-field treatment of the remaining terms in the

action then gives α
(A)
2,μ = − 1

2 (Aμ + Bμ) and α
(B)
2,μ = − 1

2 (Aμ −
Bμ), which gives the 2D time-reversal breaking response

LT = e2

2π
εμνλAμ∂νAλ + 1

2π
εμνλBμ∂νBλ. (5.20)

The first term in this expression is a quantum Hall response
with Hall conductivity σxy = 2e2/h, exactly the same as one
finds for the bosonic integer quantum Hall effect [15,16]. If
we took μ > 0 we would get the same response but with the
opposite sign. We note that we cannot add a simple mass term
to find a σxy quantized as an odd multiple of e2/h. This gapped
phase represents a bosonic Chern insulator.

On the other hand, we can add the inversion breaking mass
term μ�I to the vortex potential energy instead. If μ < 0 (and
again, assuming suitable quartic terms), this will cause φ

(A)
2,−

and φ
(B)
2,− to become gapped and φ

(A)
2,+ and φ

(B)
2,+ to condense.

In a mean-field treatment this gives α
(A)
2,μ = − 1

2 (Aμ + Bμ)

and α
(B)
2,μ = 1

2 (Aμ − Bμ), which yields the quasi-1D inversion
breaking response

LI = e

π
εμνλBμ∂νAλ. (5.21)

Again, if we took μ > 0 then we would get the same
response but with the opposite sign. This response encodes
a charge polarization P i = e

π
εijBj (i,j = x,y) and an orbital

magnetization M = e
π
Bt .
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We see that both the time-reversal breaking and inversion
breaking electromagnetic responses of the BSM are twice as
large as the responses for the free fermion DSM shown in
Eq. (2.1). Let us now provide an alternate derivation of these
responses.

E. Electromagnetic responses from Abanov-Wiegmann method

We now briefly show how the time-reversal and inversion
breaking responses of our BSM model can be computed using
the Abanov-Wiegmann method of integration over auxiliary
fermions which we discussed in Sec. IV. We first rewrite our
BSM model in terms of two four-component unit vector fields
NA and NB . Now introduce the multicomponent complex
fermion � = (ψ1,A,..,ψ4,A,ψ1,B,..,ψ4,B )T , where each of
ψa,A/B is a two-component Dirac fermion in 2 + 1 dimensions.
The fermion � has a total of 16 components. In terms of the
two sets of gamma matrices introduced in Eqs. (4.22) and
(4.23), our BSM model can be obtained from the fermionic
Lagrangian

L̃f = �̄

(
iγ̃ μ∂μ − M

2

4∑
a=1

Na
A(I + σ z) ⊗ �a

− M

2

4∑
a=1

Na
B(I − σ z) ⊗ �a

)
�, (5.22)

where we have defined

γ̃ 0 = I ⊗ γ 0 (5.23a)

γ̃ 1 = I ⊗ γ 1 (5.23b)

γ̃ 2 = σ z ⊗ γ 2 (5.23c)

and �̄ = �†γ̃ 0 now. The extra σ z on γ̃ 2 means that the
fermions ψa,B have opposite helicity to the fermions ψa,A.
This change directly accounts for the opposite signs of the
theta angle for the “A” and “B” copies of the O(4) NLSM that
we get when we integrate out �. This is the reason why we
stated earlier that the sign of θ is the analog in the BSM of
the helicity of the Dirac fermions in the DSM. Indeed, we see
that the helicity of the Abanov-Wiegmann auxiliary fermions
directly translates into the sign of θ in the O(4) NLSM.

By the same reasoning used in Sec. IV to deduce the charges
of the fermions used to generate one O(4) NLSM on the
surface of the BTI, we now find that the field � transforms
under the U (1)c and U (1)t symmetries as

U (1)c : � → eiχI⊗Q� (5.24)

U (1)t : � → eiξσ z⊗Q�, (5.25)

where Q is the 8 × 8 charge matrix introduced in Eq. (4.33).
We can now couple � to the background gauge fields Aμ

and Bμ and calculate the response of the system to various
perturbations.

The time-reversal breaking response is obtained by adding
the term −(Mδ)�̄(σ z ⊗ �5)� to the Lagrangian. According
to Eq. (4.26), this will give θA ≈ π (1 − 3

2δ) and θB ≈ −π (1 +
3
2δ), so this breaks ZT

2 (which requires θA ≡ −θB mod 2π ).
The inversion breaking response is obtained by adding the
term −(Mδ)�̄(I ⊗ �5)�. This will give θA ≈ π (1 − 3

2δ) and

θB ≈ −π (1 − 3
2δ), so this breaks ZI

2 (which requires θA ≡ θB

mod 2π ).
In the limit that δ → 0, the time-reversal breaking pertur-

bation generates the 2+1-D response

L̃T = −sgn(δ)
1

2π
εμνλ(e2Aμ∂νAλ + Bμ∂νBλ), (5.26)

coming from the contributions of each of the Dirac fermions
(and according to their charge), while the inversion breaking
perturbation gives the quasi-1D response

L̃I = −sgn(δ)
e

π
εμνλBμ∂νAλ. (5.27)

These are the same responses which we derived in the previous
subsection using the dual vortex formulation of the BSM
model.

F. Stability of the BSM effective theory

We have provided an effective theory for a gapless
bosonic semimetal in 2+1-D, and we now want to evaluate
the perturbative stability of this theory to see under what
conditions the semimetal is a stable phase. In discussing
the stability of the BSM model, there are a few expected
properties which we would like to verify. First, the translation
symmetry of the model should prevent us from trivially
gapping out the model by coupling the “A” copy of the O(4)
NLSM to the “B” copy (for our purposes, by a trivially
gapped phase, we mean a gapped phase which retains all
the symmetries of the original gapless system and has no
interesting electromagnetic response). Second, the composite
ZT I

2 symmetry should guarantee the local stability of the
O(4) NLSM’s which make up our BSM model (recall that
local stability means that it should be impossible to gap out
one copy of the O(4) NLSM independently of the other
copy without breaking required symmetries). We claim that
analogous to the 2+1-D fermionic DSM, these symmetries
are enough to provide perturbative stability to the BSM.
However, just as with any symmetry-protected phase (gapped
or gapless) it is also important to keep in mind the possibility
that even symmetry-allowed perturbations may spontaneously
break one or more of the symmetries of the system if those
perturbations are strong enough.

Also, as a caveat, the O(4) NLSM with θ = π is a difficult
interacting theory to study in general. Since many of its
properties are still unknown, it is impossible for us to give a
complete characterization of the stability of our BSM effective
theory. We do provide a thorough analysis of the effects of
many important perturbations on the BSM model, but there
are still many other symmetry-allowed perturbations that we
have not been able to completely understand: for example, a
quartic coupling of the form |bI,A|2|bJ,B |2 between bosons in
the “A” and “B” copies of the O(4) NLSM. Our discussion
in this section gives strong evidence for the stability of the
semimetal phase so we will leave a possible discussion of
these untreated terms to future work.

Let us begin by addressing the issue of trivially gapping
out the system by coupling the “A” copy of the O(4) NLSM
to the “B” copy. Since the two copies of the O(4) NLSM
have opposite theta angles, an interaction which could enforce
NA = ±NB would have the effect of canceling the theta terms
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and leaving us with just a single O(4) NLSM without theta
term. According to Ref. [48], an O(4) NLSM with θ = 0
represents a trivial gapped phase of charged bosons in 2 +
1 dimensions (i.e., this phase has no topological term in its
electromagnetic response). Hence, as one consideration, we
should make sure that it is not possible to get NA = ±NB in
our model. To show that it is impossible to drive our system
into a phase where NA = ±NB , we should examine the term
NA · NB , as any interaction which could set NA = ±NB should
be a function of NA · NB . In terms of UA and UB we have

NA · NB = 1
2 tr[U †

AUB]. (5.28)

This term is invariant under the U (1)c symmetry, but under
U (1)t we have

tr[U †
AUB] → tr[U †

AUBe−i2ξσ z

], (5.29)

where we used the fact that the U (1)t transformation of the
bosons from Eq. (5.3) is equivalent to UA → UAeiξσ z

and
UB → UBe−iξσ z

. Since this term is not invariant under U (1)t ,
we see that translation symmetry forbids terms which could
drive our BSM model into a trivial gapped phase.

As we mentioned earlier in this subsection, there are
symmetry-allowed quartic terms which can couple the two
copies of the O(4) NLSM in the BSM model, for exam-
ple the term |bI,A|2|bJ,B |2. Another possibility would be a
current-current interaction of the form ημνJ

μ

I,AJ ν
J,B , where

J
μ

I,A = i
g

(∂μb∗
I,AbI,A − b∗

I,A∂μbI,A) is the conserved number
current for boson I in the “A” NLSM, similarly for J ν

J,B,

and ημν = diag(1,−1,−1) is the Minkowksi metric. A precise
analysis of these terms is very difficult and beyond the scope
of this paper. To address them what is really needed is the
scaling dimension of the O(4) field at the RG fixed point at
θ = π discussed in Ref. [46]. Despite this, we expect the BSM
model to be perturbatively stable to these interactions since,
at least when treated in a mean-field limit, these terms do not
cause the theta terms for the “A” and “B” copies of the O(4)
NLSM to cancel each other.

We see that translation symmetry prevents us from coupling
the two NLSM copies (if they are not at the same momentum
point), so it remains to discuss the local stability of each NLSM
copy. Recall that in the dual description of the BSM model we
added mass terms of the form �

(A),†
2 σ z�

(A)
2 ± �

(B),†
2 σ z�

(B)
2 to

gap out the system and induce an interesting electromagnetic
response. Suppose instead that we tried to add just a single
term �

(A),†
2 σ z�

(A)
2 or �

(B),†
2 σ z�

(B)
2 to the dual theory in

order to gap out just one of the “A” or “B” copies of the
model. It turns out that adding one of these terms alone is
actually forbidden by the composite ZT I

2 symmetry. Indeed,
under ZT I

2 we have �
(A),†
2 (t,x)σ z�

(A)
2 (t,x) → −�

(A),†
2 (−t,

− x)σ z�
(A)
2 (−t,−x) and likewise for the “B” copy. Thus, if we

require our system to obey ZT I
2 then these terms are forbidden,

and some measure of stability is provided for the BSM phase.
While the requirement of ZT I

2 forbids the conventional
mass terms listed above, we should also consider the local
stability of each O(4) NLSM in the presence of symmetry-
allowed perturbations. The discussion here closely parallels
the discussion in Sec. IV of the effects of symmetry-allowed
perturbations on the surface theory of the BTI. We start
by considering interspecies tunneling terms of the form

b∗
1,Ab2,A + c.c. for the “A” copy of the O(4) NLSM. In the

canonical formalism the operators bI,A(x) and their conjugate
momenta πI,A(x) also obey the commutation relation of
Eq. (4.47). Since the composite ZT I

2 symmetry acts on
the bosons as (T I)bI,A(x)(T I)−1 = bI,A(−x), we deduce
from the diagonal commutator that (T I)πI,A(x)(T I)−1 =
−πI,A(−x). Now consider a state |�〉 which is ZT I

2 symmetric,
i.e., (T I)|�〉 = |�〉. Then in such a state we find that

〈�|[b1,A(x),π2,A(y)]|�〉 = −〈�|[b1,A(−x),π2,A(−y)]|�〉.
(5.30)

If we now plug in for the commutators on both sides of this
equation using Eq. (4.47), then we find (again, after integration
over the y coordinate) that

〈�|b1,A(x)b†2,A(x)|�〉 = −〈�|b1,A(−x)b†2,A(−x)|�〉.
(5.31)

On the other hand, if the state |�〉 is really invariant under the
action of ZT I

2 , then we should have

〈�|b1,A(x)b†2,A(x)|�〉 = 〈�|b1,A(−x)b†2,A(−x)|�〉. (5.32)

Therefore we find that 〈�|b1,A(x)b†2,A(x)|�〉 = 0 in any state
|�〉 which is invariant under the combined ZT I

2 symmetry. Just
as in Sec. IV, we may conclude that weak interspecies tunnel-
ing terms should have a negligible effect on the BSM model
(which has ZT I

2 symmetry), but strong interspecies tunneling
can drive the system into a phase which spontaneously breaks
ZT I

2 symmetry. The same conclusion holds for interspecies
tunneling terms in the “B” copy of the O(4) NLSM.

Also, in close analogy to the case in Sec. IV, this result
may be generalized to include insertions of any operator Õ(x)
which transforms nicely under the action of T I (recall that in
Sec. IV the result was generalized to include operators Õ(x)
invariant under T ). Suppose Õ(x) transforms under the action
of T I as (T I)Õ(x)(T I)−1 = Õ(−x). Then we find that

〈�|Õ(x)[b1,A(x),π2,A(y)]|�〉
= −〈�|Õ(−x)[b1,A(−x),π2,A(−y)]|�〉, (5.33)

and following the same steps as above gives the result that
〈�|Õ(x)b1,A(x)b†2,A(x)|�〉 = 0 in any state |�〉 which is
invariant under ZT I

2 . Note that Õ(x) could in principle contain
operators from both the “A” and “B” copies of the NLSM, as
long as it transforms under T I as specified above.

Finally, we can again consider chemical potential terms; the
discussion of these terms is nearly identical to that in Sec. IV
since the discussion of the terms in that section did not involve
the time-reversal symmetry at all. For the BSM model we can
add chemical potential terms of the form μ1|b1,A|2 + μ2|b2,A|2
for just one copy of the O(4) NLSM. As in Sec. IV we again
find that this term (combined with suitable quartic terms) will
in general cause one of b1,A or b2,A to condense and the other
to become gapped (with the choice depending on the sign of
μ1 − μ2). The only new feature in this context is that if a boson
from one of the O(4) NLSM’s were to condense, then both
U (1)c and U (1)t symmetries would be spontaneously broken
(i.e., condensing a boson from just one of the O(4) NLSM’s
also spontaneously breaks translation symmetry).
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G. Topologically ordered phases accessible
from the BSM theory

In this section we briefly discuss the possibility of gen-
erating topologically ordered states from the BSM model by
condensing composite vortices. As in Sec. IV, a basis for
describing any possible topological orders generated from the
BSM model is provided by the “+” vortices φ

(A)
1,+,φ

(A)
2,+,φ

(B)
1,+,

and φ
(B)
2,+, since the “−” vortices may be obtained by binding

a “+” vortex with a trivial boson excitation.
In exploring different composite vortices to condense, we

note first that if we condense a composite vortex of the form
φ

(A)
I,±φ

(B)
J,±, then the only “+” vortices which braid trivially with

this object are φ
(A)
I,+ and φ

(B)
J,+, and these two vortices braid

trivially with each other. The resulting state is therefore trivial.
This means that it is impossible to generate any topologically
ordered states by condensing a product of one vortex from
the “A” NLSM and one vortex from the “B” NLSM. We
must therefore consider composites which have at least two
vortices from the same copy of the O(4) NLSM. In this section
we discuss one particular phase with Z2 × Z2 topological
order which is generated by condensing two fields which
are themselves quadratic in the vortex fields from a single
O(4) NLSM. We then show that this same phase can be
constructed by condensing a single field which is quartic in
the vortex fields. We also show how to construct phases with
Z2 topological order by condensing a composite vortex in one
copy of the O(4) NLSM and in the other copy simultaneously
condensing a single vortex of one species and gapping out the
other one.

We now show how to construct a phase with Z2 × Z2

topological order by condensing the composite vortices OA =
φ

(A)
1,+φ

(A)
1,− and OB = φ

(B)
1,+φ

(B)
1,− in such a way that 〈OA〉 =

〈OB〉 ≡ Ō with Ō real. The vortices φ
(A)
1,+,φ

(A)
2,+,φ

(B)
1,+, and φ

(B)
2,+

all braid trivially with OA and OB , and so they survive as
quasiparticles in the resulting topologically ordered state. The
particular condensation shown here, with Ō real, appears to
respect all symmetries of the system (U (1)c, U (1)t , ZT

2 , and
ZI

2 ), however, we show below that this state must break either
the time-reversal (ZT

2 ) or the inversion (ZI
2 ) symmetry.

Since {φ(A)
1,+,φ

(A)
2,+} braid trivially with {φ(B)

1,+,φ
(B)
2,+} the result-

ing state is nearly identical to two copies of the Z2 topological
order shown in Table III. The first factor of Z2 is represented
exactly by Table III. This part of the topological order is
generated by {φ(A)

1,+,φ
(A)
2,+} and is described in the K-matrix

formalism by K (A) = 2σx , �t (A) = (1,1)T and �u(A) = (1,1)T ,
where �u(A) is a U (1)t charge vector which describes the
coupling of the vortices to the external field Bμ. Based on this
data, the contribution of the “A” vortices to the electromagnetic
responses of this state are

L(A)
T = e2

4π
εμνλAμ∂νAλ (5.34)

and

L(A)
I = e

2π
εμνλBμ∂νAλ. (5.35)

The second factor of Z2 is generated by {φ(B)
1,+,φ

(B)
2,+}. For

the “B” copy, since we actually have θB = −π , it seems

that we should choose K (B) = −2σx , however, there is some
ambiguity here because a statistical phase of π is equivalent
to a phase of −π . So let us consider both possibilities K (B) =
±2σx . On the other hand, there is no ambiguity in the charges
of the “B” vortices under the U (1)c and U (1)t symmetries:
The coupling of {φ(B)

1,+,φ
(B)
2,+} to Aμ and Bμ is described

by the charge vectors �t (B) = (−1, − 1)T and �u(B) = (1,1)T ,
respectively. Based on this, the contribution of the “B” copy
to the responses of this state are given by

L(B)
T = ± e2

4π
εμνλAμ∂νAλ, (5.36)

and

L(B)
I = ∓ e

2π
εμνλBμ∂νAλ, (5.37)

where the signs out front correspond to the choice of K (B) =
±2σx .

We see that if we choose K (B) = 2σx , then the entire
system will break time reversal (we get the full 2D time-
reversal breaking response of the BSM), but if we choose
K (B) = −2σx , the entire system breaks inversion (we get the
full quasi-1D inversion breaking response of the BSM). In
particular, it seems like one cannot construct a topological
order consisting of the quasiparticles φ

(A)
1,+,φ

(A)
2,+,φ

(B)
1,+, and φ

(B)
2,+,

which also preserves all of the symmetries of the BSM model.
The topologically ordered phase which we constructed

above can also be accessed by condensing the single quartic
vortex field O′ = φ

(A)
1,+φ

(A)
1,−φ

(B)
1,+φ

(B)
1,− in such a way that the

expectation value 〈O′〉 is real. The field O′ does not carry any
charge under the U (1)c or U (1)t symmetries, is invariant under
inversion, and is complex conjugated by time reversal (so we
should take 〈O′〉 real in an attempt to preserve time reversal).

In analyzing the resulting topological order, we first note
that all four fundamental vortices φ

(A)
1,+,φ

(A)
2,+,φ

(B)
1,+, and φ

(B)
2,+

braid trivially with O′, so they all survive as quasiparticles
in the resulting topologically ordered state. The composite
quasiparticles that can be constructed from these four funda-
mental vortices have the form (φ(A)

1,+)n1 (φ(A)
2,+)n2 (φ(B)

1,+)n3 (φ(B)
2,+)n4 ,

where the integers nj are either 0 or 1 (since the fusion
of a vortex with itself is topologically trivial). A total of
16 possible quasiparticles can be constructed by letting all
nj range over their values 0 and 1. To see whether the
resulting topologically ordered state actually supports all of
these quasiparticles as distinct excitations, we need to check
whether any quasiparticle can be obtained from another one
by fusing with the condensate O′, which is equivalent to the
vacuum (in the phase where O′ is condensed). We find that
each of the 16 quasiparticles is topologically distinct and that
this set is sufficient to label all of the anyon sectors. Hence, the
resulting state is actually identical to the state obtained earlier
from simultaneously condensingOA andOB . This result could
have been anticipated sinceO′ = OAOB , and the vortices from
the “A” copy of the NLSM braid trivially with the vortices from
the “B” copy.

Another way to see that condensing O′ leads to Z2 × Z2

topological order, and not, for example,Z4 topological order, is
as follows. First, note that φ(A)

1,± carry charge 1 of the dual gauge

field α
(A)
1,μ (whose curl is the number current of b1,A), while
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φ
(B)
1,± carry charge 1 of the dual gauge field α

(B)
1,μ (whose curl is

the number current of b1,B ). So the composite field O′ carries
charge 2 of α

(A)
1,μ and charge 2 of α

(B)
1,μ. Therefore, condensingO′

will break the U (1) symmetries associated with α
(A)
1,μ and α

(B)
1,μ

down to a Z2 subgroup, i.e., the symmetry breaking associated
with this condensation is U (1) × U (1) → Z2 × Z2. If instead
it were the case that the four vortices φ

(A)
1,± and φ

(B)
1,± all carried

charge 1 of the same U (1) gauge field, then we would expect
the condensation of O′ to break that U (1) symmetry down to a
Z4 subgroup, leading to a Z4 topological order. This does not
happen in our case since the vortices φ

(A)
1,± and φ

(B)
1,± couple to

different U (1) gauge fields.
As we mentioned above, it is also possible to generate

a phase with Z2 topological order by condensing composite
vortices in one copy of the O(4) NLSM and in the other copy
simply gapping out one vortex species and condensing the
other. We show that such a phase will break either the time
reversal or the inversion symmetry of the BSM model. As an
example, consider condensing the composite vortex OA in the
“A” copy of the NLSM, while in the “B” copy condensing
the single vortex φ

(B)
2,+, and gapping out the vortex φ

(B)
2,−. The

resulting phase has a Z2 topological order generated by φ
(A)
1,+

and φ
(A)
2,+. Note that the “B” copy does not contribute to the

topological order since φ
(B)
2,+ has been condensed (i.e., it is

now topologically equivalent to the vacuum quasiparticle) and
φ

(B)
1,+ is confined (it has nontrivial braiding with φ

(B)
2,+, which is

condensed). The electromagnetic response of this phase can be
easily calculated using the results contained in this section, and
we find that this phase has no time-reversal breaking response,
but it does possess the full inversion breaking response of the
BSM, as shown in Eq. (5.21). If for the “B” copy we instead
chose to condense φ

(B)
2,− and gap out φ(B)

2,+ (while still condensing
OA for the “A” copy), we would get a phase withZ2 topological
order which has no inversion breaking response, but the full
time-reversal breaking response of the BSM, as in Eq. (5.20).

VI. QUANTIZATION OF POLARIZATION IN GAPPED 2D
PHASES AND A CRITERION FOR SEMIMETAL

BEHAVIOR

In this section we give a general discussion of the
quantization of the charge polarization in gapped phases of
2D quantum many-body systems with translation, inversion,
and U (1)c charge conservation symmetries, with the goal of
establishing a criterion for detecting whether a given system is
in a semimetallic phase by measuring its polarization response.
The systems in question can be either bosonic or fermionic, and
we assume they are made up of some fundamental particles of
charge e. For simplicity we focus on systems on a square lattice
with lattice spacing a0, but the result can be easily extended
to any Bravais lattice. We consider three broad classes (to be
described below) of gapped phases of 2D systems in which
one can define a charge polarization, and we show that in
these three classes the polarization in (say) the x direction is
quantized in units of

P (min)
x = r

e

2a0
, (6.1)

where r ∈ Q is a rational number. This result then implies
that if a 2D quantum many-body system is found to have
a continuously tunable polarization of the form α e

2a0
for a

generic real number α, then this system cannot be in one of the
three classes of gapped phases mentioned above. If these three
classes of gapped phases exhaust all possible gapped phases
with translation symmetry which can support a polarization
response, and from their definitions below it is clear that
they do, then this implies that a polarization of the form
α e

2a0
for generic α ∈ R is indicative of a gapless semimetal

phase. Therefore our argument in this section provides a
direct relation between the gaplessness of a semimetal and
the tunability of its polarization response. As we mentioned
in Sec. II, since the polarization response is expected to be
reasonably robust, this provides additional evidence for the
stability of the semimetal phase to perturbations which do not
destroy its polarization response.

As we show below, the rational number r mentioned above
can be related to specific measurable properties of the three
types of gapped phases that we consider, so we do not need to
worry about the difficulty of “measuring an irrational number,”
as the number r can be readily obtained for these gapped
phases in other ways. Thus, the charge polarization response
of a 2D system can be used as a criterion for detecting a gapless
semimetal phase. The reason for focusing on gapped phases
with translation symmetry is that we know that a semimetal
requires translation symmetry for its stability. Since we are
looking for a way to distinguish a semimetal phase from other
phases with a polarization response, we need to compare to
other systems with translation symmetry as we know that
without translation symmetry the semimetal phase is not even
a possibility. We now give the details of our argument.

The three classes of gapped systems which we consider
are (i) systems with a unique ground state and translation
symmetry by one site, (ii) systems with a ground state which
spontaneously breaks translation symmetry by one site down
to translation symmetry by q sites (so q is a positive integer),
and (iii) systems with intrinsic topological order as well as
translation symmetry by one site. To calculate the charge
polarization of these systems we use a many-body formula
for the polarization introduced by Resta in Ref. [57], which
we now review. We focus on an analysis of the polarization
in the x direction, and so we assume periodic boundary
conditions in that direction. This assumption of periodic
boundary conditions in at least one direction will also allow
us to invoke certain theorems [58,59] which will be crucial for
our results in this section.

A. Polarization in 2D, ambiguity with translation invariance,
and quantization with inversion symmetry

Consider a quantum many-body system defined on a square
lattice with lattice spacing a0 and lengths Lx and Ly in the x

and y directions. Let Ns be the number of sites so that Nsa
2
0 =

LxLy . We label sites on the square lattice by the vector of
integers j = (jx,jy), jx,jy ∈ Z. Finally, let |�0〉 be the ground
state of the system. We assume |�0〉 is an eigenstate of the
number operator with eigenvalue Np so that the filling factor
in the ground state is ν = Np

Ns
. The total number operator can
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be expressed as N̂ = ∑
j n̂j where n̂j is the number operator

for site j. Then, assuming that |�0〉 is the ground state of a
gapped system, Resta’s formula tell us that the polarization in
the x direction is given by

Px = lim
Lx→∞

e

2πLy

Im[ln〈�0|ei 2π
Lx

X̂|�0〉], (6.2)

where the position operator X̂ is given by

X̂ =
∑

j

(jxa0)n̂j. (6.3)

The polarization in the y direction has a similar definition.
Let us suppose that the state |�0〉 has translation invariance

by one site in the x direction, i.e., |�0〉 is an eigenstate of
the translation operator T̂x with some eigenvalue eik

(0)
x (the

precise value of k(0)
x will not be important in what follows).

Concretely, T̂x acts as T̂
†
x ÔjT̂x = Ôj+(1,0) on operators Ôj

carrying a position index. If this is the case then one can
show that Px is only well-defined modulo eν

a0
. To see it we

compute the polarization P ′
x of |� ′

0〉 ≡ T̂x |�0〉 in two ways.

On one hand we can just write |� ′
0〉 ≡ eik

(0)
x |�0〉 to find that

P ′
x = Px . However, we can also use

〈�0|T̂ †
x ei 2π

Lx
X̂T̂x |�0〉 = 〈�0|ei 2π

Lx
X̂e−i

2πa0
Lx

∑
j n̂j |�0〉

= 〈�0|ei 2π
Lx

X̂|�0〉e−i
2πa0Np

Lx , (6.4)

to show that

P ′
x = Px − eν

a0
. (6.5)

So we conclude that Px is defined only modulo eν
a0

in the
presence of translation symmetry by one site.

The last ingredient in the polarization calculation is to
enforce inversion symmetry in the system. We consider
inversion which acts simply as j → −j for the coordinates
on the square lattice. It is clear that under inversion we have
Px → −Px and similarly for the polarization in the y direction.
So the polarization in the inversion symmetric system must
obey the relation

Px ≡ −Px mod
eν

a0
. (6.6)

The solutions to this relation are

Px ≡ 0 or
eν

2a0
mod

eν

a0
, (6.7)

with a similar result for Py . So in a gapped 2D system with
translation and inversion symmetry and filling factor ν, the
polarization is quantized in units of

P (min)
x = eν

2a0
. (6.8)

Before moving on let us make a few general comments
about this formula for the polarization. First, in a band insulator
made out of free fermions the filling ν must be an integer in
order for the system to be gapped (i.e., in order to have a
completely filled band). This is why the filling ν usually does
not appear explicitly in discussions of the polarization in band
insulators. Also, in the discussion above we have assumed
that there is only one type of particle. More generally, our

system could have several different species of particles, for
example spin up and spin down electrons, and in this case one
can separately consider the polarization for each species. If
we label different particles species by σ then we can compute
Px,σ , the polarization from particles of species σ , by modifying
the position operator X̂ to

X̂σ =
∑

j

(jxa0)n̂j,σ , (6.9)

where n̂j,σ is the number of particles of species σ on site
j. The total polarization is then given by Px = ∑

σ Px,σ .
The importance of computing the polarization in this way
is demonstrated by the following example. Suppose we have
a band insulator of spinful electrons (so σ = ↑, ↓), and we
have a completely filled band of up and down electrons. Then
we have ν↑ = 1 and ν↓ = 1 and so the total filling is ν = 2.
However, in the absence of time-reversal symmetry both
bands do not have to have the same polarization. Since each
individual band is at filling νσ = 1, we could have Px,↑ = e

2a0

but Px,↓ = 0, and so Px = e
2a0

. This result could not have
been predicted from Eq. (6.8), since that formula does not
distinguish between different particle species. We now discuss
the specific values that ν can take in the three classes of gapped
systems discussed above, and in this way constrain the possible
values of P (min)

x in such phases.

B. The filling factor ν in the three classes of gapped phases

Now we discuss the possible values of the filling factor ν

in the three classes of gapped phases, which will in turn give
us the minimum value eν

2a0
of the polarization in these systems.

To start we go back to a theorem of Oshikawa [58] which
was later proven rigorously (under slightly more restrictive
assumptions) by Hastings [59]. What Oshikawa/Hastings
showed is that if the filling ν of a gapped system is a
rational number, say ν = p

q
with p and q coprime, then the

system will in general have q degenerate ground states (in
the thermodynamic limit), each with a different momentum in
the (for example) x direction. For integer ν the ground state is
unique. On the other hand, irrational values of ν in the ground
state generally imply a gapless system. In Hastings’ rigorous
proof the condition is actually that ν(Nsa0

Lx
) = Npa0

Lx
= p

q
, where

Lx is the length of the system in the x direction [59]. In what
follows we assume that this result holds for the condition
ν = p

q
, as is expected on general physical grounds, although

the reader should be aware that there is no rigorous proof
available in this case (and there are even counterexamples in
2D systems which are long in one direction but short in the
other, see e.g., Ref. [60]).

Using this theorem we can immediately conclude that in the
case of integer filling the minimum value of the polarization in
the ground state of a gapped, translation-invariant 2D system
with a unique ground state is

P (min)
x = e

2a0
, (6.10)

which corresponds to the filling ν = 1. This gives the answer
for the minimum value of the polarization in a gapped system
in class (i) discussed above.
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Next we discuss the case of rational filling factor ν = p

q
,

which will turn out to include gapped systems in classes
(ii) and (iii). For rational filling factor ν = p

q
there are two

possible physical explanations for the q degenerate ground
states [58,59]. The first possibility is that the q degenerate
states correspond to a spontaneous breaking of the translation
symmetry by one lattice site down to translation symmetry
by q lattice sites. In this case the actual ground state in the
thermodynamic limit is expected to be a particular linear
combination of the q ground states (which each have different
momenta in the x direction) which is an eigenstate of (T̂x)q but
not of T̂x , thus breaking the symmetry of translation by one site.
This corresponds to our class (ii) of gapped phases. If we repeat
the analysis from above of the ambiguity of the polarization
in the presence of translation symmetry, but replace T̂x with
(T̂x)q , then we find that the polarization is only well-defined
modulo qeν

a0
. Then in the presence of inversion symmetry the

minimum value of the polarization in this case is also

P (min)
x = e

2a0
, (6.11)

corresponding to the choice ν = 1
q

.
The final possibility is that the system at filling factor ν = p

q

does not break translation symmetry but instead has intrinsic
topological order, which can also explain the q-fold ground
state degeneracy in the thermodynamic limit. This corresponds
to our class (iii) of gapped systems. In this case the filling
factor ν can be related to the data describing a 2D symmetry-
enriched topological (SET) phase with U (1)c and translation
symmetry [61,62], and so we now give a brief overview of
the physical properties of 2D SET phases with U (1)c and
translation symmetry. For more details see Ref. [61].

An SET phase in 2D is a gapped phase possessing intrinsic
topological order, but which also has global symmetry of a
group G (see Ref. [63] for an in-depth discussion of these
phases). The group G can act in various nontrivial ways on the
anyons which are present in the topologically ordered system.
For example if G = U (1)c then an anyon can carry a fractional
charge under G (i.e., the anyon transforms in a projective
representation of G). A more exotic possibility is that the
action of G can exchange, or permute, two different kinds of
anyons. In the case where the symmetry does not permute the
anyons it is known that 2D SET phases with symmetry group
G are classified by the cohomology group H 2(G,A), where
A is the group of Abelian anyons in the topologically ordered
system.

In a 2D SET phase with U (1)c symmetry, each anyon a can
carry a particular fractional charge ea = Qae under the U (1)
symmetry, where Qa is a dimensionless number. The number
Qa can also be expressed in terms of the mutual braiding
statistics Ma,v of a with the anyon v, which is the excitation
created in the system by threading 2π delta function flux of
the U (1)c gauge field at a point in the system (this excitation
was referred to as a vison in Ref. [62]). Here Ma,a′ = eiθa,a′

is the U (1) phase accumulated during a process in which the
anyon a makes a complete circuit around the anyon a′. This
essentially calculates the Aharonov-Bohm phase of the U (1)c
charge carried by a when dragged around the fundamental flux

of U (1)c carried by v. Hence, we have the relation

ei2πQa = Ma,v (6.12)

or

Qa = θa,v

2π
. (6.13)

A 2D SET phase with translation symmetry is characterized
by one additional property. This is the anyonic flux b per
unit cell, where b is an Abelian anyon in the topologically
ordered system under consideration. The physical meaning of
the anyonic flux b is that if an anyon a is translated around a
unit cell, then the state of the system picks up the phase Ma,b.
We see that we can characterize a 2D SET phase with U (1)c
and translation symmetry by the data ({ea},b), which includes
the set of charges {ea} of the anyons under the U (1)c symmetry,
and the particular anyon b which provides the anyonic flux per
unit cell in the system.

The authors of Refs. [61,62] showed that the filling factor
ν in a 2D SET phase with translation and U (1)c symmetry can
be expressed in terms of the data of the SET phase as

ν ≡ Qb mod 1, (6.14)

or, using Eq. (6.13),

ν ≡ θb,v

2π
mod 1. (6.15)

So the filling factor of the 2D SET phase is equal to the
U (1)c charge of the anyon b characterizing the anyonic flux
per unit cell in the system, and this is in turn related to the
mutual statistical angle θb,v between b and the excitation v.
The derivation of this equation essentially uses Oshikawa’s
original flux threading argument and the fact that threading a
flux through the hole of the torus is equivalent to wrapping
a string operator for v around the cycle of the torus which
does not enclose the hole [62]. Note that Qb must be a rational
number since if it were not then the relation between Qb and ν,
combined with the Oshikawa/Hastings argument, would imply
that the phase was gapless and not a gapped SET phase. From
this relation between Qb and ν we find that the minimum value
of the polarization for systems in our class (iii) is

P (min)
x = eb

2a0
= eQb

2a0
. (6.16)

We have succeeding in showing that for all three classes of
gapped phases considered in this section, the polarization is
quantized to some rational multiple of e

2a0
and, in particular,

is not continuously variable since tuning ν away from a
rational value leads to a gapless phase according to the
Oshikawa/Hastings argument. Thus, we see that generic
nonrational values of the polarization are indicative of a
gapless semimetal phase. Furthermore, we have shown how
the polarization in these gapped phases can be simply
related to various physical data describing those phases,
which means that it should be simple to diagnose whether
a given value of the polarization implies a gapped or gapless
phase.
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VII. COUPLED WIRES CONSTRUCTION OF
THE BOSONIC SEMIMETAL

So far we have provided an effective theory for a 2+1-D
bosonic semimetal and discussed its electromagnetic response
properties and stability criteria. In this section we provide
an explicit construction of this phase using a coupled wires
approach which is modeled after the coupled wires construc-
tion of a single O(4) NLSM with θ = π derived in Ref. [42]
(see also Refs. [17,43]). We are able to find a suitable wire
building block, as well as suitable interwire tunneling terms,
which together generate our 2D BSM model after taking the
continuum limit in the wire stacking direction.

The rationale for a coupled wires construction of the BSM
model is provided by the general demonstration in Ref. [7]
that free fermion DSMs admit a coupled wires construction in
terms of 1+1-D topological insulator wires, each with a charge
e
2 polarization response. Indeed, one of the most important
aspects of the coupled wires construction of the free fermion
DSM is the intuitive explanation it provides for the quasi-
1D inversion-breaking electromagnetic response of the DSM
model, shown in Eq. (2.1).

This section is organized as follows. We begin by reviewing
the coupled wires construction of the free fermion DSM. We
then construct a wire building block for the 2D BSM phase
using two copies of the bosonic integer quantum Hall (BIQH)
edge theory. For our purposes, we require the description
of the BIQH edge in terms of an SU (2)1 Wess-Zumino-
Witten (WZW) theory, as discussed in Refs. [15,17]. For
completeness, we briefly review this description of the BIQH
edge and carefully discuss how this edge theory couples to an
external electromagnetic field. We then review the derivation
of Ref. [42] of a single O(4) NLSM with θ = π from coupled
wires consisting of a single copy of an SU (2)1 WZW theory.

With all of this information in hand, we go on to present
a coupled wires construction of the 2D BSM model, and we
include a careful discussion of how to define the action of
time-reversal and inversion symmetries in the coupled wires
model so that the correct action of these symmetries on the
continuum fields is recovered in the continuum limit. Finally,
we conclude this section by contrasting the coupled wires
constructions of the DSM and BSM phases, and we briefly
comment on how the symmetry breaking phases of the BSM
model can be accessed within the coupled wires description.

A. Coupled wire construction of a fermionic Dirac semimetal

We begin by reviewing the construction of the free-fermion
DSM via a stacking of 1D gapped topological free fermion
wires, each with charge e

2 polarization. This construction
was introduced in Ref. [7], and it provides a clear physical
interpretation of the quasi-1D inversion-breaking response of
the DSM in terms of the polarization response of the individual
wires in the stacking construction. Just as in Sec. III, the
degrees of freedom are two-component spinless fermions �cn

living on a 1D lattice with site index n. The Bloch Hamiltonian
for the 1+1-D free fermion topological wire model has the
form

H1D(kx) = sin(kx)σx + (1 − m − cos(kx))σ z. (7.1)

This model is in a topological phase for 0 < m < 2, and one
can show that charge ± e

2 is trapped at a domain wall between
a state with m � 0 and m � 0 [35,64–66]. For our interest, we
consider the topological phase of this model to be protected
by inversion symmetry [67,68], where the inversion operator
I acts on the lattice fermions as

I�cmI−1 = σ z�c−m. (7.2)

To obtain the DSM model we now stack these 1+1-D
fermion wires into two dimensions and introduce a hop-
ping term: ty(�c †

n+ŷσ
z�cn + H.c.) between fermions on adjacent

wires. The Bloch Hamiltonian for the resulting 2D system has
exactly the form of Eq. (3.2). Now we note that the 2+1-D
model Eq. (3.2) looks like many copies of the 1+1-D model
in Eq. (7.1) where the different copies of the 1+1-D wire are
labeled by ky , and with each having a ky-dependent mass

mky
= m + ty cos(ky). (7.3)

Essentially, the Bloch Hamiltonian for each value of ky

represents a 1+1-D insulator of the type Eq. (7.1), but with a
ky-dependent mass parameter.

Consider the parameter range m,ty > 0 and recall the
definition of By from Sec. III (it is the positive solution to
m + ty cos(By) = 0 with By ∈ [0,π )). We see that the 1+1-D
systems labeled by ky have mky

> 0 for ky ∈ (−By,By), but
mky

< 0 for ky ∈ (By,π ) or ky ∈ (−π, −By). So the 1+1-D
systems in the range −By < ky < By are in the topological
phase, while the rest are in the trivial phase.

As we now review, this observation immediately leads to
a microscopic description of the quasi-1D response of the
DSM. First, note that each topological wire contributes a factor
e
2

∫
dxdt Ftx to the electromagnetic response of the system.

Here Ftx = ∂tAx − ∂xAt = −Ex (the electric field in the x-
direction), so this response represents a charge polarization of
magnitude e

2 in the x direction. The total number of 1+1-D

systems in the range −By < ky < By is 2By

( 2π
Nya0

)
, where Ny is the

number of wires that we stack to construct the 2+1-D system,
and a0 is the lattice spacing in the y direction. So the total
electromagnetic response from all of the topological wires in
the range −By < ky < By is

Seff,1D = 2By(
2π

Nya0

) e

2

∫
dxdt Ftx. (7.4)

Using Nya0 = ∫
dy and the fact that By is uniform in this case,

we get

Seff,1D = e

2π

∫
d3x ByFtx, (7.5)

which is exactly the response from Eq. (2.1) for the case where
only By �= 0.

We would like to make one more comment about the
free fermion topological wire model of Eq. (7.1). If one
linearizes this model near the m = 0 critical point, and then
takes a continuum limit, the resulting model is a 1 + 1-D
Dirac fermion with a Dirac mass (backscattering) term acting
between the left and right-moving fermions that make up the
Dirac fermion. For the BSM construction it will be useful to
make the following analogy. We note that the edge theory of
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the ν = 1 integer quantum Hall effect (IQHE) (for fermions) is
a single right-moving fermion. Hence, the fermion topological
wire model used to construct the DSM can then be interpreted
as being built from the edge theory of a ν = 1 IQH state and
a ν = −1 IQH state, with an additional backscattering mass
term introduced to gap out the entire system. Alternatively,
we could think of the wire as just a thin strip of ν = 1 IQHE
where the opposing edges are close enough to interact with
each other. Similarly, in our coupled wires construction of
the BSM model, each individual wire will contain the two
counterpropagating edge modes of a thin strip of the BIQH
system.

B. Edge theory of the bosonic integer quantum Hall system

In this section we briefly discuss the edge theory of the
BIQH system, paying close attention to how the edge theory
couples to an external electromagnetic field. This edge theory
will help form the basic building block for the 1D bosonic wires
we will use to construct our 2D BSM model, just as the edge
theory for the fermion IQH system forms the basic building
block for the 1+1-D fermionic topological wire considered
in the previous subsection. We expect the edge theory for
the BIQH system to satisfy (at least) two requirements:
(i) the basic fields in the model are bosonic, and (ii) the U (1)c
charge conservation symmetry is realized in an anomalous
way so that the variation of the boundary action under a
gauge transformation cancels the contribution from the bulk
Chern-Simons action for the BIQH system.

The edge theory for the BIQH state can be described
using the K-matrix formalism familiar from Abelian quantum
Hall systems (in which case it is described by K = σx , c.f.
Ref. [16]), however, we will use the description of the edge
theory in terms of an SU (2)1 Wess-Zumino-Witten (WZW)
theory, which was proposed in Refs. [15,17]. Here we review
some details of this theory and explicitly show that the anomaly
of the edge theory with the correct charge assignment exactly
cancels the boundary term we obtain when we perform a gauge
transformation on the bulk Chern-Simons effective action for
the BIQH system. Indeed, this clearly shows that the BIQH
state can be terminated with an SU (2)1 WZW edge theory.

The bulk Chern-Simons effective action for the BIQH
system can be written in differential form notation as

SBIQH = 1

2π

∫
M

A ∧ dA, (7.6)

where M is the space-time manifold and A = Aμdxμ. Under
a gauge transformation A → A + dχ we have SBIQH →
SBIQH + δSBIQH with

δSBIQH = 1

2π

∫
∂M

A ∧ dχ. (7.7)

Therefore, in order for the system as a whole to be gauge
invariant, we should expect that the edge theory has an anomaly
when we couple to an electromagnetic field, in order to cancel
this term coming from the gauge variation of the bulk action.

The SU (2)1 WZW theory takes the form (see Ref. [69] for
an introduction)

S = 1

8π

∫
d2x tr[(∂μU †)(∂μU )] − SWZ[U ], (7.8)

where U is an SU (2) matrix field, and the Wess-Zumino (WZ)
term is

SWZ[U ] = 1

12π

∫ 1

0
ds

∫
d2x εμνλ

× tr[(Ũ †∂μŨ )(Ũ †∂νŨ )(Ũ †∂λŨ )]. (7.9)

As usual, the WZ term involves integration over an auxiliary
direction of spacetime. In this expression Ũ (s,t,x) denotes an
extension of U (t,x) into the s direction and μ,ν,λ = s,t,x

in the sum (we take εstx = 1). By convention, one typically
chooses boundary conditions Ũ (0,t,x) = I (i.e., a trivial
configuration) and Ũ (1,t,x) = U (t,x), so that the physical
spacetime is located at s = 1.

The SU (2)1 WZW theory has an SU (2) × SU (2) symme-
try: The action is invariant under the replacement U → g†Uh,
for g,h ∈ SU (2). The transformation with g = I is referred
to as the rightSU (2) symmetry, while the transformation with
h = I is referred to as the left SU (2) symmetry. The case g = h

is called the diagonal SU (2) symmetry. Just as in Sec. IV, the
matrix U can be written in terms of bosonic fields bI , I = 1,2,
and the physical U (1)c symmetry bI → eiχbI is realized on
U as U → Ueiχσz

. Hence, the U (1)c symmetry is a U (1)
subgroup of the right SU (2) symmetry of the SU (2)1 WZW
theory.

It is known that one cannot obtain a gauge invariant action
by only gauging the right or left SU (2) symmetry of the WZW
theory (or a subgroup of one of these symmetry groups) [70].
However, in the case where one chooses to gauge a left or right
symmetry of the theory, there is a “best possible” action that
one can obtain, in which the gauge transformation produces a
term that only depends on the gauge field itself and the element
of the Lie algebra involved in the gauge transformation (instead
of a more complicated expression involving the actual field U )
[71]. In our case, this “best possible” action takes the form

Sgauged = 1

4π

∫
d2x

∑
I

(Dμb∗
I )(DμbI ) − SWZ[U ]

+ 1

4π

∫
d2x εμν tr[iAμσ zU †∂νU ],

(7.10)

where Dμ = ∂μ − iAμ. In the kinetic term we applied the
usual minimal coupling procedure ∂μ → Dμ. The last term,
however, is more mysterious. Its purpose is to make the gauge
variation of this action as nice as possible (the WZ term is
not gauge invariant). Indeed, under a gauge transformation
U → Ueiχ(x)σ z

, Aμ → Aμ + ∂μχ (x), we have

δSgauged = − 1

2π

∫
d2x εμνAμ∂νχ = − 1

2π

∫
∂M

A ∧ dχ.

(7.11)

This precisely cancels the gauge variation of the bulk Chern-
Simons term, which shows that the SU (2)1 WZW theory with
gauged right U (1) symmetry is an appropriate description of
the edge of the BIQH system.

In our coupled wires construction of the BSM we will
take each wire to consist of two copies of the SU (2)1 WZW
theory, with fields U+ and U−, but with the two copies
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having opposite signs on their WZ terms. Based on the form
of the gauged action Eq. (7.10) for one WZW theory, it
is clear that this doubled system can be gauged in such a
way that the total action is completely gauge invariant. This
1D wire model, which can be interpreted as consisting of
two counterpropagating BIQH edge modes, is a completely
consistent 1D system and is therefore an appropriate building
block for a coupled wires construction of the BSM model.

C. Review: Coupled wires model for one O(4) NLSM
with θ = π

Before presenting the coupled wires construction of the
BSM model, we first review the coupled wires construction
of a single O(4) NLSM with θ = π , which was first derived
in Ref. [42] (see also Refs. [17,43]). In this construction each
1D wire consists of just one copy of the SU (2)1 WZW theory.
We note briefly that in accordance with the discussion in the
previous subsection, if each wire contains only one copy of the
SU (2)1 WZW theory, then the left or right SU (2) symmetry
of each wire cannot be consistently gauged. This was not a
problem in the physical context of Refs. [42,43], where the
SU (2)1 WZW theory was considered in connection with 1D
spin chains. In that case the SU (2) subgroup of the theory
which one might consider gauging is actually the diagonal
subgroup (U → h†Uh), and this subgroup can be consistently
gauged [70].

We label the individual wires in the wire model by the
discrete coordinate j = 0, . . . ,N − 1. The lattice spacing in
the stacking direction is a0, and the continuum coordinate for
the stacking direction will be y = ja0. The unperturbed action
for the collection of wires is

S0 =
∑

j

{
1

8π

∫
d2x tr[(∂μU

†
j )(∂μUj )] + (−1)j SWZ[Uj ]

}
.

(7.12)

We see that the sign of the WZ term alternates between adjacent
wires. The coupling between the wires takes the form

S⊥ = t⊥
2

∑
j

∫
d2x

2∑
I=1

(b∗
I,j bI,j+1 + c.c.), (7.13)

where t⊥ > 0, and b1 and b2 are the matrix elements of U . This
term is proportional to tr[U †

j Uj+1 + H.c.]. We now Fourier
transform in the stacking direction

bI,j = 1√
N

∑
k

bI,ke
ikja0 (7.14)

to get

S⊥ = t⊥
∑

k

cos(ka0)
∫

d2x
∑

I

b∗
I,kbI,k. (7.15)

The key point now is that we should expand this term near
its lowest energy point. This should be contrasted with the free
fermion case, where the correct procedure was to expand the
dispersion near the band touchings at zero energy (which is
where the low energy excitations are located when the lattice

is at half filling). The potential energy associated with S⊥ is

H⊥ = −t⊥
∑

k

cos(ka0)
∫

dx
∑

I

b∗
I,kbI,k, (7.16)

which has its minimum value at k = 0 for t⊥ > 0. Expanding
around k = 0 gives

S⊥ ≈ const. − t⊥
2

∑
k

(ka0)2
∫

d2x
∑

I

b∗
I,kbI,k. (7.17)

Since this interaction tends to align the fields Uj and Uj+1

(if we think of them as four component unit vector fields), it
makes sense to introduce the slowly varying continuum fields
bI (t,x,y), which are obtained from bI,j (t,x) by keeping only
the modes near k = 0. We have [72]

bI,j (t,x) ≈ bI (t,x,y) = 1√
N

∫
dk(
2π
Na0

)bI,k(t,x)eiky,

(7.18)

where y = ja0, and we have expressed the continuum field
bI (t,x,y) as an integral over a continuous set of wave numbers
k. The continuum fields bI (t,x,y) then become the components
of the continuum matrix field U (t,x,y). Back in real space, S⊥
becomes the y derivative term (∂yU

†)(∂yU ) in the continuum
limit.

Finally, the theta term comes from a careful evaluation of
the alternating sum of Wess-Zumino terms. We have∑

j

(−1)j SWZ[Uj ] ≈ 1

2

∫
dy ∂ySWZ[U ], (7.19)

where U in SWZ[U ] is the continuum field U (t,x,y). It remains
to evaluate ∂ySWZ[U ]. One method for evaluating this quantity
is to simply use the definition of the derivative,

∂ySWZ[U ] = lim
ε→0

SWZ[U (t,x,y + ε)] − SWZ[U (t,x,y)]

ε
.

(7.20)

We then expand U (t,x,y + ε) ≈ U (t,x,y) + ε∂yU (t,x,y) and
use the formula for the variation of the Wess-Zumino term with
δU set equal to ε∂yU . The variation of the WZ term is

δSWZ[U ] = 1

4π

∫
d2x εμ̄ν̄ tr[(U †∂μ̄U )(U †∂ν̄U )(U †δU )],

(7.21)

where μ̄,ν̄ = t,x only. Setting δU = ε∂yU , we obtain for the
y derivative,

∂ySWZ[U ] = 1

4π

∫
d2x εμ̄ν̄ tr[(U †∂μ̄U )(U †∂ν̄U )(U †∂yU )].

(7.22)

A small amount of algebra then gives the final result∑
j

(−1)j SWZ[Uj ] = πSθ [U ], (7.23)

where Sθ [U ] is the theta term for the O(4) NLSM from
Eq. (4.4). Note that the theta angle θ works out to be
exactly π .
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D. Coupled wires construction of the 2D BSM model

In this section we give a coupled wires construction of
the 2D BSM model. Specifically, the construction presented
here yields our 2D BSM model with only the y component
of the field Bμ nonzero. As we have discussed, our coupled
wires construction uses two SU (2)1 WZW theories in each
unit cell j in the stacking direction. We label the fields for
the two copies of the WZW model in each unit cell as U±,j .
Below, we will see how the “A” and “B” fields for the 2D BSM
model emerge from these initial ± fields (they are not the
same). In order to accommodate the inversion transformation
in the stacking direction, we take the wires to be numbered
as j = −N

2 , . . . ,N
2 − 1 (so there are still N unit cells). We

take N even and assume periodic boundary conditions in the
stacking direction so that j = N

2 is identified with j = −N
2 .

The unperturbed action for the decoupled collection of wires
is

S0 =
∑

j

{∑
s=±

1

8π

∫
d2x tr[(∂μU

†
s,j )(∂μUs,j )]

+ SWZ[U+,j ] − SWZ[U−,j ]

}
, (7.24)

which consists of two SU (2)1 WZW theories in each unit
cell j but with the ± copies having opposite signs on their
respective WZ terms. We add two kinds of interwire coupling
terms, which take the form

S⊥,1 = t1

2

∑
j

∫
d2x

∑
I

{b∗
I,+,j bI,−,j+1 + b∗

I,−,j+1bI,+,j

+ b∗
I,−,j bI,+,j+1 + b∗

I,+,j+1bI,−,j } (7.25)

and

S⊥,2 = −i
t2

2

∑
j

(−1)j
∫

d2x

×
∑

I

{b∗
I,+,j bI,−,j+1 − b∗

I,−,j+1bI,+,j

− (b∗
I,−,j bI,+,j+1 − b∗

I,+,j+1bI,−,j )}. (7.26)

The hopping term S⊥,1 is proportional to tr[(U †
+,jU−,j+1

+ H.c.) + (U †
−,jU+,j+1 + H.c.)], while the term S⊥,2 is

proportional to tr[((iU †
+,jU−,j+1 + H.c.) − (iU †

−,jU+,j+1

+ H.c.))σ z]. When t1 > 0 the term S⊥,1 will tend to align
U+,j with U−,j+1 and U−,j with U+,j+1. We therefore define
the fields bI,A,j and bI,B,j by

bI,A,j =
{
bI,+,j , j = even

bI,−,j , j = odd
(7.27)

and

bI,B,j =
{
bI,−,j , j = even

bI,+,j , j = odd
. (7.28)

It is these fields which have a nice continuum limit for the
chosen hopping terms. In terms of these fields the hopping

terms take the simpler form

S⊥,1 = t1

2

∑
j

∫
d2x

∑
I

{b∗
I,A,j bI,A,j+1 + b∗

I,A,j+1bI,A,j

+ b∗
I,B,j bI,B,j+1 + b∗

I,B,j+1bI,B,j }, (7.29)

and

S⊥,2 = −i
t2

2

∑
j

∫
d2x

∑
I

{b∗
I,A,j bI,A,j+1 − b∗

I,A,j+1bI,A,j

− (b∗
I,B,j bI,B,j+1 − b∗

I,B,j+1bI,B,j )}. (7.30)

Now we Fourier transform the “A” and “B” fields as
in Eq. (7.14) and also make a specific choice of hopping
parameters, t1 = t cos(Bya0) and t2 = t sin(Bya0). In terms
of the Fourier-transformed fields the interwire coupling now
takes the form (with S⊥ = S⊥,1 + S⊥,2)

S⊥ = t
∑

k

{
cos[(k − By)a0]

∑
I

b∗
I,A,kbI,A,k

+ cos[(k + By)a0]
∑

I

b∗
I,B,kbI,B,k

}
. (7.31)

It is clear that the additional imaginary hopping terms with
amplitude t2 have cause the minima of the cosine potentials to
shift from k = 0 to k = ±By .

Finally, we take the continuum limit in the stacking
direction. For the “A” fields we expand the cosine around k =
By , and for the “B” fields around k = −By , which is where the
potential energy (which is proportional to − cos[(k ± By)a0])
has its minimum. The lattice fields now take the approximate
form

bI,A,j (t,x) ≈ eiByybI,A(t,x,y) (7.32a)

bI,B,j (t,x) ≈ e−iByybI,B(t,x,y), (7.32b)

where the slowly varying continuum fields are now given by

bI,A(t,x,y) = 1√
N

∫
dk(
2π
Na0

)bI,A,k+By
(t,x)eiky (7.33)

bI,B (t,x,y) = 1√
N

∫
dk(
2π
Na0

)bI,B,k−By
(t,x)eiky, (7.34)

where the integration over wave numbers k is now centered
at the modes with wave number ±By instead of at k = 0.
The term S⊥ will give the terms |(∂y − iBy)bI,A|2 and |(∂y +
iBy)bI,B |2 in the continuum limit, so this construction gives the
correct minimal coupling of the bosonic fields to the “gauge
field” By .

Now we look at how the alternating sums of WZ terms
transform into the theta terms for the “A” and “B” copies
of the O(4) NLSM. We first define the matrix lattice fields
UA,j and UB,j , whose matrix elements are the lattice fields
bI,A,j and bI,B,j . In the continuum limit these are expressed in
terms of the continuum matrix fields UA(t,x,y) and UB(t,x,y)
(whose matrix elements are the continuum fields bI,A(t,x,y)
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and bI,B(t,x,y)), as

UA,j (t,x) ≈ UA(t,x,y)ei(Byy)σ z

(7.35)

UB,j (t,x) ≈ UB(t,x,y)e−i(Byy)σ z

. (7.36)

The matrix phase factors e±i(Byy)σ z

attach the appropriate phase
to the lattice bosons, as shown in Eq. (7.32). Because of
the form of the WZ term, the matrix phase factors e±i(Byy)σ z

completely cancel each other, and the evaluation of the theta
terms from alternating sums of WZ terms proceeds exactly as
in the case of one copy of the O(4) NLSM. In addition, we
have∑

j

(SWZ[U+,j ] − SWZ[U−,j ])

=
∑

j

(−1)j SWZ[UA,j ] −
∑

j

(−1)j SWZ[UB,j ], (7.37)

so the theta angles for the “A” and “B” copies of the O(4)
NLSM will have opposite sign.

E. Symmetry transformations

We now define transformations for the lattice bosonic fields
bI,±,j under inversion ZI

2 and time reversal ZT
2 in such a way

that in the continuum limit we get the transformations shown
in Eq. (5.4) and Eq. (5.5) for the fields bI,A and bI,B of the 2D
BSM model. For time reversal, we take

T bI,±,jT −1 = bI,∓,j . (7.38)

It is easy to see that the term S⊥,1 has this symmetry. The term
S⊥,2 picks up a minus sign under the swap + → −, but the
factor of i in that term is also negated since T is antiunitary.
These two signs cancel each other, and so the term S⊥,2 is also
symmetric under this time-reversal symmetry. We also see that
T bI,A,jT −1 = bI,B,j , which then translates over to the correct
continuum transformation T bI,AT −1 = bI,B , as can be seen
from Eq. (7.32).

Next we consider the action of inversion symmetry. We take
I to act on the lattice fields as

IbI,±,j (x)I−1 = bI,∓,−j (−x), (7.39)

which is just an inversion about the origin x = 0,j = 0. Again,
it is easy to see that S⊥,1 has this inversion symmetry. Although
it is not obvious, one can explicitly check that S⊥,2 also
has this symmetry. For example the terms b∗

I,+,1bI,−,2 and
b∗

I,−,−1bI,+,−2, which are partners under inversion, appear in
S⊥,2 with the same sign. We also see that IbI,A,j (x)I−1 =
bI,B,−j (−x) since j ≡ −j mod 2. In the continuum limit
this inversion symmetry then translates into IbI,A(x)I−1 =
bI,B (−x), as can be seen from Eq. (7.32), and this is exactly
the inversion transformation for the continuum fields in the 2D
BSM model.

Finally, we discuss the emergence of the U (1)t translation
symmetry for the continuum fields. We saw that after ex-
panding the cosines near k = ±By and taking the continuum
limit in the y direction, the term S⊥ gave the kinetic terms
|(∂y − iBy)bI,A|2 and |(∂y + iBy)bI,B |2 for the continuum
fields bI,A and bI,B . We can see from the form of these terms
that the continuum action is invariant under the transformation

bI,A → eiξ bI,A, bI,B → e−iξ bI,B and By → By + ∂yξ . This
transformation is exactly the U (1)t gauge transformation
shown in Eq. (5.3) and discussed in the paragraphs following
that equation (in the special case where only the y component
of Bμ is nonzero).

F. Discussion

In this section we have shown how to construct our 2D
BSM model from a quasi-1D coupled wires model. Let us now
contrast the coupled wires model for the BSM phase with the
coupled wires model for the DSM phase (derived in Ref. [7]).

In the DSM case, we considered fermions on the square
lattice at half filling. The Bloch Hamiltonian for the model
in question featured two bands with energies E±(k) shown in
Eq. (3.5). At half filling, the low-energy excitations of that
model were at the locations in the BZ where the two bands
touched, i.e., at the locations where E+(k) = E−(k) = 0.
For this reason we expanded the Bloch Hamiltonian where
E±(k) = 0 to obtain the low energy description of the system.
If the band was just a cosine, e.g., cos(ky), then we would
expand at ky = ±π

2 (so two locations), which are the locations
of the two Dirac points. From this discussion it is clear why
the form m ± ty cos(ky) for the dispersion was appropriate
for the construction of the DSM model: The addition of the
intrawire mass m shifts the cosine vertically, which changes the
positions of the zeros of energy, and hence shifts the locations
of the Dirac nodes in the BZ.

Now we compare to the BSM case. For bosons there is
no notion of filling a band or of expanding a dispersion near
band touchings. Instead, the appropriate method for finding
the low energy description of the system was to expand the
potential about its minimum. For a potential which is just a
cosine, e.g., − cos(ky), we expand around ky = 0 (so a single
location). From this discussion it is apparent that in order
to move the low-energy physics of the bosonic system away
from ky = 0, we need to shift the minimum of the cosine
potential, i.e., we need a horizontal shift of the cosine, as
in − cos(ky − By). In our coupled wires construction of the
BSM model this horizontal shift was accomplished using an
imaginary interwire hopping term, not an intrawire mass term
as in the DSM case.

It seems that the essential difference between the coupled
wires constructions of the DSM and BSM models comes from
the simple fact that fermions fill a band structure, while bosons
do not. Therefore a different mechanism is needed in the two
cases to shift the low-energy physics to the points (0,±By) in
momentum space.

Finally, we note that our coupled wires model for the BSM
can be driven into time-reversal or inversion breaking phases
by adding dimerization to the interwire tunneling terms. As
we discussed in Sec. V [see the discussion in the paragraph
above Eq. (5.26)], the time-reversal and inversion breaking
perturbations to the BSM model correspond to correlated shifts
of the theta angles θA and θB away from their original values
θA = −θB = π . In Ref. [43], Tanaka and Hu have shown that
incorporating dimerization into the interwire interactions in the
coupled wires construction (of Ref. [42]) of the O(4) NLSM at
θ = π leads to an O(4) NLSM with θ shifted away from π . It is
therefore possible to investigate the time-reversal and inversion
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breaking phases of the BSM model within its quasi-1D
description in terms of coupled wires, just by adding suitable
dimerization to the interwire tunneling terms. However, we do
not carry out this analysis here as we have already investigated
these phases within the continuum description in Sec. V, and
we do not expect the results to be modified in an essential way.

VIII. CONCLUSION

We have constructed an effective theory and a coupled-wire
model for a bosonic analog of a topological DSM, in which
the Dirac cones of the DSM are replaced with copies of
the O(4) NLSM with topological theta term and theta angle
θ = ±π . We computed the time-reversal and inversion sym-
metry breaking electromagnetic responses of this BSM model
and showed that they are twice the value of the responses
obtained in the fermionic DSM case. We also examined the
stability of our BSM model to many kinds of perturbations
and found that the same composite ZT I

2 symmetry which
protects the local stability of the DSM also plays an important
role in the local stability of the BSM. Finally, we provided
a quasi-1D construction of the BSM model using an array
of coupled 1D wires in which each individual wire is made
up of two copies of the SU (2)1 WZW conformal field
theory.

Along the way we have been able to clarify many aspects
of the O(4) NLSM with θ = π which have been discussed in
the literature. In particular we provided a detailed analysis of
the stability of the BTI surface theory to symmetry-allowed
perturbations, which were only briefly discussed in Ref. [17].
We were also able to prove the results on the charges and
statistics of vortices in the O(4) NLSM with theta term
which were argued for in Refs. [17,42]. We also conjectured
a relationship between the descriptions of the BTI surface
discussed in this paper, in particular the dual vortex description
of Ref. [17] and the description in terms of Abanov-Wiegmann
fermions and the recently proposed dual description in terms
of N = 2 QED3 [40]. As we discussed in Sec. IV, one
interesting direction for future work would be to give a direct
derivation of the N = 2 QED3 description of the BTI surface,
starting from the description in terms of the O(4) NLSM
with θ = π .

Another interesting direction for future work would be to
explore bosonic analogues of Weyl semimetals in three spatial
dimensions. In particular, it would be interesting to understand
the requirements for the local stability of a bosonic analogue of
a Weyl semimetal, since in the fermion case the local stability
of the Weyl nodes does not depend on any discrete symmetry
[73]. This is quite different from the DSM case in 2D, in
which the composite symmetry ZT I

2 was necessary to ensure
the local stability of the Dirac nodes. One possibility for a
bosonic analog of a Weyl semimetal would be to try replacing
each Weyl node with a copy of the O(5) NLSM with theta
term and theta angle θ = ±π .

Finally, there is still more to be learned about the O(4)
NLSM at θ = π . The disordered (symmetry-preserving) phase
of this model was first argued to be gapless in Ref. [42].
Qualitative arguments about the RG flows of this model also
indicate the existence of a fixed point (representing the putative
gapless phase) at θ = π at a large but finite value of the

coupling constant g [46]. Very recently, numerical simulations
on a (fermionic) honeycomb lattice model whose low energy
sector is described by the O(4) NLSM with θ = π have shown
that this model is indeed gapless [74,75]. It would be very
interesting to understand how the vortex braiding processes we
described in Appendix C, which at θ = π lead to destructive
interference between the different field configurations summed
over in the path integral of the O(4) NLSM, lead to this gapless
behavior. In addition, it would be interesting to calculate the
scaling dimension of the O(4) field N at the disordered fixed
point.
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APPENDIX A: CANONICAL QUANTIZATION OF THE
O(4) NONLINEAR SIGMA MODEL

In this Appendix we briefly discuss the canonical quantiza-
tion of the O(4) NLSM. We use these commutation relations
in Sec. IV to understand the effects of symmetry-allowed
perturbations on the surface theory of the BTI. Since the O(4)
NLSM is a constrained system, it is necessary to use the Dirac
bracket formalism to obtain the canonical commutators of this
system [76,77]. Let ψi , i = 1, . . . ,M , be the second class
constraints of the system in question. Then the Dirac bracket
is given by

{f (x),g(y)}D = {f (x),g(y)} −
M∑

i,j=1

∫
d2z d2z′

× {f (x),ψi(z)}C−1
ij (z,z′){ψj (z′),g(y)},

(A1)

where the Cij (z,z′), which are the matrix elements of a matrix
with discrete indices i,j and continuous spatial indices z and
z′, are given by

Cij (z,z′) = {ψi(z),ψj (z′)}, (A2)

and where { , } is the ordinary Poisson bracket.
In the case of the O(4) NLSM, one possible choice of

coordinates and momenta is just the fields Na and their
canonically conjugate momenta �a = ∂L

∂(∂tNa ) . In terms of
these variables the Poisson bracket reads

{f (x),g(y)}

=
4∑

a=1

∫
d2z

(
δf (x)

δNa(z)

δg(y)

δ�a(z)
− δf (x)

δ�a(z)

δg(y)

δNa(z)

)
,

(A3)
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where δ
δNa (z) is a functional derivative. This system has two

second class constraints, which take the form

ψ1 =
∑

a

NaNa − 1 (A4)

ψ2 =
∑

a

Na�a. (A5)

Using this data one finds, for example, that the Dirac bracket
for Na and �b is

{Na(x),�b(y)}D = (δab − Na(x)Nb(y))δ(2)(x − y). (A6)

The rest of the Dirac brackets for this system are shown
explicitly in Ref. [78]. The commutator for the quantum field
theory is then obtained by replacing {Na(x),�b(y)}D with
−i[Na(x),�b(y)] in the previous expression.

In this paper we discuss the O(4) NLSM using the variables
b1 and b2 defined in Eq. (4.5). In the canonical formalism we
now have the coordinates bI and b∗

I and momenta πI = ∂L
∂(∂t bI )

and π∗
I = ∂L

∂(∂t b
∗
I ) for I = 1,2. In these variables the second

class constraints are

ψ1 =
∑

I

b∗
I bI − 1 (A7)

ψ2 =
∑

I

(bIπI + b∗
I π

∗
I ). (A8)

The Dirac bracket for bI and πJ takes the form

{bI (x),πJ (y)}D = (
δIJ − 1

2bI (x)b∗
J (y)

)
δ(2)(x − y). (A9)

For the quantum theory this yields the commutation
relation

[bI (x),πJ (y)] = i
(
δIJ − 1

2bI (x)b†J (y)
)
δ(2)(x − y), (A10)

where the function b∗
I (x) has been replaced with the operator

b
†
I (x) on the Hilbert space. One can also show that the operators

bI (x) and b
†
J (x) all commute with each other. These are

the only commutation relations we require for this paper,
but the others can also be derived using the Dirac bracket
formalism.

APPENDIX B: VORTICES IN THE O(4) NLSM
AND THEIR QUANTUM NUMBERS

In this Appendix we study vortex solutions of the equations
of motion for the O(4) NLSM, and we also perform a
collective coordinate quantization of the global excitations on
the background of a single vortex. This allows us to show very
directly that vortices in the phase of b1 carry charge θ

2π
of b2

and vice-versa, as was argued in Ref. [17]. A more precise
statement is that in the presence of a vortex in b1, the charge
spectrum of b2 is shifted by θ

2π
. Our analysis (in particular,

the collective coordinate quantization) closely parallels the
analysis in Ref. [78] of solitons in the O(3) NLSM with
Hopf term. In Ref. [78], the authors showed that a soliton of
topological charge Q carries angular momentum θ

2π
Q2, where

θ is the coefficient of the Hopf term (the result for Q = 1 was
originally worked out in Ref. [50]).

1. Finite energy vortex solutions

We start by discussing a class of finite energy vortex
solutions to the NLSM equations of motion. To the best
of our knowledge, these solutions have not appeared in the
literature. They are, however, closely related to solitons in
the O(3) NLSM, due to the fact that they involve only three
components of the O(4) field. Exact soliton solutions for
the O(3) NLSM were obtained long ago by Belavin and
Polyakov [79]. Our vortex solutions, however, involve different
boundary conditions than those considered in the soliton case.
Indeed, in the study of solitons in an O(3) NLSM, with field
m, one imposes the boundary condition that m tends to a fixed
configuration m0 at spatial infinity. This boundary condition
has the effect of compactifying 2D space to the sphere S2.
For the vortex configurations considered here, we will instead
regard 2D space as a large disk of radius R, and only take R

to infinity at the end of the calculation.
If we vary the O(4) NLSM action in Eq. (4.1) with respect

to U and use δU † = −U †δUU † (since U is an SU (2) matrix)
we find the equation of motion

�U − U (�U †)U = 0, (B1)

where � = ∂2
t − ∇2. The theta term does not contribute to

the equation of motion since its variation is a total derivative.
We work in polar coordinates (r,φ) for the plane, but with an
upper cutoff R for the radial direction, i.e., r ∈ [0,R], and take
R → ∞ at the end of the calculation. Let z = (b1,b2)T , where
b1 and b2 are the elements of U as shown in Eq. (4.5). We
make the time-independent vortex ansatz,

z =
(

cos(f (r))eiαφ

sin(f (r))

)
, (B2)

where α ∈ Z (so that the solution is single valued) and we take
the boundary conditions f (0) = π

2 and f (R) = 0, so that the
amplitude of b1 vanishes in the vortex core. One can actually
take α to be any real number in what follows. Solutions with
general values of α might be relevant for the study of braiding
statistics of excitations in gauged NLSM’s as considered in
Ref. [49]. Plugging this ansatz into the equations of motion
yields a differential equation for f (r)

f ′′(r) + 1

r
f ′(r) + α2 sin(f (r)) cos(f (r))

r2
= 0, (B3)

whose exact solution for the given boundary conditions is

f (r) = am

[
log

(
R

r

)|α|
,1

]
= −π

2
+ 2 tan−1

[(R

r

)|α|
]
.

(B4)

In this expression, am[u,k] is the Jacobi amplitude function.
When k = 1, this function reduces to a much more manageable
form.

Next we show that this solution has finite energy. We will
see that the energy of the solution is actually independent
of the long-distance cutoff R. The topological term does not
contribute to the energy, so we just have (i = x,y and we sum
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over i)

Eα =
∫

d2x
1

g
(∂iz

†)(∂iz)

=
∫

d2x
1

g

{
(∂if (r))2 + cos2(f (r))

r2

}
. (B5)

Next we go to polar coordinates and use the fact that
(∂if (r))2 = 4α2

r2
R2|α|r2|α|

(r2|α|+R2|α|)2 and cos2(f (r))
r2 = 4

r2
R2|α|r2|α|

(r2|α|+R2|α|)2 for the
solution for f (r) in Eq. (B4) to find

Eα = 1

g

∫ 2π

0
dφ

∫ R

0
rdr

4(α2 + 1)

r2

R2|α|r2|α|

(r2|α| + R2|α|)2

= 2π

g

(
|α| + 1

|α|
)

. (B6)

So we find that the vortex solution has finite energy and that
the energy is independent of the upper cutoff R. The energy
increases essentially linearly with the “vortex strength” α. For
the case of α = 1, we just get E1 = 4π

g
.

It is interesting to note that this theory admits finite energy
vortex solutions without requiring coupling to a dynamical
gauge field, as is necessary in the case of an ordinary complex
scalar field in 2D (see, for example, the discussion of the
Abelian Higgs model in Ref. [80]). These vortex solutions are,
however, somewhat pathological, in the sense that the size of
the vortex core grows without bound as the upper cutoff R is
pushed to infinity. Vortex-anti-vortex pairs, however, do not
have this problem. This is because the energy density of such
a pair falls of faster than 1

r2 at long distances, so these objects
are well defined when the system size is infinite.

2. O(2) NLSM for phase excitations of b2

on a vortex background

We now study the global excitations of the phase of the
boson b2 on the background of a vortex in b1. Note that the
classical energy Eα of the vortex ansatz in Eq. (B2) is invariant
under the replacement sin(f (r)) → sin(f (r))eiθ̄2 where θ̄2 is
any constant phase. To study the global excitations about the
vortex solution, we promote θ̄2 to a time-dependent phase θ2(t),

z =
(

cos(f (r))eiφ

sin(f (r))eiθ2(t)

)
, (B7)

where f (r) is the vortex solution from Eq. (B4) with α = 1.
We then evaluate the action on this configuration and quantize
the motion of θ2(t). This type of analysis is referred to as
collective coordinate quantization (see Refs. [78,81]) and is
useful for understanding how quantum fluctuations can lift the
classical degeneracy of global fluctuations about the vortex
solution.

On this field configuration the theta term in the action
reduces as

Sθ = 1

24π2

∫
d3x εμνλtr[(U †∂μU )(U †∂νU )(U †∂λU )]

→ 1

2π

∫
dt ∂t θ2(t), (B8)

which is precisely the theta term for an O(2) NLSM in 0 + 1-D
[82]. The kinetic term in the action reduces to

Skin =
∫

d3x
1

g
(∂μz†)(∂μz)

→
∫

dt

{
2πR2J

g
(∂tθ2)2 − E1

}
, (B9)

where E1 = 4π
g

is the energy of the vortex solution and J is
the convergent integral

J =
∫ ∞

0
dw e−2wsn2[w,1] = 3

2
− ln(4). (B10)

In this expression sn[w,1] = sin(am[w,1]) is one of the Jacobi
elliptic functions. An important point here is that it does not
make physical sense to evaluate the action on a vortex solution
with infinite energy, therefore it is crucial for our analysis that
the vortex solutions do have finite energy.

The full action for the phase excitation θ2(t) is (neglecting
the constant E1)

Sθ2 =
∫

dt

{
2πR2J

g
(∂tθ2)2 − θ

2π
∂tθ2

}
. (B11)

This is exactly the action for an O(2) NLSM with theta term in
0 + 1 dimensions. We can now canonically quantize the action
for θ2. We define the canonical momentum

p2 = ∂Lcore

∂(∂tθ2)
= 4πR2J

g
(∂tθ2) − θ

2π
, (B12)

from which we derive the Hamiltonian

Hcore = 1

2m

(
p2 + θ

2π

)2

, (B13)

where m = 4πR2J
g

is the “mass” of the degree of freedom inside

the vortex. In canonical quantization we set p2 = −i ∂
∂θ2

, and
so we find that the eigenfunctions of the vortex Hamiltonian
are

ψn(θ2) = 1√
2π

einθ2 , n ∈ Z (B14)

with energies

En = 1

2m

(
n + θ

2π

)2

. (B15)

We see that there is generally a unique ground state except
for when θ = π , in which case the n = 0 and n = −1 states
are degenerate. The energies of these states do, however, all
collapse to zero in the thermodynamic limit R → ∞.

3. Spectrum of charges

Finally, we can look at the charge spectrum of θ2(t)
fluctuations on the background of a vortex in b1. We start
by considering the conserved charge for boson species 2,

Q2 =
∫

d2x
i

g
(∂tb

∗
2b2 − b∗

2∂tb2), (B16)

where the integration is taken over all of space. This is the
conserved charge for the Noether current of the O(4) NLSM
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associated with the invariance of the action under the symmetry
b2 → eiχb2. After canonical quantization, Q2 will become the
number operator for the b2 bosons. Evaluating this expression
on our vortex solution gives

Q2 = 4πR2J

g
(∂tθ2), (B17)

and replacing ∂tθ2 with the canonical momentum p2 gives

Q2 = p2 + θ

2π
. (B18)

This shows that the charge spectrum of b2 is shifted by
θ

2π
in the presence of a vortex in b1, which means that a half

charge of b2 may be associated to vortices in b1 at θ = π .
An analogous result holds for vortices in b2. It follows that a
vortex in b1 will carry half of any U (1) charge carried by b2,
for example the U (1)c and U (1)t charges considered in this
paper. Thus, we have been able to prove the result of Ref. [17],
which is that vortices on the surface of the BTI carry charge
± 1

2 , directly from the description of the surface in terms of the
O(4) NLSM with θ = π .

APPENDIX C: THETA TERM AND THE MINKOWSKI
SPACE PATH INTEGRAL FOR THE O(4) NLSM

In this Appendix we discuss the role of the theta term in
the Minkowksi spacetime (i.e., real time) path integral of the
O(4) NLSM. Recall from Sec. IV that in Euclidean spacetime
(compactified to the sphere S3 via appropriate boundary
conditions), the theta term was quantized due to the nontrivial
homotopy group π3(S3) = Z. In that case the theta term
contributed a phase eiθnI to the Euclidean path integral, where
nI ∈ Zwas the instanton number of the field configuration [see
Eq. (4.9)]. It then followed that the time-reversal symmetric
values of θ are θ = nπ , n ∈ Z, at which the phase eiθnI is real.
In Minkowski spacetime these arguments no longer hold, and
it is illuminating to develop a separate understanding of the
role of the theta term in the real time path integral.

In this Appendix we show that in the real time path integral
the theta term gives a weight eiθ to spacetime configurations of
the O(4) field in which a vortex in the field b2 makes a complete
circuit around a vortex in b1. This result was anticipated
by the Euclidean spacetime arguments of Senthil and Fisher
(Ref. [42]), but in this Appendix we derive this result using
only the properties of the theta term in Minkowski spacetime.
In addition, following an argument used by Wilczek and Zee in
Ref. [50] in their analysis of solitons in the O(3) NLSM with
Hopf term, our result implies that a bound state of a vortex
in b1 and a vortex in b2 carries intrinsic angular momentum
J = θ

2π
. When θ = π , we have J = 1

2 , which means that the
bound state is a fermion. This result was also argued for in
Ref. [17].

To start, we express the components b1 and b2 of the NLSM
field U in Hopf coordinates as in Sec. IV. In these coordinates
the bosonic fields are expressed as b1 = sin(η)eiϑ1 and b2 =
cos(η)eiϑ2 with η ∈ [0, π

2 ] and ϑ1,ϑ2 ∈ [0,2π ). The theta term
can be written in the form [compare to Eq. (4.44)]

Sθ [U ] = 1

4π2

∫
d3x εμνλ∂μ(sin2(η))∂νϑ1∂λϑ2. (C1)

Now we integrate by parts, for the moment ignoring boundary
terms. Later we will comment on the boundary conditions
necessary to justify ignoring these boundary terms. We get

Sθ [U ] = 1

2π

∫
d3x sin2(η)

(
∂μϑ1K

μ

2 − ∂μϑ2K
μ

1

)
, (C2)

where we have introduced the vortex currents K
μ

I =
1

2π
εμνλ∂ν∂λϑI for vortices in the phase of the field bI . If ϑI

has vortices of vorticity qI,j (qI,j ∈ Z) at locations rI,j (t) [i.e.,
rI,j (t) is the location of the vortex core], then the components
of the vortex current K

μ

I take the form

Kt
I =

∑
j

qI,j δ
(2)(x − rI,j (t)) (C3)

KI =
∑

j

qI,j vI,j (t)δ(2)(x − rI,j (t)), (C4)

where KI = (Kx
I ,K

y

I ) and vI,j (t) = drI,j (t)
dt

. Since sin(η) = 0
at the core of vortices in b1, and sin(η) = 1 at the core of
vortices in b2, the theta term reduces further to

Sθ [U ] = 1

2π

∫
d3x ∂μϑ1K

μ

2 . (C5)

We now show that the theta term gives a phase of eiθ in the
real time path integral whenever a vortex (of strength q = 1)
in the phase of b2 makes a complete circuit around a vortex
(also of strength q = 1) in the phase of b1. We take the vortex
in ϑ1 to be located at r1(t), and the vortex in ϑ2 to be located
at r2(t), and we restrict the time integration in the action to
be on the interval [0,T ], where T is the time it takes for
the vortices to complete their circuit. From the form of the
components of the vortex current shown above, we find the
result ∫

d3x ∂μϑ1K
μ

2 =
∫ T

0
dt

d

dt
ϑ1(t,r2(t)), (C6)

where the integrand is the total time derivative of ϑ1(t,r2(t)),

d

dt
ϑ1(t,r2(t)) = ∂tϑ1(t,r2(t)) + v2(t) · ∇ϑ1(t,x)

∣∣∣∣
x=r2(t)

.

(C7)

Here the function ϑ1(t,r2(t)) is the phase of b1 evaluated at the
core of the vortex in b2.

Now we integrate the total time derivative of ϑ1(t,r2(t))
from t = 0 to t = T to obtain

Sθ [U ] = 1

2π
(ϑ1(T ,r2(T )) − ϑ1(0,r2(0))). (C8)

Finally, since the core of the vortex in b2 makes one full
circuit around the core of the vortex in b1 as t varies from
0 to T , we have ϑ1(T ,r2(T )) − ϑ1(0,r2(0)) = 2π . We then get
Sθ [U ] = 1, which means that in the real time path integral
we get a phase eiθSθ [U ] = eiθ for every field configuration in
which a vortex in b2 makes a complete circuit around a vortex
in b1. More generally, if a vortex of strength q2 in b2 makes a
complete circuit around a vortex of strength q1 in b1, we get a
phase of eiq1q2θ .

The result obtained above can also be used to investigate the
intrinsic angular momentum and statistics of the bound state
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of vortices in b1 and b2. In Ref. [50], the authors calculated the
intrinsic angular momentum J of a soliton in the O(3) NLSM
with Hopf term by calculating the action corresponding to an
adiabatic rotation of the soliton by 2π . If the time it takes
to complete the rotation is T , then the action should evaluate
to S = 2πJ + O( 1

T
). The topological term in the action is

responsible for the value of J , and the terms of order 1
T

are
produced by the other terms in the action. From our result
above, we immediately see that 2πJ = θ for the vortex bound
state, so J = θ

2π
. At θ = π we get J = 1

2 , which means that
the vortex bound state is a fermion.

Finally, a few words are in order about the conditions
necessary to justify ignoring the boundary terms produced
when we integrated the theta term by parts. First, the boundary
terms in the time direction can be neglected if the field
configurations at the initial and final time are chosen to be
the same. This is the usual choice in field theory, where
the path integral represents a matrix element of the form
〈ψ |e−iHT |ψ〉, in which the time evolution operator e−iHT

is sandwiched between the same initial and final state |ψ〉
(usually the vacuum, or ground state).

Now we discuss the spatial boundary terms. One way to
ensure that the spatial boundary terms vanish is to require the
phases ϑ1 and ϑ2 to tend to constants at spatial infinity. This
means that these two phases cannot wind at spatial infinity,
which means that if vortices are present in ϑ1 or ϑ2, there must
also be an equal number of antivortices present to completely
cancel the winding of the phase at spatial infinity. In other
words, the sum over configurations of the O(4) field U in
the path integral should be restricted to include only those
configurations which contain an equal number of vortices and
antivortices in the phase of each boson bI . This requirement
makes physical sense since, as we saw in Appendix B, isolated
vortices have some undesirable properties (their core size grew
without bound as the system size was taken to infinity). As we
discussed in Appendix B, vortex-anti-vortex pairs do not have
this problem.

APPENDIX D: ABANOV-WIEGMANN FERMIONS
AND THE RELATION TO THE O(4) NLSM

WITH THETA TERM

We mentioned in Sec. IV that the Abanov-Wiegmann
method seems to be more closely connected to an O(4)
NLSM in the ordered (small g) phase, whereas we are
interested in studying the disordered (large g) phase of the
model. Nevertheless, our response calculation using Abanov-
Wiegmann fermions completely agrees with the response
calculation of Ref. [17] using the dual vortex theory (which
we reviewed in Sec. IV). In this Appendix we use the
Abanov-Wiegmann formula to argue that the topological part
of the electromagnetic response of the O(4) NLSM with
θ = π must be exactly equal to the topological part of the
response of the theory of four massless fermions ψa , where
ψa are the four Abanov-Wiegmann fermions which can be
coupled to the O(4) field to produce an O(4) NLSM at
θ = π .

As discussed above, the Abanov-Wiegmann method cannot
produce an O(4) NLSM in the disordered, or large g phase,
because the expansion in powers of M−1 would not be reliable

at such low orders if M was taken to be small. Let us instead
consider a completely different scenario, in which we start out
with a system containing bosonic and fermionic degrees of
freedom. The ingredients in this theory are (i) an O(4) NLSM
in the disordered phase with a theta angle θ = −π and (ii) the
four massless fermions ψa introduced in the discussion of the
Abanov-Wiegmann method in Sec. IV. The action for these
two decoupled theories takes the form S = Sb + Sf with

Sb =
∫

d3x

[
1

g
(∂μNa)(∂μNa)

]
+ πSθ [N], (D1)

and

Sf =
∫

d3x i�̄ /∂�, (D2)

where � = (ψ1,ψ2,ψ3,ψ4)T . We now turn on a strong inter-
action between these two theories of the form

Sint = −M

4∑
a=1

∫
d3x �̄Na�a�, (D3)

with M > 0 and large (so the coupling is strong).
If we integrate out the fermions in this theory (using the

Abanov-Wiegmann formula), then the theta term for the O(4)
NLSM will be canceled (recall that the original theta angle
was −π ), and we are left with the action

S =
∫

d3x
1

g̃
(∂μNa)(∂μNa), (D4)

where g̃ is very small, since g̃−1 = g−1 + M
const. . The result is an

O(4) NLSM with no theta term which is in its ordered phase.
We see that strong coupling to the four massless fermions
ψa has completely destroyed the topological properties of the
original O(4) NLSM with θ = −π .

Our interpretation of this is as follows. The theory of four
massless fermions in Eq. (D2) (in which the fermions carry the
charges qa calculated in Sec. IV) should be regarded, in some
sense, as the inverse of the O(4) NLSM with θ = −π , since
strong coupling between the two theories completely destroys
the topological properties of the latter theory. In particular, the
topological part of the electromagnetic responses of these two
theories should have opposite signs. Now the O(4) NLSM
with θ = π is also, in this same sense, the inverse of the
O(4) NLSM with θ = −π . To see this, suppose we had two
O(4) NLSM’s with theta term, with fields N and M, with the
first copy having θ = π and the second copy having θ = −π .
Then a strong dot product coupling of the form N · M between
these two theories will have the effect of setting N = ±M,
which will in turn cause the theta terms for the two theories to
cancel. We therefore conclude that the topological part of the
electromagnetic response of the fermion theory in Eq. (D2)
should be exactly equal to the topological part of the response
of the O(4) NLSM with θ = π . This explains why we were
able to calculate the electromagnetic response of the O(4)
NLSM with θ = π by instead coupling the fermion theory in
Eq. (D2) to the external field Aμ.
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