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We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B
51, 10591 (1995)] for reducing finite-size effects in correlated calculations of periodic extended systems with
Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at
variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit
solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to
be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations.
For these reasons we dubbed our procedure “exact special twist” (EST). EST only needs a fully converged
independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist
along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated
model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum
Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall
good performance in reducing finite-size errors comparable to the widely used twist average technique but at a
much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate
that the EST method shows similar performances in the calculation of correlation functions, such as the ionic
forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point
to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the
physical problem under consideration requires large periodic cells.

DOI: 10.1103/PhysRevB.94.245108

I. INTRODUCTION

The systematic error arising from finite-size (FS) effects is
a long-standing issue in computer simulations of materials. It
is well established that a poor treatment of FS errors can lead to
inaccurate and unreliable results when probing basic quantities
such as total energies, structural parameters, or investigating
related phenomena such as phase transitions.

Among ab initio techniques, effectively independent-
electron frameworks such as Hartree-Fock (HF) or density
functional theory (DFT) can exploit the Bloch theorem for
reducing FS errors. Within a periodic system, their computa-
tional cost only depends on the size of the primitive cell and FS
effects can be controlled by averaging over a set of different
boundary conditions (usually called k points) spanning the
irreducible Brillouin zone of the reciprocal lattice. It is in
general feasible to use a large sets of k points and hence
FS errors can be systematically reduced below the desired
accuracy.
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Despite its great success, there are a vast amount of systems
where DFT has been proven insufficient. For example, it gives
unreliable predictions on strongly correlated systems such
as high-temperature superconductors, but also on moderately
correlated materials requiring very accurate treatment of
chemical bonds. Phenomena developing on tiny energy scales
such as the adsorption of molecules on surfaces or proton
transfer reactions in biological systems often need to go
beyond the independent-particle framework imposed by the
DFT approach.

One of the most promising many-body methods is the
set of techniques based on continuum quantum Monte Carlo
(QMC) [1,2], a correlated many-body wave-function frame-
work. Due to its statistical nature, one can systematically
improve the QMC precision by increasing the size of the sta-
tistical sample. QMC methods provide a truly first-principles
approach to molecular as well as extended systems. These
features, along with the negligible parallel overhead of the
main QMC algorithms, allow an unprecedented level of accu-
racy on a wide range of systems ranging from small/medium
size molecules [3–5] to strongly correlated materials as
cerium [6] and iron [7] and, recently, several high-temperature
superconductors [8–11]. Numerous studies have also been
carried out on systems dominated by weak intermolecular
forces such as van der Waals interactions [12–15] and on
adsorption phenomena [16,17]. More recently, improvements
in ionic forces evaluation have led to the first successful attempt
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of fully QMC-based molecular dynamics simulations of liquid
water [18,19].

While the statistical error can be systematically decreased
down to the desired accuracy, the FS effects in a correlated
framework such as QMC are considerably more delicate to
deal with. Since the electron-electron interaction is explicitly
included in the ab initio Hamiltonian solved by QMC,
calculations must be performed on larger simulation cells
(supercells) in order to accurately take into correlations beyond
nearest-neighbor interactions. However, even a large supercell
simulation does not ensure the complete elimination of FS
effects which can persist due to the long-range nature of the
Coulomb interaction. FS effects represent therefore one of
the main source of errors in QMC methods, often larger than
the achievable statistical accuracy.

To widen its application range, a reliable and relatively
cheap method to control FS effects in QMC is certainly
welcome. Several solutions have been proposed over the past
years, which can be divided into two main categories. The first
one deals with the noninteracting part of FS errors, i.e., related
to the kinetic energy term of the Hamiltonian and shell effects
in orbital filling; this is in general the most important contribu-
tion to the total FS error. The second one addresses two-body
effects deriving from the potential energy term and from the
long-range contributions to the kinetic energy. Examples of
the first category are the twist averaged boundary conditions
(TABC) [20] method and the special k-points methods [21,22]
(see Sec. II B for more details); the second category includes
model Coulomb potential [23], Kwee-Zhang-Krakauer (KZK)
exchange-correlation functional [24], and corrections based
on the random phase approximation of the electron structure
factor [25].

In this paper, we will focus on one-body FS errors. TABC
is certainly the most successful and widely used technique
for tackling them within QMC simulations. Inspired by lattice
calculations [26,27], it allows the many-body wave function
to pick up a phase θ = (θx,θy,θz) when reaching the supercell
boundaries:

�(r1 + Rs , . . . ,rN ) = eiθ ·Rs �(r1, . . . ,rN ), (1)

where N is the number of electrons and {Rs} denotes the
supercell lattice vectors. TABC treats each twist independently
during the simulation and therefore the resultant statistical
noise when averaging over the whole set of twists is given
by σ/

√
Nt where σ is the average error attained on a

single twist and Nt the total number of twists. Therefore,
the statistical noise is effectively reduced by performing
the average and TABC requires approximately the same
amount of samples as a single-twist calculation, for a given
target statistical accuracy. This method has been proven very
accurate to extrapolate to the thermodynamic (infinite-size)
limit and to reduce energy fluctuations produced by shell
filling. However, its application leads to some pitfalls. On
one hand, it requires to keep a fixed number of fermions
at each twist condition, i.e., standard TABC works within
the canonical ensemble. This implies that standard TABC
cannot reproduce the correct thermodynamically converged
independent-particle limit of the many-body wave function.
This issue affects the description of the Fermi surface and
it introduces a systematic small bias in kinetic energy [28].

On the other hand, although the twist average effectively
reduces statistical noise, large sets of twists require in general
a high computational burden; this is verified especially when
TABC is used in combination with diffusion Monte Carlo
(see Sec. II), where a relevant part of the simulation is spent in
equilibration. An attempt to overcome the first drawback is the
so-called grand canonical TABC (GTABC) method [20,29,30],
where small fluctuations in the total number of particles N

are allowed for each twist condition. This method can be
straightforwardly applied on isotropic systems with spherical
Fermi surface, whereas for realistic QMC calculations single-
particle filling could be chosen according to a mean-field
approach such as DFT. GTABC cures the kinetic energy
bias introduced by the standard technique, but it leads to
larger total energy fluctuations [28] which can be reduced
by averaging over the grand potential. At twist conditions
possessing different electron occupations, GTABC needs in
principle to optimize the Jastrow factor for each wave function
separately. However, a unique Jastrow factor for all twists is
generally adopted without an appreciable loss of accuracy.

In this paper, we propose and test a simple procedure
to evaluate special twist values [20,22] for treating FS
effects in correlated simulations. We call this procedure exact
special twist method (EST). In fact, at variance with previous
implementations, the EST procedure yields the special twist
values which reproduce the exact thermodynamic limit of
independent particles within the desired numerical accuracy.
Furthermore, we have not assumed to work with particular
twist values that make the wave function real, as it is typically
complex for generic twists.

By means of advanced variational and diffusion Monte
Carlo simulations, we prove that the EST method can eliminate
most part of the energy fluctuations due to shell effects and,
using a single twist, it shows an efficiency comparable to the
TABC in thermodynamic limit extrapolation, even for systems
possessing a complicated Fermi surface. At the same time,
our method provides the correct independent-particle limit
and it allows a robust optimization of the full (Jastrow +
determinant) variational wave function.

The paper is organized as follows. In Sec. II we address
in detail the QMC framework used in this paper, we present
the theoretical foundations of the special twist method, and we
outline the EST procedure. In Sec. III we present the results.
In Sec. III A we assess the accuracy of our method in a simple
correlated model, the homogeneous electron gas (HEG) in
three dimensions. Then, in Sec. III B we present realistic QMC
simulations of paradigmatic metallic systems such as solid bcc
hydrogen, the high-temperature bcc phase of lithium, and the
high-pressure β-tin structure of silicon. These systems present
a different degree of complexity and difficulty in sampling
the Fermi surface, therefore offering an exhaustive testing
ground for our method. In Sec. III B 1 we report the energetics
as a function of the simulation cell size comparing different
methodologies to reduce FS effects. In Sec. III B 2 we provide
a more quantitative assessment of the various contributions to
FS errors in Li and Si. In Sec. III B 3 we turn our attention
to correlation functions and in particular to the reliability of
EST method in the evaluation of QMC ionic forces. Structural
relaxation on the lithium bcc cell parameters is presented as
well as pair radial distribution functions obtained from QMC
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molecular dynamics simulations of liquid hydrogen. Finally,
we draw our conclusions in Sec. IV.

II. METHODS

A. Quantum Monte Carlo techniques

Over the past years, stochastic QMC techniques are con-
stantly gaining ground in the field of ab initio electronic struc-
ture calculations of solids. As mentioned in the Introduction,
this success is mainly due to the versatility of the variational
wave function, the high accuracy attainable and the ability of
fully exploiting the increasing computational power of modern
supercomputers. All QMC calculations presented in this work
are carried out with the TURBORVB software package [31].

The main ingredient of a reliable QMC calculation is
a flexible variational ansatz. In this paper, we employ the
standard Jastrow single-determinant (JSD) form, used for both
the HEG and more realistic calculations. Considering a system
with N electrons and Nat atoms, this wave function can be
written as

�(Rel) = exp[−J (Rel)]�
θ
SD(Rel), (2)

where Rel = {r1, . . . ,rN } is the set of electronic positions and
θ is the twist condition.

The Jastrow factor J is the symmetric part of the wave
function, and it is crucial for an accurate treatment of elec-
tron correlation. Thanks to explicit two-electron space-space
correlators, it accounts in an approximate but precise way for
spatial quantum fluctuations on both charge and spin sectors.

For HEG calculations we used J = ∑N
i,j u(|ri − rj |) where

the u(r) is a long-ranged function based on the random phase
approximation (RPA). We refer the reader to Ref. [32] for a
rigorous derivation of this Jastrow form.

The complexity of electron interaction in realistic systems
requires a more flexible and complete Jastrow. In order to
cope with these requirements, we expand it on a Gaussian
atom-centered basis set χα

l (r − Rα) where {Rα} ({r}) are the
atomic (electronic) coordinates and the index l spans over the
whole basis set. These orbitals do not possess any periodicity.
However, when dealing with solids, they must obviously
fulfill the periodicity of the supercell. To this purpose, we
periodize the electron-ion distances by adopting the following
transformation [19,33]:

|r − Rα| →
{∑

m

[
Lm

π
sin

(
π

Lm

(rm − Rm)

)]2
}1/2

, (3)

where the index m spans the three Cartesian directions and
Lm is the size of the simulation box along the m Cartesian
component.

The complete expression of our Jastrow is the following:

J (Rel) =
Nat∑
α

N∑
j

g1b
α (r − Rα) +

N∑
i �=j

g2b(ri ,rj ). (4)

The first term on the right-hand side of Eq. (4) is a
one-body factor which accounts for electron-ion interactions:

g1b
α (r − Rα) = vα(|r − Rα|) +

∑
l

Gl
αχα

l (r − Rα), (5)

where

vα(r) = Zα

1 − e−β4
√

(2Zα )r

β4
√

(2Zα)

cures divergences of the electron-ion potential at coalescence
points (electron-ion cusp conditions). The many-body g2b is
built with the same structure as the one-body term and it reads
as

g2b(r,r′) = u(|r − r′|) +
αβ∑
lm

C
αβ

lm χα
l (r − Rα)χβ

m(r′ − Rβ).

(6)

This factor is designed, on one hand, to fulfill the electron-
electron wave-function cusps. This is achieved through a spin-
dependent homogeneous term

u(r) = A

γ
(1 − e−γ r ),

where A = 1
2 for like spins and A = 1

4 for unlike spins. On the
other hand, the second term on the right-hand side of Eq. (6)
ensures an accurate characterization of charge fluctuations by
correlating single-particle orbitals describing electrons located
on different atoms. We do not explicitly account for spin-spin
correlations in Eq. (6) as we verified that their inclusion leads
to a negligible improvement in the variational energy for
all systems considered in this work. The Jastrow variational
parameters are therefore β,γ for the homogeneous terms, the
matrix elements Gl

α,C
αβ

lm , and the exponents of the Gaussian
orbitals. For the largest simulations supercells, we set to zero
the elements C

αβ

lm connecting atoms α and β whose distance
|Rα − Rβ | is larger than an appropriately chosen cutoff Rmax.
While not affecting the final energy, this approximation
considerably reduces the number of parameters that are
effectively optimized during the minimization procedure. This
turns out in an increased stability, especially for larger systems,
by removing local minima in the energy hypersurface.

The Jastrow factor is always real valued also in the case of
nonzero twist calculations. Furthermore, in the TABC results
presented in the next section, we use a common Jastrow for
all twists. This assumption is physically justified by the fact
that the Jastrow is a density-density correlator function, being
the (physical) electronic density a k-independent quantity.
The optimization of Jastrow variational parameters is based
on the stochastic reconfiguration method which has been
extensively described elsewhere [34,35]. The atomic positions
are included in the optimization procedure by treating them on
the same footing as the other variational parameters of the wave
function. Differently from previous implementations, in our
approach the energy derivatives with respect to the variational
parameters and ionic positions are all computed by means of
the adjoint algorithmic differentiation (AAD) introduced in
Ref. [36]. Initially devised for real-valued wave functions, it is
straightforward to extend this technique to complex arithmetic.

The antisymmetric part of our wave function is a complex-
valued single Slater determinant represented by means of N/2
molecular orbitals (MOs) ψσ

θ ,i(r):

�θ
SD(Rel) = det[ψ↑

θ ,i(rj )] det[ψ↓
θ ,i(rj )], (7)
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where 1 < i,j � N/2 and we explicitly write the dependence
of the molecular orbitals on the chosen twist value θ . Within the
TURBORVB code implementation, it is possible to go beyond
the single-determinant representation by using a number of
MOs larger than N/2, obtaining the so-called antisymmetrized
geminal power (AGP) ansatz [37,38]. However, in this work
we do not use the AGP extension; it is worth to mention
that the methods for treating FS effects presented here can
be straightforwardly extended to the AGP. This turns out
to be of particular importance for low-energy phenomena
such as high-temperature superconductivity and it will be the
subject of future publications. As for the Jastrow factor, the
N/2 MOs are expanded over a periodic Gaussian basis set
φ

α,θ
l (r − Rα). However, in the case of the determinantal part

these functions are complex valued. Setting Nbas as the total
basis set dimension, the molecular orbitals read as

ψσ
θ ,i(r) =

Nat∑
α

Nbas∑
l

M
l,α
i φ

α,θ
l (rσ − Rα), (8)

where the optimal complex coefficients M
l,α
i are obtained from

a DFT calculation in the local density approximation (LDA)
performed with the same setup (basis set and supercell) as the
corresponding QMC calculation. The DFT code used is built
in the TURBORVB package. The orbitals of the basis set are
constructed, at variance with the Jastrow factor, in a way which
explicitly includes the twist dependence and, at the same time,
satisfies the Bloch theorem for single-particle wave functions.
If we denote the infinite set of supercell lattice vectors as L,
these orbitals read as

φ
α,θ
l (r − Rα) =

∑
L

χα
l (r − Rα + L)e−iθ ·L, (9)

where χα
l are the same localized Gaussian functions used for

the Jastrow factor, except without imposing any periodicity on
the coordinates. The infinite sum of Eq. (9) is truncated above
a suitable cutoff εcut satisfying the following inequality:

ζl

√
L2

x + L2
y + L2

z � εcut with l ∈ [1,Nbas], (10)

where ζl is the exponent of the localized orbital χα
l and {Li}

are the components of the lattice vector L along the three
Cartesian directions. The periodization of the localized basis
set presented in Eq. (9) has been already used within the
CRYSTAL [39] software package.

In the TURBORVB implementation, we are able to relax the
condition of Eq. (7) that the twist θ must be the same for both
spin sectors. Indeed, this feature can be crucial to effectively
reduce FS errors in simulation of antiferromagnetic materials
and in ab initio high-temperature superconductivity. In fact,
by setting θ↓ = −θ↑, we are able to preserve the time-reversal
symmetry at every supercell size. Differently from the standard
case of equal boundaries for up/down spins, this choice also
ensures the conservation of the translational invariance of
singlet electron states such as Cooper pairs. This fact not
only can improve the quality of finite-size extrapolation,
as demonstrated by preliminary calculations [40] on the
Heisenberg model, but it also allows to fully exploit the
translational invariance to decrease the number of variational
parameters in the determinant. In this work, we adopt this
choice but it has no influence on FS extrapolation since no
optimization of the determinantal part is performed.

Except for the case of hydrogen where all electrons are
included in the simulation, we replace core electrons with
the Burkatzki, Filippi, Dolg (BFD) energy-consistent pseu-
dopotential [41] specifically designed for QMC calculations.
Further details on the basis sets employed for the considered
systems are reported in Sec. III.

In this paper, QMC single-point energies are obtained
with the variational Monte Carlo (VMC) for the simplest
systems and with the more accurate projective lattice regular-
ized diffusion Monte Carlo [42,43] (LRDMC) for the more
delicate benchmarks. LRDMC, within the standard fixed-
node approximation, allows a considerable improvement on
the quality of the energy and correlation functions. The
outcome of our QMC calculations for both three dimensional
homogeneous electron gas (3D-HEG) and realistic systems is
detailed in Sec. III.

B. Exact special twist method

1. Theoretical foundations

Within an independent-electron framework such as DFT,
the Bloch theorem establishes that the thermodynamic (or
infinite-size) limit of most physical quantities can be evaluated
exactly by performing an integration over the first Brillouin
zone (1BZ) of the reciprocal lattice:

f∞ = 1

�1BZ

∫
�1BZ

d3k f (k), (11)

where the function f (k) is a periodic quantity and �BZ is
the volume of the 1BZ. The mean-value theorem for definite
integrals ensures the existence of a special point k∗, the so-
called mean-value point, for which the integrand in Eq. (11)
equals the integral, i.e.,

f (k∗) = f∞. (12)

Notice that the validity of this theorem is restricted to
continuous functions f (k).

Baldereschi [44] devised an analytical procedure which
allows to determine, in an approximate fashion, the value of
the mean-value point. This scheme exploits the point-group
symmetries of the Bravais lattice and its validity is restricted
to slowly varying integrands f (k). Baldereschi method gives
excellent results in predicting thermodynamically converged
energies and other observables for insulating materials, but
it fails for metallic systems where the integrated function in
Eq. (11) is typically not smooth for some observables such as
the total energy. Within DFT and other mean-field approaches,
this issue can be cured by simply increasing the number of k
points and approximating the integral in Eq. (11) with a sum

f∞ ≈ 1

Nk

Nk∑
i=1

f (ki) =
Ñk∑
i=1

wif (ki) with
Ñk∑
i

wk = 1,

(13)

where Ñk < Nk is the number of symmetry-inequivalent k
points in the first Brillouin zone. The quality of the above
approximation can be improved by choosing a uniform mesh
of k points in the 1BZ [45,46], which is nowadays the standard
methodology of most available DFT programs. The total

245108-4



EXACT SPECIAL TWIST METHOD FOR QUANTUM MONTE . . . PHYSICAL REVIEW B 94, 245108 (2016)

number of points in the sum can be reduced by assigning to
each k point an appropriate weight wi determined by symmetry
considerations.

QMC calculations present a different scenario. In this
case, the simulation model cannot be restricted to a single
primitive cell, but a larger simulation supercell containing
several primitive cells is needed due to the many-body nature of
the ab initio Hamiltonian. References [21,22] generalized the
Bloch’s theorem to supercell calculations. Following Ref. [22],
the wave function of a n1 × n2 × n3 supercell (where {ni} is the
number of primitive cells contained within the supercell along
the three Cartesian directions) corresponds to n1 × n2 × n3

uniform k-points mesh in mean-field language. Evaluating
this wave function at a nonzero wave vector θ s is equivalent to
applying an offset to this grid with respect to the origin at the
center of the Brillouin zone. This offset is usually called “twist”
in order to distinguish it from the k points corresponding to
the supercell size. In the independent-particle limit, summing
over all the twists in a given supercell is equivalent to the full
k-point summation in the 1BZ, provided that both summations
are carried out within the grand canonical ensemble.

In the following, we present the theoretical foundations of
the special twist method in supercell calculations. At first, we
set the function f (k) in Eqs. (11) and (12) as the total energy
since it is the most basic quantity to evaluate within QMC.
However, this approach is general and it can be, in principle,
applied also to other observables.

The basic idea behind the special twist method is to find a
twist θ s which, in the limit of an independent-particle wave
function, reproduces the exact mean-field infinite-size energy.
The practical implementation of this idea, which we dub “exact
special twist” (EST) method, consists in finding an arbitrarily
accurate numerical solution to Eq. (12). This is carried out
within a mean-field approach which can be Hartree-Fock,
DFT, or any independent-particle method. For most part of
the calculations presented in this paper we use DFT as the
reference mean-field framework to solve Eq. (12). Let us
consider a metallic system with Np electrons in the primitive
cell, as described by an independent-particle wave function
such as the single determinant introduced in Eq. (7). The
thermodynamic converged energy per electron at the DFT level
reads as

E∞[ρ∞] = 1

NpNk

Nk∑
i=1

〈
�

ki

SD

∣∣HDFT[ρ∞]
∣∣�ki

SD

〉

= 1

Np

Ñk∑
i=1

wi

M∑
n=1

F
(
Eki

n [ρ∞] − μ∞
)
Eki

n [ρ∞],

(14)

where the first sum goes over the k points in 1BZ with
weights {wi} and the second over the M electronic bands.
F is a smearing function with Fermi distribution shape
whose purpose is to smooth electronic occupations around
the chemical potential μ∞ (equal to the Fermi energy at
zero temperature). Aside from improving the convergence of
the sum during the DFT self-consistent cycle, the smearing
function F introduces fractional electron occupations which
change the effective number of electrons considered at each

k point, i.e., it allows the method to work within the grand
canonical ensemble with fluctuating number of particles. The
effective number of particle at each k point is determined
by the chemical potential μ∞. In the case of insulators, F

usually takes the functional form of a Heaviside step function
H . In Eq. (14), we highlight that the band energies Ek

n in
the sum are computed with the thermodynamic converged
electronic density ρ∞ = 1

�1BZ

∫
�1BZ

d3kρ(k). Notice also that
E∞ is obtained within a primitive cell simulation.

The purpose of the EST method described here is to find a
special twist value θ s which satisfies numerically Eq. (12) up
to an arbitrary accuracy. The total DFT energy for this special
twist, now computed in a supercell with Ns electrons, reads as

Eθ s

[
ρθ s

] = 1

Ns

〈
�

θ s

SD

∣∣HDFT
[
ρθ s

]∣∣�θ s

SD

〉
= 1

Ns

∑
n

H
(
Eθ s

n − μθ s

)
Eθ s

n

[
ρθ s

]
, (15)

where H is the step function, ρθ s
is the electronic density

calculated for the special twist value, and the chemical
potential μθ s

is such that the effective number of electrons
is equal to the number of particle Ns in the system. It is worth
remarking that, in this way, no fractional electron occupations
are allowed, i.e., the energy is now computed within the
canonical ensemble with fixed number of particles. Given this
formalism, finding the special twist solution to Eq. (12) is
equivalent to satisfy the following equality:

Eθ s

[
ρθ s

] = E∞[ρ∞]. (16)

From the above formulation, it is simple to understand that
the numerical procedure to find the special twist consists
in finding the DFT energy within the canonical ensemble
which matches, up to a certain adjustable accuracy, the
grand canonical and thermodynamically converged energy
in Eq. (14). Once Eq. (16) is solved, it is possible to build
a many-body wave function [Eq. (2)] with the chosen twist
value which automatically fulfills the correct (at the DFT level)
independent-electron limit. As we will show in Sec. III, this
method leads to a large reduction of the one-body FS errors in
QMC calculations, by keeping at the same time an affordable
computational cost.

Notice that the twist average boundary conditions
method [20] mentioned in the Introduction can be viewed
as the many-body equivalent of independent-particle k-points
sampling in Eq. (14); indeed, all the 1BZ sampling pro-
cedures [45,46] exploited in DFT can be extended also to
the TABC technique. However, the standard TABC method
imposes a fixed number of particles (equal to the number
of electrons in the cell) for every twist condition θ , i.e., it
works in the canonical ensemble only. In the independent
electron framework [Eq. (14)], this constraint turns out in the
substitution

F
(
Eθ

n − μ∞
) → H

(
Eθ

n − μθ

)
at each twist condition. It is evident that this results in a
wrong independent-particle limit and it leads to an incorrect
Fermi surface sampling and to a small bias in the final QMC
energy [28]. This problem can be cured by allowing the number
of particles to fluctuate for each twist as implemented within
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the grand canonical TABC method. Although the latter method
yields the correct independent-particle limit, it also gives large
fluctuations in the converged energies [28] which hindered
widespread use of this technique in QMC production runs.

2. Detailed numerical procedure

We turn now our attention to the practical procedure for
solving numerically Eq. (16) in realistic QMC calculations.
The first and, at our knowledge, unique attempt to tackle this
problem can be found in Refs. [21,22]. Here, the authors argued
that a suitable θ s can be chosen in the set {Gs/2}. Gs are the
supercell reciprocal lattice vectors defined as

Gs = m1b1 + m2b2 + m3b3 for (m1,m2,m3) ∈ Z, (17)

where {bi} are the primitive vectors of supercell reciprocal
lattice.

The aforementioned choice of θ s ensures that the underlined
k-points mesh possesses inversion symmetry, thus allowing
to employ a real-valued wave function and avoid complex
arithmetic. The offset belonging to this set which provides the
best thermodynamic limit is then determined via cheap DFT
calculations in the LDA approximation at different supercell
sizes. The latter approach is of course approximate as the exact
special twist does not necessarily fall within the {Gs/2} set.

In this paper, we propose a simple but effective evolution
of this procedure. Our methodology comprises several steps
which are fully accounted in the remaining part of this section.

(1) At first we determine the thermodynamic converged
energy E∞ [Eq. (14)] within an independent-particle or mean-
field approach. For 3D-HEG calculations (Sec. III A), this
reference energy is the noninteracting (NI) energy: EHEG

∞ =∑
k k2/2  2.21

r2
s

whose value is completely controlled by the
Wigner-Seitz radius rs , i.e., by the electronic density. For
realistic QMC runs (Sec. III B), we evaluate it at the DFT-LDA
level using a fully converged k-points mesh [46] and with the
same basis set as QMC. All these calculations are carried out
in the primitive cell with a negligible computational cost as
compared to QMC.

(2) The second step consists in the numerical solution of
Eq. (16), at given fixed number of particles. In the case of HEG,
we select several high-symmetry directions and we scan the
reciprocal space along these directions in order to find the value
of the twist θ s giving the exact noninteracting energy EHEG

∞ .
In Fig. 1, the simple case of the two-dimensional electron gas
with rs = 1 a.u. is shown. We notice that several twist values
satisfy the condition in Eq. (16). We verified that the final
result is independent both on the direction and on the special
twist selected. The same procedure can be straightforwardly
applied to the three-dimensional (3D) electron gas reported in
Sec. III A. Similarly, in the case of realistic QMC calculations
we pick a direction in the first Brillouin zone (in general
along a diagonal, thus characterized by just one parameter) and
we scan the DFT-LDA band structure by computing energies
at each twist on a uniform grid along the chosen direction.
These runs must be performed within the same supercell used
for QMC [Eq. (15)]. We select the value which reproduces
the thermodynamic limit within a range smaller than the
accuracy required by QMC. In particular, for calculations on
metallic systems presented in Sec. III B, we choose an accuracy
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0.990

0.995

1.000
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E
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(1,0) direction
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NI energy

FIG. 1. Energy landscape of the noninteracting (NI) 2D homo-
geneous electrons gas with 90 particles at a Wigner-Seitz radius of
rs = 1 a.u. as a function of the twist angle θ in π/a units, where a is the
cubic box parameter. Two representative directions in the Brillouin
zone, (1,0) and (1,1), are shown. The exact value of the NI energy
is represented by the straight line. The energy surface presents some
cusps which are due to discontinuous changes in the occupations of
the electronic states. We notice that several twist conditions in both
directions match the value of EHEG

∞ . We verified that the choice of
both the direction and the specific special twist is irrelevant for the
final outcome.

of 0.005 eV/atom in determining the special twist. Notice
that the selected twist will likely require a complex-valued
determinantal part in the QMC variational ansatz. In contrast
with Refs. [21,22], this is the case for all calculations presented
in Sec. III B.

(3) Once the special twist value θ s is found, we perform a
final DFT-LDA supercell calculation with the selected twist.
The resulting wave function is used as determinantal part of
the total QMC ansatz [Eq. (2)].

(4) Given the JSD wave function built in the previous
steps, we carry out the Jastrow optimization with the stochastic
reconfiguration technique (see Sec. II A for technical details).
Both the linear coefficients and the Gaussian exponents of
the Jastrow are optimized. In the case of bcc-Li structure in
Sec. III B, we also test the effectiveness of special twist method
in predicting structural properties by performing full QMC
crystal cell relaxation.

(5) The final QMC energy is evaluated with the variational
and, in selected cases, diffusion Monte Carlo schemes
using the JSD ansatz. The procedure is repeated at different
supercell sizes in order to perform an extrapolation to the
infinite-size limit.

3. Choice of the exact special twist

As already mentioned in the previous section and shown
in Fig. 1, the choice of the EST value is not unique since it
depends both on the chosen direction in the first Brillouin zone
and on the single-particle reference method. The purpose of
this section is to provide a more accurate investigation on the
possible choices of the EST value.
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TABLE I. We report the VMC energies of several values of
the exact special twist chosen following different directions in the
reciprocal space. The EST values (θx,θy,θz) are in crystal coordinates
with respect to the orthorhombic supercell used in the calculations.
Calculations are presented for the 3D-HEG with 54 particles (top)
as well as for bcc-Li structure and β-tin Si (bottom), two realistic
metals which will be thoroughly investigated in Sec. III B. We used a
16-atom supercell for bcc-Li and a supercell containing 8 atoms for
β-tin Si. Energies are expressed in Ry for the 3D-HEG results and
in eV/atom for the realistic calculations. It is apparent that for all
considered values on the EST surface, the resulting energies at the
VMC level are in optimal statistical agreement.

3D-HEG

BZ direction rs (a.u.) EEST
JSD

(1,1,1) 10 −0.106446(12)
(1,1,0) 10 −0.106418(13)
(1,1,1) 1 1.15536(18)
(1,1,0) 1 1.15513(20)

DFT(LDA)

(θx,θy,θz) System EEST
VMC

(0.2638, 0.2638, 0.2638) Li −7.1667(7)
(0.2122, 0.5000, 0.2122) Li −7.1684(7)
(0.1785, 0.2500, 0.5000) Li −7.1663(12)
(0.1362, 0.3181, 0.5000) Li −7.1675(8)
(0.2118, 0.2118, 0.2118) Si −106.5213(58)
(0.2500, 0.2500, 0.1961) Si −106.5225(58)
(0.4167, 0.0833, 0.2500) Si −106.5277(61)
(0.2500, 0.2118, 0.2118) Si −106.5211(54)

At first, we study how the QMC outcome obtained with
our special twist depends on the Brillouin zone direction. In
fact, the EST forms a surface in the reciprocal space; since
the Fermi surface of the single-particle reference method is
likely to be different with respect to the correlated QMC one,
it is in principle possible that different choices of EST would
give different total energies, thus posing a serious issue on
the validity of our method. In Table I, we demonstrate that, in
practical calculations, this is not verified. In fact, it is apparent
that for both 3D-HEG and realistic calculations the outcome
at the VMC level is independent on the BZ direction chosen to
compute the EST value. For all considered points on the EST
surface, the VMC energies display at most a difference of 3σ ,
thus, they can be considered in statistical agreement.

As mentioned before, the single-particle theory used as
reference represents another important factor which can
determine the choice of EST value and thus affects the
procedure outlined in Sec. II B 2. For investigating this effect,
we apply our numerical procedure to β-tin Si using both
DFT(LDA) and simple Hartree at different supercell sizes.
For the sake of simplicity we choose the diagonal direction of
the BZ zone for these calculations. The results are reported
in Table II. Interestingly, we found that for all supercell
sizes, the EST value varies only very slightly when passing
from one method to the other. This finding suggests that
the single-particle reference framework does not represent a
crucial issue for the EST determination; a logic explanation
is that the EST is not too sensitive to small changes in the

TABLE II. Comparison of the EST values extracted with the
procedure explained in the text using DFT(LDA) or simple Hartree
as single-particle reference methods. We perform calculations for the
Si β-tin structure at different supercell sizes. Due to its complicated
Fermi surface (see Fig. 5) this system is the most suitable for our
purposes. In the first two rows we show the energy difference,
in eV/atom, between the fully converged Hartree and DFT(LDA)
energies and the EST energy at the same level of theory. The difference
is always kept of the order of 0.001 eV/atom which is well below
the target QMC accuracy. In the last two rows we report the values
of the special twists obtained. Since we demonstrated (see Table I)
that the EST values are independent of the BZ direction, for the
sake of simplicity we choose the EST along the diagonal direction
for the both methods. In this way, EST can be expressed with a
single parameter θd , the value of the EST in crystal coordinates
for each orthorhombic supercell direction. We notice a striking
agreement between DFT(LDA) and simple Hartree values of EST
for all supercell sizes.

No. of Si atoms

8 16 64 96

Energy difference Hartree −0.0012 −0.0023 0.0016 −0.0009
DFT(LDA) −0.0031 −0.0021 0.0011 0.0018

θd value Hartree 0.2096 0.1862 0.2618 0.2644
DFT(LDA) 0.2123 0.1835 0.2612 0.2625

Fermi surface, as confirmed also from the results in Table I.
The very low computational cost of the Hartree calculations
could allow the automatization of our procedure, thus enabling
the determination of the EST value on-the-fly for a particular
run. This could be useful in the case of molecular dynamics
simulations (see Sec. III B) which samples many different
atomic configurations.

In conclusion, our procedure for finding special twist
values is cheap, its numerical accuracy can be adjusted
depending on the considered physical problem, and it is robust
against both the BZ direction and the single-particle reference
method chosen. The way we select the EST ensures the
correct independent-particle limit for the many-body QMC
wave function without relying on grand canonical ensemble
formalism. Aside from these features, our approach also
possesses the advantages of employing only a single twist: the
computational cost of an EST calculation is about twice the
cost of a simple gamma point simulation due to the complex
arithmetic needed by the wave-function evaluation.

III. RESULTS

This section presents the analysis of finite-size effects for
several systems by means of the EST method introduced in
Sec. II B. Section III A addresses the homogeneous electron
gas in three dimensions, a correlated model for metallic sys-
tems widely used as a benchmark for FS correction techniques.
In Sec. III B we focus on paradigmatic ab initio metallic
systems and we compare EST with other FS methodologies.
In particular, we test it against the simple periodic bound-
ary conditions (PBC), the standard twist average boundary
conditions (TABC) technique [20], and a different special
twist determined analytically with the procedure introduced
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FIG. 2. Comparison of different methods for alleviating FS effects in the 3D electron gas. In (a) we show the results for a Wigner-Seitz
radius rs = 10 a.u. The orange arrow indicates the TABC infinite-size limit as presented in Ref. [20]. In (b) we present the outcome of the EST
method for rs = 1 a.u. In this case, the green arrow points to the infinite-size limit obtained with simple PBC [47] since, to our knowledge, no
TABC results at rs = 1 a.u. are present in the literature. The solid lines on EST results are obtained with a quadratic polynomial fit.

in Ref. [44], which we dub “Baldereschi point.” At first we
analyze the effectiveness of EST method in extrapolating the
total energy to the infinite-size limit. If not otherwise specified,
the energies are corrected for many-body finite-size effects
using the KZK energy functional introduced in Ref. [24].
DFT(KZK) is performed with the built-in DFT code of the
TURBORVB package. The two-body corrections [33] we apply
to the total QMC energy read as

εKZK
2b = ENs

LDA − ENs

KZK, (18)

where both LDA and KZK energies are computed within the
same Ns electrons supercell and the same twist(s) condition(s)
as the corresponding QMC calculation. We verified that the
application of the corrections based on the RPA electronic
structure factor [25] leads to very similar results. A brief
discussion on the evaluation of many-body errors directly at
QMC level is also presented.

The last part of Sec. III B analyzes FS effects on correlation
functions using the EST method. In particular, we report
the results on the bcc-Li lattice constant evaluated with a
zero-temperature structural relaxation of QMC ionic forces.
Finally, we present some benchmark calculations on radial
pair distribution functions extracted from QMC-based molec-
ular dynamics simulations of high-pressure high-temperature
hydrogen [18,48].

A. 3D homogeneous electron gas

The homogeneous electron gas in three dimensions (3D-
HEG) is certainly the most studied model for correlated
metallic systems. Its importance is not limited at the model
level, but it also constitutes the basis for building the
local density approximation routinely employed in density
functional theory [49].

In this work, we present simulation of the 3D-HEG at two
different regimes: a relatively low-density one corresponding
to a Wigner-Seitz radius of rs = 10 a.u. and a higher-density
regime at rs = 1 a.u. The low-density regime has been
investigated in several published works [20,25] carried out

with the TABC method and it is therefore convenient for
the sake of comparison. In Fig. 2(a) we present the FS
extrapolation of HEG total energy per electron at rs = 10 a.u.
as a function of the inverse number of particles. We analyze the
performance of EST by comparing it with simple PBC [47] and
with TABC calculations [20] both carried out with the same
Slater-Jastrow trial wave function as ours. The arrow in Fig. 2
indicates the infinite-size limit as presented in the original
manuscript in Ref. [20]. We did not apply any many-body FS
correction to our results.

We can immediately notice that both EST and TABC are
effective in suppressing shell fluctuations as the number of
particles grows. Both methods yield a very smooth curve and
we can easily extrapolate our EST results to the infinite-size
limit using a linear polynomial fit.

In principle, the next leading correction is decreasing as
N−4/3 in 3D. However, being this exponent quite close to
the leading one, it is difficult to see it in the considered
range of supercells. We have found much better fit using N−2

as next-leading-order correction. Such choice is justified in
the case that the corresponding coefficient is rather small,
namely, the curvature in the corresponding fits is almost
negligible. In fact, in this range of sizes the O(N−2) con-
tribution dominates over the O(N−4/3) and O(N−5/3) ones,
which become eventually more relevant only for much larger
supercell sizes. Furthermore, we can directly match the two
thermodynamic limits of the variational energy. TABC and
EST are in agreement within the statistical error bar σ ∼
2 × 10−5 Ry, the extrapolated energy per particle of EST being
−0.10558(2) Ry/N and −0.10561(5) Ry/N the corresponding
TABC one.

At variance with the other methods, the shell fluctuations in
the PBC energies are too large to perform any extrapolation,
as expected. This issue is apparent also if one considers
the infinite-size estimate of −0.10549(2) Ry/N reported in
Ref. [47]. We notice that it still displays a discrepancy of
the order of ∼5σ with respect to EST and TABC infinite-
size limits. This disagreement is likely due to residual
one-body error dependence which cannot be suppressed
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despite the very large number of particles employed for this
simulation.

In analogy with the low-density regime, we present in
Fig. 2(b) the results for rs = 1 a.u. At variance with the
previous case, the available literature for this particular rs is
more limited and, to our knowledge, no TABC results are
present. We therefore compare the EST method with the PBC
calculations reported in Ref. [47]. As for rs = 10 a.u., the
choice of EST is able to suppress most part of the energy
fluctuations which strongly affect the PBC results. We find
an extrapolated energy per particle of 1.178(1) Ry/N. At this
density regime, the PBC infinite-size estimate of 1.1795(4)
Ry/N displays statistical agreement with the EST outcome.

B. Realistic systems

1. Total energy

In this section we analyze the FS effects on the energetics
of three paradigmatic metallic systems with increasing degree
of complexity. We believe they constitute an exhaustive testing
ground for the EST method and they pave the way for applying
EST to more complex compounds. For TABC calculations,
we choose a uniform Monkhorst-Pack [46] mesh offset from
the � point of the supercell Brillouin zone. The number of
independent twist conditions is reduced using the point-group
symmetry operations of the supercell lattice. In order to ensure
convergence, the mesh size is varied at each supercell size such
that the corresponding number of inequivalent atoms times
the number of twists is kept constant and appropriately large.
As a premise, it is important to remark that we carried out
linear extrapolations excluding from the fitting procedure the
smallest supercells for all considered systems. In fact, for these
sizes, the residual shell effects is still too high to carry out the
linear fit. Our choice is also motivated by the fact that QMC
production runs will unlikely use such small supercell sizes
for extrapolation purposes, although they are useful in our
benchmark calculations for determining the overall behavior
of the size convergence. The points used for the fitting curve
are specified for each system we address.

The first metallic system we address is solid hydrogen in
the bcc structure. Despite being the simplest element in the pe-
riodic table, hydrogen displays very intriguing properties and
its phase diagram under pressure is far from being completely
understood. In particular, in the region up to ∼300 GPa, solid
hydrogen undergoes numerous phase transitions displaying
exotic quantum properties which are not well characterized
yet either experimentally or theoretically [50–52]. It is well
established that FS effects represent an important source of
error in many-body simulations and the size of the simulation
supercell is crucial for obtaining accurate correlation functions
in molecular dynamics simulations of liquid hydrogen, as we
will show in Sec. III B 3. Here, we study the bcc structure of
solid hydrogen which has not been observed yet in nature,
but it is one of the candidate structures for the high-pressure
atomic phase due to its dense packing of the atoms [53].

We use a primitive Gaussian basis set of [J ]2s[D]2s, where
J refers to the Jastrow and D to the determinantal part. The
exponents of the determinant are taken from a previous fully
optimized calculation [48].
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FIG. 3. VMC extrapolation to the infinite-size limit on solid bcc
structure of hydrogen at a Wigner-Seitz radius rs = 1.32. Results are
corrected for two-body errors with the KZK method [24]. The x axis
reports the inverse number of atoms in the supercell. In the inset
we zoom the results for the largest supercells in order to appreciate
the thermodynamic limit convergence. The x axis reports the inverse
number of atoms. For EST and TABC values we also show in the inset
a linear fitting curve, as well as its energy extrapolation at N = ∞
(leftmost point labeled as ∞−1), carried out by excluding the smallest
supercell with 16 atoms.

Despite its small size, this basis has been proven accurate in
describing both energetics and the most important correlation
functions [18,48] of hydrogen. FS extrapolation at a VMC level
is presented in Fig. 3. The simulations have been performed at
a density corresponding to a Wigner-Seitz radius rs = 1.32. As
apparent, both TABC and EST show a very smooth behavior
toward the thermodynamic limit, indicating that most of the
shell fluctuations have been eliminated. The linear fit reported
in the inset of Fig. 3 has been carried out excluding the smaller
16-atom supercell.

By performing extrapolation to infinite size, we obtain
−13.7109(8) eV/atom for TABC and −13.7167(3) eV/atom
using our EST method. These two FS correction methods are
therefore in agreement up to 0.005 eV/atom for a simple, but
relevant system as hydrogen. If the Baldereschi point [44] is
used to offset the twist grid, the energy fluctuations are mostly
suppressed, but the extrapolation procedure yields an unsatis-
factory 13.770(22) eV/atom. In fact, in this case one needs to
use much larger sizes to obtain a reliable extrapolation, as the
Baldereschi point is only an approximation of the EST (see
the inset of Fig. 3).

We turn now our attention to metallic bcc lithium. Bulk Li
has been the subject of intense studies due to the emergence
of exotic quantum states, including superconductivity [56,57],
in its phase diagram under pressure and also to its extensive
application in battery development. Previous QMC investiga-
tions [58,59] provided very accurate results and, at the same
time, they established the important role of FS effects in
determining the converged ground-state energy [59,60]. For
treating this system the localized basis set used in this work
is [J ]2s2p[D]4s4p and the 1s core electron is replaced with
a BFD pseudopotential [41]. A comparison among several
FS methods is presented in Fig. 4(a) for VMC and Fig. 4(b)
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FIG. 4. Energy extrapolation on Li in the high-temperature bcc phase. We show VMC results (a) and LRDMC energies (b). The energies
are compared with different techniques. Two-body corrections are applied with the KZK functional approach. In the inset, a zoom of the results
for the largest supercells is shown. The x axis reports the inverse number of atoms. For EST and TABC values we also show in the inset a linear
fitting curve, as well as its energy extrapolation at N = ∞ (leftmost point labeled as ∞−1), carried out by excluding the smallest supercell with
16 atoms.

for LRDMC energies. The linear fit showed in the inset
of these figures is obtained excluding the smallest 16-atom
supercell. Both TABC and EST methods, in combination with
the KZK corrections, ensure an almost complete suppression
of energy fluctuations and they provide a well-converged
result already for the 54-atom supercell, at variance with the
Baldereschi point which displays a much slower convergence
with supercell size. In order to fully appreciate the convergence
to the thermodynamic limit, a zoom on the largest systems is
reported in the inset. The final extrapolated results of TABC
and EST are in agreement up to 0.003 eV/atom for both
VMC and LRDMC. This value is of the order of the attained
statistical error. These results demonstrate that TABC and EST
provide similar performances in controlling FS effects in this
system, although the former displays a slightly flatter curve.

The last system we address for benchmarking our method
is the high-pressure β-tin structure of silicon. Upon appli-
cation of a pressure around 12 GPa, Si displays a structural
phase transition from the semiconductor diamond phase to
a β-tin metallic phase. The transition develops on a very
narrow energy scale [61] and standard DFT techniques
yield unsatisfactory and functional-dependent results. Due
to its sensitivity, this phenomenon is a perfect ground for
benchmarking advanced first-principles methods such as QMC
and this explains why it has been extensively studied with this
technique [33,62–65]. The tiny energy scale (∼0.05 eV/atom)
to be probed in order to spot the correct transition pressure
requires a very accurate control of finite-size effects [33].
Metallic Si offers a perfect playground for testing the reliability
of EST method when tackling systems with complex and
discontinuous Fermi surfaces. To be more explicit, in Fig. 5 we
show a comparison of the LDA Fermi surface between bcc-Li
and β-tin Si, where the contour has been taken along the z axis
at kz = 0. We notice that Li [Fig. 5(a)] displays practically no
features except a large electron pocket centered at the � point.
β-tin Si [Fig. 5(b)] is instead considerably more challenging,
in particular as a result of the small electron pockets present

at the Brillouin zone borders. As already presented in the Li
case, we report FS extrapolation in Si with KZK corrections
for curing two-body FS effects. The final results obtained
with the VMC and LRDMC methods are shown in Figs. 6(a)
and 6(b), respectively. As for the other systems considered in
this section, the linear fits reported in these figures have been
obtained excluding the smallest supercell sizes (8 atoms and
16 atoms in this case). The EST method gives good results,
comparable to TABC, in eliminating shell-filling effects. We
notice, however, that the energy of the 16-atom supercell
(second point from the right) is slightly shifted towards higher
energies. We believe that this issue is related to the particularly
poor sampling of the Fermi surface for that set of k points. This
fact together with the relatively small number of atoms in the
supercell, which corresponds to a coarse k-point mesh, may
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FIG. 5. Fermi surface contour plots along the z axis for bcc-Li
(left panel) and β-tin Si (right panel). The contour has been taken
at kz = 0. The calculations have been performed with the software
package WANNIER90 [54] based on DFT(LDA) results obtained with
the QUANTUM ESPRESSO [55] program.
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FIG. 6. Finite-size extrapolation with VMC (a) and LRDMC (b) methods on Si in the high-pressure β-tin phase. Again, a comparison
is shown among various FS correction methods and the inset reports a zoomed view close to the thermodynamic limit. Two-body errors are
corrected with KZK method. The x axis reports the inverse number of atoms. For EST and TABC values we show in the inset a linear fitting
curve, as well as its energy extrapolation at N = ∞ (leftmost point labeled as ∞−1), obtained by excluding the smallest (8- and 16-atom)
supercells.

give rise to the shift observed in the EST results, as well as in
TABC. This shift is less pronounced in the 8-atom supercell,
but still present. We verified, at DFT level, that this shift can
be partially recovered by using a rotated supercell with lower
symmetry.

The infinite-size extrapolation of TABC and EST is in
agreement up to 0.007 eV/atom for the VMC method, a value
below the attained statistical error, while a smaller difference
(0.002 eV/atom) is apparent in the LRDMC extrapolation.
However, when the largest supercell (96 atoms for EST,
Baldereschi, and TABC, 256 atoms at � point) is used, all
results, independently from the method used, are converged
up 0.01 eV/atom for all techniques, an accuracy sufficient for
obtaining a correct transition pressure [33].

In conclusion, it is useful to present an overview on the
quality of the linear fitting curves reported in this section. In
order to assess the quality of our fits we have computed the
following estimators:

(i) The reduced χ2 value. We recall that this value is
computed as

χ2 = 1

ν

P∑
s

(Os − Es)2

σ 2
s

, (19)

where {Os} are QMC energies at a given system size s

with error bar {σs}, {Es} are the corresponding values
predicted by the linear regression, and ν is the number
of degrees of freedom of the fit, i.e., the number of data
points (system sizes) P minus the number of fitting
parameters (2 for a linear fit). The χ2 is a measure of
fluctuations which can be related to shell effects.

(ii) The slope of the fitting curve. Since two-body errors
have been cured with the KZK method, the slope is a
measure of the residual systematic one-body finite-size
errors in our data.

In Table III we collect all the χ2 and slope values of the fits
presented in Figs. 3 (bcc hydrogen), 4 (bcc Li), and 6 (β-tin
Si) using different methods for reducing FS effects. Notice
that these values have been obtained by excluding the smallest

supercells in the fitting procedure, as explained before. In our
test cases, EST fitting curves yield larger or comparable χ2

with respect to the TABC ones. It is important to remark that,
in order to perform a meaningful comparison, the statistical
error is kept approximately constant among all measurements.
Independently from these findings, the effectiveness of our
EST methodology in one-body error correction is evident from
both the noise amplitude and the slope of the fitting curves
which are generally small and close to the corresponding
TABC value.

2. Comparison of errors in the EST method

In this section we present a more quantitative discussion
on the impact of FS effects in the special twist approach.
By definition [Eq. (16)], the EST method cancels out all FS
errors taken into account by the single-particle method chosen
as reference. However, if one switches electron correlation
on in QMC, the Fermi surface can vary from the single-
particle estimation, thus reintroducing some one-body finite-
size effects in the case of EST. Their size can be estimated via
the TABC technique which ensures a denser sampling of the
Fermi surface. Thus, we provide an estimation of this residual
contribution to the one-body FS errors directly within QMC.
For this estimate VMC is the method of choice as it likely
provides an outcome similar to LRDMC concerning FS effects
and, since it is much cheaper, it can be used in production
runs for correcting the LRDMC energy results. The residual
one-body error at VMC level reads as

εVMC
1b = ETABC,Ns

VMC − ENs

VMC, (20)

where ENs

VMC is the EST energy in a Ns-atom supercell, whereas
ETABC,Ns

VMC is the correspondent fully converged TABC result in
the same supercell. Results for Li and Si are presented in
Table IV (4th column); they constitute an indirect probe of the
changes in the Fermi surface when going from DFT to QMC
level. If one takes bcc-Li as the reference case, one can see that
the one-body residual corrections are very small (one order of
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TABLE III. In this table we collect the reduced χ 2 values and the slope of the linear fits presented in the insets of Figs. 3, 4, and 6 for all
realistic metallic systems considered in this work. The χ2 values are dimensionless whereas the reported amplitudes and slopes are in eV. We
note that the slopes are milder in the LRDMC data than in VMC. For TABC and EST, the LRDMC values converge slightly faster than VMC
to the thermodynamic limit.

bcc-H bcc-Li β-tin Si

Method Quantity VMC VMC LRDMC VMC LRDMC

EST 2.46 4.58 5.92 3.65 1.04
χ 2

TABC 4.40 0.96 0.71 0.86 2.30

EST −1.61(17) 0.55(22) 0.70(14) 0.91(25) −0.36(21)
Slope

TABC 0.19(9) −0.20(4) 0.12(6) 1.60(31) −0.14(4)

magnitude smaller than many-body effects) and decrease fast
when the size is increased. This implies that, in this case, the
estimated value of the EST is supposedly very close to the one
obtained at the DFT(LDA) level. This is further confirmed by
the fact that the EST value changes only slightly from simple
Hartree to DFT(LDA) mean-field estimates. In other words,
the actual EST is rather insensitive to the underlying theory
used to determine it which makes the EST evaluation quite
robust.

Moreover, we notice that for β-tin Si the behavior of εVMC
1b

is less systematic as a function of the system size. This could
be related to the limitation of the TABC approach used to
estimate the one-body corrections at VMC level. Indeed, as
already mentioned, TABC works in the canonical ensemble
and can introduce a bias in the energy values due to the wrong
k-point occupations, that can be particularly severe in the case
of β-tin Si where the Fermi surface is much more complex
than in the Li case (see Fig. 5).

The residual many-body contribution to the FS errors can
also be evaluated at VMC level. In Table IV, we compare
the many-body errors estimations obtained with the standard
KZK method in Eq. (18) (2nd column) and directly within

TABLE IV. Comparison of many-body FS effects estimated with
different methods for both bcc-Li and β-tin Si. All presented results
are in eV per atom. Many-body errors are compared between the
KZK and VMC corrections, both detailed in the text. We notice an
overall good agreement between the two estimations for both Li and
Si, except the case of the 16-atom Si supercell which displayed similar
issues also in the energy extrapolation (see Fig. 6).

No. of atoms εKZK
2b εVMC

2b εVMC
1b

bcc-Li
16 0.1958 0.198(7) −0.013(6)
54 0.0378 0.061(5) −0.006(5)
128 0.0245 0.026(5) −0.003(2)
250 0.0125 0.013(5) 0.0002(17)

β-tin Si
16 0.3545 0.185(6) 0.026(2)
48 0.1181 0.096(7) 0.036(7)
64 0.0886 0.067(6) 0.042(6)
96 0.0574 0.042(8) 0.035(2)

VMC (3rd column) using the relation

εVMC
2b = Eextr

VMC − ETABC,Ns
VMC , (21)

where Eextr
VMC is the VMC energy extrapolated to the infinite-

size limit. Notice that this extrapolation is obtained using
KZK corrected values, however, the infinite-size limit must
obviously be the same.

Table IV demonstrates that KZK and direct VMC esti-
mations are in good agreement concerning many-body FS
errors for both Li and Si, thus supporting the use of the cheap
KZK approach for QMC production runs. The only relevant
discrepancy is shown by the Si 16-atom supercell which is a
particularly delicate case for both EST and TABC methods, as
previously mentioned.

In conclusion, it is important to remark that the special
twist value used for Li and Si calculations has been determined
using DFT(LDA) energies, therefore, its value can be slightly
different than the one obtained directly with the DFT(KZK)
functional instead. This discrepancy could lead to some
spurious contribution to the KZK estimation of the many-body
errors. However, we verified that the variation of the EST
between the two functionals is negligible, in line with what
said before, thus εKZK

2b is considered as purely many-body and
directly comparable with εVMC

2b .

3. Energy derivatives

In Sec. III B 1, we demonstrated the reliability of the EST
method in extrapolating QMC energies to the infinite-size
limit. However, as already pointed out in Ref. [20], sampling
the Fermi surface with a single point might not be sufficient
to account for more sensitive properties of the system such as
the potential energy or correlation functions. In this section,
we focus on testing the EST method with a particularly
important type of correlation function: the ionic forces. Their
evaluation within QMC has been the subject of intense research
activity [36,66] due to the intrinsic difficulty to find an efficient
and finite variance algorithm for computing many-body energy
derivatives. As already mentioned, the AAD technique [36]
offers a solution to this issue. With our approach it is
thus possible to perform both zero-temperature structural
relaxation and molecular dynamics simulations based on QMC
forces [18,19,48].

At first, we focus on the Li equilibrium structure. The low-
temperature crystal structure of bulk Li is still a matter of
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TABLE V. Lithium cell parameters obtained from VMC struc-
tural relaxation at different supercell sizes. The EST results are
compared with standard PBC calculations and with the most accurate
TABC method. We report also values obtained from fully converged
DFT calculations in the LDA approximation, performed with the
QUANTUM ESPRESSO [55] program using a 15 × 15 × 15 k-point mesh
and norm-conserving pseudopotentials. Experimental cell parameters
are also shown.

No. of atoms/source Cell parameter (Å)

PBC EST TABC

16 3.497(6) 3.457(4) 3.454(4)
54 3.469(3) 3.476(3) 3.496(3)
128 3.521(3) 3.505(3) 3.502(2)
250 3.510(5) 3.506(2) 3.499(3)
VMC [69] 3.56(1)
DFT(LDA) (this work) 3.3537
DFT(LDA) [70] 3.37
Expt [68], 20 K 3.47851(1)
Expt [71], 300 K 3.482

debate since around 20 K there is strong experimental evidence
of a phase transition [67,68] from the high-temperature bcc
to a different crystal structure. Several candidates have been
proposed such as hexagonal close-packed, face-centered cubic,
or the more complex 9R structure composed by several stacked
close-packed layers. Since our purpose is only to benchmark
our EST procedure, we focus on the simple bcc structure only.
In Table V we present the optimization of the cell parameter
of bcc Li carried out with full QMC forces minimization. The
EST results are obtained with the same value of special twist
previously used for energy extrapolation.

Thanks to its denser sampling of the Fermi surface, the
TABC method performs better than single-twist methods, with
the cell parameter already converged for the 54-atom supercell.
EST is slightly slower to converge towards the infinite-size
limit than TABC, but it displays a much smoother behavior
with respect to simple PBC calculations, thus allowing an
easy extrapolation to infinite size. By performing a linear
extrapolation, we obtain 3.508(3) Å for TABC and 3.504(5) Å
for EST, which are in statistical agreement. Although the
Li lattice parameter is still overestimated with respect to
experiments [67,68,71], the outcome of our QMC calculations
provides a substantial improvement with respect to both
DFT(LDA) and previous VMC calculations [69] carried out
at the gamma point by fitting the total energy curve obtained
at different lattice constants. All results are summarized in Ta-
ble V. It is worth remarking that, from available experimental
data, it is possible to estimate the impact of thermal dilatation
on the Li lattice constant. This effect is of the order of 0.005 Å
and it is thus unimportant for our conclusions.

The last part of this section is devoted to benchmark
calculations on the radial pair distribution function [g(r)]
of liquid hydrogen. The g(r) is extracted from QMC-based
molecular dynamics (MD) simulations at a temperature of
1800 K and an estimated pressure of 260 GPa. Forces
are computed with the AAD technique and the MD is
carried out with the methods introduced in Refs. [18,48].
It is worth mentioning that alternative techniques based on
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FIG. 7. Hydrogen radial pair distribution function extracted from
a molecular dynamics simulation of liquid hydrogen at a density
given by rs = 1.36 a.u. For this plot we use a supercell of 64 atoms.
We compare our EST method with the standard PBC, with the
Baldereschi point and with TABC results performed with a 4 × 4 × 4
uniform mesh (64 twists). For the sake of comparison, we also added
a simulation with TABC using a 128-atom supercell. We consider
this result as our best estimate and we labeled it as “exact” (with
respect to size effects). The solid lines are obtained with a polynomial
interpolation as guide for the eye. Despite small discrepancies in
the g(r) around the peaks, TABC and EST display an overall good
agreement each other as well as with the more accurate result obtained
with the 128-atom supercell. We notice instead some spurious features
in the results obtained with the Baldereschi point, in particular in the
region zoomed in the inset (r ∈ [1.5,3.2]).

QMC, such as the coupled electron-ion Monte Carlo (CEIMC)
method, have been extensively employed to carry out finite-
temperature investigations on liquid hydrogen [72,73]. The
CEIMC results [73] do not agree with the ones provided by the
MD techniques [18] used in this work, in particular concerning
the debated liquid-liquid phase transition. A detailed survey
on this active research topic is beyond the scope of this work.
Our main concern here is that, at the aforementioned pressure
and temperature, our simulations (including CEICM) predict
hydrogen to be in the atomic phase. Since this phase is metallic,
it is clear that FS effects are important in order to obtain a
reliable description of the system.

The evaluation of the special twist for liquid-hydrogen MD
is more challenging. Due to its disordered nature, the system
can be considered spherically symmetric and thus one can
assume that the Baldereschi point for cubic systems ( 1

4 , 1
4 , 1

4 )
would provide a good approximation for the special twist
since the disorder favors the lowest Fourier components of
Brillouin zone integrals. In order to investigate better this issue,
we extract several configurations from a previous molecular
dynamics simulation carried out with the same conditions and
we apply the EST procedure. The special twist is obtained
by averaging among all the points found. In the case of the
64-atom supercell, we realized that the special twist has no
relevant fluctuations among different configurations and that
it tends to a value of ( 1

4 , 1
4 ,0), in contrast with the initial

assumption; we conclude that within this relatively small
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FIG. 8. Same as Fig. 7 but performed with a larger supercell
containing 128 hydrogen atoms. In this case, the disorder of the
system prevails and the system can be considered spherically
symmetric; for this reason, the special twist coincides with the
Baldereschi point. We notice that at this supercell size the EST and
TABC curves are practically indistinguishable, while PBC is still far
from the other two methods, especially in the description of the first
peak around r = 3.2 a.u.

supercell the system tends to break the spherical (cubic)
symmetry given by its disordered nature. On the contrary,
for the 128-atom supercell we found a special twist very close
the cubic Baldereschi point, as expected. This demonstrates
that this supercell is sufficient to correctly account for the
disordered nature of liquid hydrogen.

In Fig. 7, the g(r) is reported for the 64-atom supercell. The
overall behavior of the EST curve is in good agreement with
TABC with only small discrepancies around the peaks. This is
not the case for simulations carried out with the Baldereschi
point, where we notice an anomalous feature close to the first
peak at r ∼ 2.8 a.u. An excellent agreement between the two
methods is instead obtained with a 128-atom supercell, as
shown in Fig. 8 where TABC and EST (Baldereschi) curves
perfectly superpose. At difference with the EST method, also
with this larger supercell the g(r) extracted from PBC calcula-
tions qualitatively differs from the more accurate TABC result.

The EST method remains reliable in the evaluation of ionic
forces, in both simple structural relaxation and pair distribution
functions extracted from MD simulations. However, the
accordance with the TABC technique is achieved only when
relatively large supercells are employed. Hence, if one has
to compute correlations functions using the EST method, a
careful assessment of the impact of supercell size is needed
before starting production runs.

IV. CONCLUSIONS

In this paper, we presented an original procedure, dubbed
EST method, to find special twist values in the Brillouin
zone corresponding to the simulation cell, which reproduce
the mean-field infinite-size energy up to an arbitrarily high
numerical accuracy. We show that, when the EST value is
used to build wave functions for correlated ab initio QMC

calculations, it greatly reduces one-body shell fluctuations in
the energy extrapolation to the infinite-size limit.

Our procedure has several advantages with respect to the
widely used TABC technique. From a computational point
of view, it is a single-twist technique and it is therefore con-
siderably more affordable, especially within diffusion Monte
Carlo calculations characterized by a significant equilibration
time. Within our method, it is not only possible to accurately
compute thermodynamically converged total energies, but also
perform structural relaxation of complex supercells or molec-
ular dynamics simulations within the QMC framework. On
the other hand, the EST method is devised in order to keep the
exact mean-field thermodynamic limit of the many-body vari-
ational wave function. This feature allows us to avoid any bias
in the kinetic energy evaluation and provides a more reliable
description of the Fermi surface when a large supercell is used.

We tested our procedure on the 3D electron gas, a simple,
but widely studied model for metallic correlated systems.
Within this system, EST displays an efficiency comparable
with the standard TABC technique. We demonstrate that EST is
also very effective in controlling FS effects when tackling more
complex and realistic systems, such as solid hydrogen, bcc-Li,
and the high-pressure β-tin phase of silicon. These systems
show different degrees of complexity and they represent
an exhaustive testing ground for our method. β-tin Si is
particularly challenging since it possesses a very complicated
Fermi surface. EST and TABC extrapolated results are shown
in very good agreement, and the two methods ensure a very
similar smoothing of the one-body energy fluctuations.

The calculation of correlation functions such as ionic forces
is more delicate. We show for both zero-temperature structural
relaxation and molecular dynamics simulations that EST
performs better than any other single-twist method. However,
the TABC technique still shows a better performance, thanks
to its denser sampling of the Fermi surface. We show that for
reasonably large supercell sizes, EST and TABC techniques
are in perfect agreement. Therefore, a careful study of the
supercell size dependence is necessary before applying the
EST method in QMC production runs for the calculation of
correlation functions.

We believe that the EST procedure here introduced can be
the method of choice for reducing FS effects in many practical
situations, particularly when the complexity of the system or
the required supercell size makes the more demanding TABC
calculations unfeasible. Last but not least, given its single-
twist nature, EST can also be efficiently used in combination
with full determinant optimization of the wave function, QMC
structural relaxation, and molecular dynamics simulations, as
we demonstrated in this paper.
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