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Thermodynamic meaning of local temperature of nonequilibrium open quantum systems
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Measuring the local temperature of nanoscale systems out of equilibrium has emerged as a new tool to
study local heating effects and other local thermal properties of systems driven by external fields. Although
various experimental protocols and theoretical definitions have been proposed to determine the local temperature,
the thermodynamic meaning of the measured or defined quantities remains unclear. By performing analytical
and numerical analysis of bias-driven quantum dot systems both in the noninteracting and strongly-correlated
regimes, we elucidate the underlying physical meaning of local temperature as determined by two definitions:
the zero-current condition that is widely used but not measurable and the minimal-perturbation condition that is
experimentally realizable. We show that, unlike the zero-current condition, the local temperature determined by
the minimal-perturbation protocol establishes a quantitative correspondence between the nonequilibrium system
of interest and a reference equilibrium system, provided the probed system observable and the related electronic
excitations are fully local. The quantitative correspondence thus allows the well-established thermodynamic
concept to be extended to nonequilibrium situations.
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I. INTRODUCTION

Probing the variation of local temperatures in systems out
of equilibrium has become a subject of intense experimental
interest in physics [1–5], chemistry [6–8], and life sciences
[9–12]. With the development of high-resolution thermometry
techniques, measurement of some sort of temperature distribu-
tions of nonequilibrium systems has been realized, such as in
graphene-metal contacts [4], gold interconnect structures [5],
and living cells [12].

Local electronic and phononic excitations occur in nano-
electronic devices subject to a bias voltage or thermal gradient,
and hence the devices are supposedly at a local temperature
somewhat higher than the background temperature. Such
local heating affects crucially the device properties [13–16]
and has significant influence on some physical processes,
such as thermoelectric conversion [17–19], heat dissipa-
tion [8,19], and electron-phonon interactions [20,21]. All
these studies, however, leave open the question of what
precisely is a “local temperature” in a nonequilibrium system,
a concept that has a well-established meaning only in global
equilibrium.

Over the past decade, numerous experimental [15,22–28]
and theoretical [29–41] efforts have been made to provide
practical and meaningful definitions of local temperature for
nonequilibrium systems that bear a close conceptual resem-
blance to the thermodynamic one. However, it has remained
largely unclear how to physically interpret the defined local
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temperature and how to associate the measured value with the
magnitudes of local excitations at a quantitative level.

This work aims at elucidating these fundamental issues
through analytical and numerical analysis on nonequilibrium
quantum dot (QD) systems. In particular, we shall focus
on the definition of local temperature based on the zero-
current condition proposed by Engquist and Anderson [42]
and that based on the minimal-perturbation condition as
proposed in Refs. [32,39]. To enable an analytical analysis
and quantitatively accurate numerical studies, in this work we
shall concentrate on the low-background-temperature regime,
so that the local excitations on a QD are dominated by the
scattering events and correlation effects among electrons,
while phonon modes are not promoted.

The remainder of this paper is organized as follows. In
Sec. II the model and methodology used in this work is
introduced. In Sec. III we present analytical analysis on
local temperatures of bias-driven QD systems. A quantitative
correspondence relation is proposed. In Sec. IV, numerical
calculation results are given for QDs in both noninteracting and
strongly-correlated regimes. The physical meaning of local
temperatures is further elaborated. Concluding remarks are
given in Sec. V.

II. METHODOLOGY AND MODEL

A. Zero-current condition

The definition of local temperature based on the zero-
current condition (ZCC) has been used extensively in the
literature [31,34,36,37,43–47]. The basic idea is to couple an
ideal potentiometer/thermometer (the probe) to the nonequi-
librium system of interest. By varying the temperature (Tp) and
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chemical potential (μp) of the probe until the electric current
(Ip) and heat current (J H

p ) flowing through the probe both
vanish, the local temperature (T ∗) and local chemical potential
(μ∗) of the system are determined as T ∗ = Tp and μ∗ = μp,
respectively. In short, the ZCC is expressed as (hereafter we
set e = � = kB = 1)

Ip(Tp = T ∗,μp = μ∗) = 0, (1a)

J H
p (Tp = T ∗,μp = μ∗) = 0. (1b)

The ZCC is often referred to as the “local equilibrium condi-
tion,” as the determined local temperature can be understood
from the perspective of the zeroth law of thermodynamics.
However, such a macroscopic definition of local temperature
does not reflect the microscopic change of the system state
in a nonequilibrium situation. Moreover, it is important to
note that, unlike charge currents, we have no means to
directly measure heat currents, since in the latter case we
have no equivalent apparatus like the ammeter in the electronic
case [16]. This is an often ignored but very important issue that
severely limits the experimental application of the ZCC-based
definition.

B. Minimal-perturbation condition

The minimal-perturbation condition (MPC) based defini-
tion is conceptually different. Consider an open quantum
system whose dynamics is described by a quantum master
equation for the system reduced density matrix ρ

ρ̇(t) = −i[Hsys,ρ] + Renv[ρ], (2)

where Hsys is the system Hamiltonian, and Renv[ρ] is a super-
operator that represents the dissipative interactions between
the system and its environment. As initially proposed by Dubi
and Di Ventra [32,33], to determine the local temperature of
the system (T ∗), one could couple an external probe to the
system. This would introduce an additional dissipation term
Rp[ρ] on the right-hand side of Eq. (2), which accounts for
the system-probe interactions. T ∗ is determined by tuning the
temperature of the probe (Tp) so that the coupling probe has
minimal perturbation to the system dynamics (the additional
dissipation term Rp[ρ] gets minimized). The T ∗ determined
in this way then reflects directly the change of system
states.

While in principle the MPC should be imposed on ρ that
directly reflects the change of system states, in practice it
is difficult to monitor the evolution of ρ in experiments.
Therefore, for practical purpose, we choose to impose the
MPC on the expectation value of a certain system observable
O = 〈Ô〉 = tr(ρÔ) [39].

Consider, for instance, a QD connected to two leads (L
and R), with the lead temperatures (chemical potentials) being
TL and TR (μL and μR), respectively. By locally coupling a
probe to the QD, the expectation value of a local observable
O = 〈Ô〉 is subjected to a perturbation, δOp(Tp,μp), which
depends explicitly on Tp and μp.

An experimentally feasible way to determine T ∗ and μ∗ is
to vary μp and Tp, until the electric current through the probe
vanishes and simultaneously the perturbation δOp(Tp,μp) gets

minimized [32,39]:

Ip(Tp = T ∗,μp = μ∗) = 0, (3a)

T ∗ = arg min
Tp

|δOp(Tp,μp)|. (3b)

As is evident, the use of Eqs. (3a) and (3b) does not require
the measurement of heat currents.

Theoretically it is rather difficult to find analytical solutions
for μ∗ and T ∗ through Eqs. (3a) and (3b), since they usually
lead to coupled nonlinear equations. For simplicity, and also
for a more transparent physical understanding, we adopt a
two-step approach to determine T ∗ and μ∗—we first determine
μ∗ as a weighted sum of μL and μR [see Eq. (4) below], and
then T ∗ is determined by imposing the MPC of Eq. (3b). As
will be shown later in Sec. III A, the approximation made for
μ∗ does not alter the conclusions and understanding reached
through this work.

For a QD subjected to a bias voltage V = μR − μL, the
local chemical potential μ∗ is first determined as [39]

μ∗ = ζLμL + ζRμR. (4)

Then the local temperature T ∗ is measured by varying Tp, with
μp fixed at the value determined by Eq. (4)

δOp(Tp,μp) = ζLOp(TL,μL) + ζROp(TR,μR)

− Op(Tp,μp). (5)

Here, Op(Tα,μα) denotes the local observable 〈Ô〉 measured
by setting Tp = Tα and μp = μα (α = L or R), and the weight
coefficients ζL and ζR are determined by

ζα = 1 −
∣∣∣∣ Ip(Tα,μα)

Ip(TL,μL) − Ip(TR,μR)

∣∣∣∣. (6)

It has been verified in Ref. [39] that Eq. (4) is a reasonable and
convenient approximation for μ∗.

At zero bias T ∗ determined by Eq. (3b) recovers exactly
the physical equilibrium temperature. While in many cases
the MPC-defined T ∗ is numerically close to that obtained by
the ZCC [39], the former does not require the measurement
of heat currents, and hence its experimental realization is
feasible. Despite this added benefit, it remains unclear how
T ∗ determined by Eq. (3b) is quantitatively related to the
electronic excitations in a nonequilibrium system and what
is the underlying origin of the difference between the ZCC
and MPC based definitions. This leads us to question to what
extent can we assign to the MPC quantity the meaning of a
“thermodynamic temperature” as in the equilibrium case.

C. Quantum impurity model for quantum dots

To address the above fundamental issues, we carry out
analytical and numerical analysis on QD systems described
by the single-impurity Anderson model (SIAM) [48]. The
total Hamiltonian is Ĥ = Ĥdot + Ĥlead + Ĥcoup. The dot is
represented by Ĥdot = εd n̂d + Un̂↑n̂↓, with n̂d = ∑

s n̂s =∑
s â

†
s âs . Here, â

†
s (âs) creates (annihilates) an electron

of spin s on the dot level of energy εd , and U is the
on-dot electron-electron (e-e) Coulomb interaction energy.
Ĥlead = ∑

αks εαk d̂
†
αks d̂αks represents the noninteracting leads,
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and Ĥcoup = ∑
αks(tαk â

†
s d̂αks + H.c.) describes the dot-lead

couplings, respectively. Here, d̂
†
αks (d̂αks) creates (annihilates)

a spin-s electron on the state |k〉 of lead α (α = L,R

or p), and tαk is the coupling strength between the dot
level and lead orbital |k〉. The influence of noninteract-
ing leads can be captured by the hybridization functions
�α(ω) ≡ π

∑
k |tαk|2δ(ε − εαk). For numerical convenience,

a Lorentzian form of �α(ω) = 
αW 2
α/[(ω − �α)2 + W 2

α ] is
adopted, where 
α is the effective dot-lead coupling strength,
and �α and Wα are the band center and width of lead α,
respectively.

As for the local observable Ô that is necessary for the
experimental utilization of MPC, we examine two choices—
the local magnetic susceptibility χm ≡ ∂〈m̂z〉

∂Hz
|Hz→0 and the lo-

cal charge susceptibility χc ≡ − ∂〈n̂d 〉
∂εd

. Here, m̂z = gμB(n̂↑ −
n̂↓)/2 is the dot magnetization operator, with Hz being the
magnetic field, g the gyromagnetic ratio, and μB the Bohr
magneton.

III. THERMODYNAMIC MEANING OF LOCAL
TEMPERATURE AND CORRESPONDENCE RELATION

A. Analytical analysis on a single-level QD

Consider a single-level QD in a stationary state; its
retarded/advanced single-electron Green’s function of spin s

is [49]

Gr
s (ω) = [

Ga
s (ω)

]† = 1

ω − εd − �r
s (ω)

. (7)

Here, �r
s (ω) = �r

res(ω) + �r
ee(ω) is the retarded self-energy,

and �r
res(ω) and �r

ee(ω) arise from the dot-lead cou-
plings and the electron-electron interactions, respectively.
The lesser Green’s function of the dot is G<

s (ω) =
Gr

s (ω) �<
s (ω) Ga

s (ω), with the lesser self-energy �<
s (ω) =

�<
res(ω) + �<

ee(ω) [49,50].
The spectral density function of the dot is

As(ω) ≡ 1
2π

∫
dt eiωt 〈{âs(t),â

†
s (0)}〉 = − 1

π
Im[Gr

s (ω)] and
A(ω) = ∑

s As(ω). The energy distribution of electric and
heat currents flowing into lead α is [51,52]

jk
αs(ω) = (−1)k+1 i

π
(ω − μα)k �α(ω)

× {
G<

s (ω) + 2ifTα,μα
(ω)Im

[
Gr

s (ω)
]}

. (8)

Here, k = 0 and 1 correspond to the electric and heat currents,
respectively, and fTα,μα

(ω) = 1/[e(ω−μα )/Tα + 1] is the Fermi
function. The total electric and heat currents flowing into lead
α are obtained by integrating jk

αs(ω) over the entire energy
range as Iα = ∑

s

∫
dω j 0

αs(ω) and J H
α = ∑

s

∫
dω j 1

αs(ω).

B. Noninteracting dots

For noninteracting dots (U = 0), the e-e interacting self-
energies [�r

ee(ω) and �<
ee(ω)] vanish. For simplicity, consider

all leads have the same bandwidth Wα = W (α = L,R and p),
and the band centers are set to lead chemical potentials. The
lead hybridization functions are

�α(ω) = 
αW 2

(ω − μα)2 + W 2
= 
αηα(ω). (9)

Here, ηα(ω) is proportional to the density of states of lead α.
The electric current is expressed as

Iα =2
∫

dω �α(ω)A(ω)

×
{∑

α′ �α′(ω)fTα′ ,μα′ (ω)∑
α′ �α′(ω)

− fTα,μα
(ω)

}
. (10)

At 
p = 0, we have A(ω) = A0(ω), with A0(ω) being the dot
spectral function in the absence of the probe.

By setting Tp = Tα and μp = μα (α = L or R), respec-
tively, it is straightforward to see that

Ip(TL,μL)

Ip(TR,μR)

∣∣∣∣

p→0

= −
R


L

. (11)

The weight coefficients {ζα} in Eq. (6) are determined as

ζL = 
L


L + 
R

and ζR = 
R


L + 
R

. (12)

Therefore, the local chemical potential is [cf. Eq. (4)]

μ∗ = 
L


L + 
R

μL + 
R


L + 
R

μR. (13)

The expectation values of local observables O = χc and χm

can be expressed as

O = C ′
O

∑
α

∫
dω

�α(ω)∑
α′ �α′(ω)

∂A(ω)

∂εd

fTα,μα
(ω). (14)

Here, C ′
O is a constant prefactor dependent on the specific

choice of O.
Denote O0(TL,μL,TR,μR) as the expectation value of Ô in

the absence of the probe, and its deviation from the equilibrium
value is

O0(TL,μL,TR,μR) − O0(Teq,μeq,Teq,μeq)

= C ′
O

∫
dω

{
�L(ω)fTL,μL

(ω) + �R(ω)fTR,μR
(ω)

�L(ω) + �R(ω)

∂A0(ω)

∂εd

− fTeq,μeq (ω)
∂A0(ω)

∂εd

∣∣∣∣
Tα=Teq, μα=μeq

}
. (15)

Here, Teq and μeq are the temperature and chemical potential
of the QD at equilibrium, respectively.

1. The case of wide-band limit

In the wide-band limit (W → ∞), the dot spectral function

As(ω) = 1

π

∑
α 
α

(ω − εd )2 + ( ∑
α 
α

)2 (16)

is independent of μα and Tα . Consequently, the equilibrium
and nonequilibrium dots have identical spectral functions, i.e.,
A0(ω; μL,μR) = A0(ω; μeq,μeq) = A0(ω). The expectation
values of local observables O = χc and χm can be expressed
in a compact form of

O = CO

∑
α


α

∫
dω

∂A(ω)

∂εd

fTα,μα
(ω), (17)

with CO = C ′
O/

∑
α 
α . The perturbation of local observable

O by the coupled probe assumes the following general form
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[cf. Eq. (5)]:

δOp(Tp,μp) = −CO 
p

∫
dω

∂A(ω)

∂εd

{
fTp,μp

(ω)

− 
LfTL,μL
(ω) + 
RfTR,μR

(ω)


L + 
R

}
. (18)

Apparently, imposing the MPC on χm or χc would lead to
exactly the same T ∗, since the right-hand side of Eq. (18)
differs only in the constant prefactor CO for different choice
of O.

Let us now examine in detail how the excitations induced
by a bias voltage or thermal gradient affect the local observable
O. Equation (15) now reduces to

O0(TL,μL,TR,μR) − O0(Teq,μeq,Teq,μeq)

= −CO (
L + 
R)
∫

dω
∂A(ω)

∂εd

×
{
fTeq,μeq (ω) − 
LfTL,μL

(ω) + 
RfTR,μR
(ω)


L + 
R

}
. (19)

By comparing Eqs. (18) and (19), we immediately recog-
nize that

O0(TL,μL,TR,μR) = O0(T ∗,μ∗,T ∗,μ∗), (20)

provided that

δOp(Tp,μp)


p

∣∣∣∣
Tp=T ∗, μp=μ∗, 
p→0

= 0 (21)

can be achieved. In relation to Eq. (3b), Eq. (21) further
requires that the perturbation to the local observable O by
the coupled probe minimizes to zero.

Equation (20) is the central result of this work. As illustrated
in Fig. 1, it establishes a quantitative relation between the

FIG. 1. Schematic illustration of Eq. (20). The local observable
O0 of a nonequilibrium QD can be made equivalent to that of a
reference equilibrium QD, provided the two dots have the same local
temperature T ∗.

local property of a nonequilibrium dot and that of a reference
equilibrium dot. The physical significance of T ∗ is thus
clarified: The electronic excitations induced by a bias voltage
or temperature gradient can be equivalently characterized
as thermal excitations induced by a uniform equilibrium
temperature. This then provides a microscopic interpretation
of the MPC-based definition of local temperature.

It is worth emphasizing that the approximation of Eq. (4)
for μ∗ does not invalidate the quantitative relation of Eq. (20).
This is because μ∗ appears only in the Fermi function during
the derivation of Eq. (20), and thus the specific form or value
of μ∗ has no effect on the equality in Eq. (20).

In contrast, within the same conditions, the ZCC of Eqs. (1a)
and (1b) amounts to

∫
dω (ω − μ∗)k A(ω)

×
{
fT ∗,μ∗ (ω) − 
LfTL,μL

(ω) + 
RfTR,μR
(ω)


L + 
R

}
= 0. (22)

The integral in Eq. (22) has a distinctly different form from that
in Eq. (19), suggesting that in general the local temperature
T ∗ determined by the ZCC does not guarantee the equality in
Eq. (20).

2. The case of finite bandwidth

For leads with a finite bandwidth, As(ω) depends explicitly
on the lead chemical potential μα . Consequently, the nonequi-
librium dot spectral function A0(ω; μL,μR) differs from the
equilibrium counterpart A0(ω; μeq,μeq). Nevertheless, as will
be shown below, the correspondence relation of Eq. (20) still
holds under a small applied bias voltage V = μR − μL.

From Eq. (4), we have μL = μ∗ − ζRV and μR = μ∗ +
ζLV . Define η(ω; μ∗) ≡ W 2/[(ω − μ∗)2 + W 2], and ηα(ω)
can be expanded as

ηL(ω) = η(ω; μ∗) − 2ζR

[
η(ω; μ∗)

W

]2

(ω − μ∗)V + O(V 2),

(23)

ηR(ω) = η(ω; μ∗) + 2ζL

[
η(ω; μ∗)

W

]2

(ω − μ∗)V + O(V 2).

(24)

We thus have


L ηL(ω) + 
R ηR(ω) = (
L + 
R) η(ω; μ∗) + O(V 2).

(25)

This leads to the equality of

A0(ω; μL,μR) = A0(ω; μ∗,μ∗) + O(V 2). (26)
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The perturbation to local observable O can thus be expressed as

δOp(Tp,μp)


p

∣∣∣∣
Tp=T ∗, μp=μ∗,
p→0

= −CO

∫
dω

∂A0(ω)

∂εd

{
fT ∗,μ∗ (ω) − ζL ηL(ω)fTL,μL

(ω) + ζR ηR(ω)fTR,μR
(ω)

ζL ηL(ω) + ζR ηR(ω)

}
+ O(V 2).

(27)

Substituting Eqs. (25) and (26) into Eq. (15) leads to

O0(TL,μL,TR,μR) − O0(T ∗,μ∗,T ∗,μ∗) = −CO(
L + 
R)
∫

dω
∂A0(ω)

∂εd

×
{
fT ∗,μ∗ (ω) − ζL ηL(ω)fTL,μL

(ω) + ζR ηR(ω)fTR,μR
(ω)

ζL ηL(ω) + ζR ηR(ω)

}
+ O(V 2). (28)

By comparing Eqs. (27) and (28), one easily recognizes that

O0(TL,μL,TR,μR) = O0(T ∗,μ∗,T ∗,μ∗) + O(V 2), (29)

provided the zero perturbation of Eq. (27) is reached.

C. Interacting dots

For QDs with a finite U , the e-e interacting self-energies
[�r

ee(ω) and �<
ee(ω)] depend explicitly on system parameters

such as Coulomb energy U , dot level εd , temperature Tα , and
chemical potential μα , and thus usually assume a complicated
form. This makes an analytical analysis rather difficult. There-
fore, the correspondence relation for interacting QDs is to be
verified numerically by employing the accurate hierarchical
equations of motion (HEOM) approach, as described in the
following Sec. III D.

D. Hierarchical equations of motion approach for quantum
impurity systems

To verify the above analytical analysis, and to demonstrate
that Eq. (20) underscores the physical significance of T ∗, we
perform numerical calculations on the QD systems with an
accurate and universal HEOM approach [53–59]. The detailed
derivation of the HEOM formalism has been presented in
Refs. [53,55]. The HEOM theory is formally rigorous, and
the numerical approach has been routinely used to investigate
the equilibrium and nonequilibrium properties of strongly-
correlated quantum impurity systems [60–68].

The numerical results of the HEOM method are guaranteed
to be quantitatively accurate provided they converge with
respect to the truncation level of the hierarchy Ntrun. For
the noninteracting (interacting) QDs studied in this work, the
convergence is achieved at Ntrun = 2 (4), unless otherwise
specified.

IV. NUMERICAL ANALYSIS AND DISCUSSIONS

Figure 2(a) shows T ∗ determined by the MPC and the
ZCC for a noninteracting QD of varying εd under a fixed
bias voltage. The ZCC predicts an almost constant T ∗ over a
large range of εd . In contrast, the MPC results in a conspicuous
fluctuation of T ∗ around εd = −0.7
 (
 = 
L + 
R is taken
as the unit of energy), where the magnitude of T ∗ deviates
significantly from the ZCC value. The vertical lines in Fig. 2(a)
enclose a region (region II) in which the MPC-determined
T ∗ varies sharply with increasing εd . In this region the

zero-perturbation condition, Eq. (21), is out of reach no matter
how Tp is varied, while in the other regions (I and III) Eq. (21)
is satisfied for any εd , as exemplified in Fig. 2(d).

We now examine the correspondence relation for local
properties, which is cast in a simplified form of O0(T ,V ) =
O0(T ∗,0) in the case TL = TR = T . Figure 2(b) shows the
relative deviation [χm

0 (T ∗,0) − χm
0 (T ,V )]/χm

0 (T ,V ) obtained
numerically. With T ∗ determined by the MPC, such deviation
appears to be vanishingly small in regions I and III, where
the zero-perturbation condition, Eq. (21), is always achiev-
able; while in region II the deviation remains appreciable.
This clearly verifies our analytical conclusion that the zero
perturbation condition for determining T ∗ is a prerequisite
for the correspondence relation to hold. In contrast, with T ∗
determined by the ZCC, the correspondence relation does not
apply over the large range of εd examined.

The existence of the three distinct regions for the MPC-
determined T ∗ can be understood as follows. As shown in
Fig. 2(c), the dot spectral function A(ω) exhibits a single peak

FIG. 2. Calculated (a) T ∗ and (b) relative deviation between
χm

0 (T ,V ) and χm
0 (T ∗,0) versus εd for a noninteracting QD un-

der a bias voltage V . (c) Dot spectral function A(ω) and
(d) δχm

p versus Tp for different εd . The QD parameters are
(in units of 
): U = 0, TL = TR = T = 0.1, μR = −μL = V/2 =
0.2, 
L = 
R = 0.5, �L = �R = 0, and WL = WR = 20. The ver-
tical lines and regions are explained in the main text.
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centered at εd and broadened by 
. Under a finite voltage,
most of the electronic excitations occur within an energy
window (μL − ωL,μR + ωR), where ωα is the full width at
half maximum of ∂

∂ω
fTα,μα

(ω). For a dot in region I (such
as εd = −1.5
), the bulk of the dot spectral peak lies below
the excitation window, and the dot level is off-resonant with
the lead states. Consequently, the electronic excitations are
largely local on the dot, and the MPC-determined T ∗ precisely
captures the magnitudes of these local excitations.

In contrast, for a dot in region III (such as εd = 0), the center
of the dot spectral peak resides precisely in the excitation
window, indicating that the dot level is in strong resonance
with the lead states. Therefore, excitations occur mostly inside
the leads to create hot electrons (holes) above (below) the
Fermi energy and hence are rather nonlocal. In such a case,
the MPC-determined T ∗ quantifies the magnitude of these
nonlocal excitations. In this respect, it is more appropriate to
interpret T ∗ as an “effective temperature” rather than a local
temperature.

Finally, for a dot in region II (such as εd = −0.7
), the
spectral peak lies at the edge of the excitation window. The
dot is thus in a near-resonance situation, and local and nonlocal
excitations could both take place. Since the local and nonlocal
excitations are intrinsically different, their influence on the
local properties cannot be adequately addressed by a single
thermodynamic parameter T ∗. This thus explains why the
zero-perturbation condition of Eq. (21) is out of reach in
region II.

Analytical analysis is somewhat difficult for interacting
QDs, and therefore we resort to a numerical analysis by
employing the HEOM approach. For a QD with U >

0, the local observables χm = − 1
2g2μ2

B( ∂〈n↑〉
∂ε↑

− ∂〈n↓〉
∂ε↑

) and

χc = −2( ∂〈n↑〉
∂ε↑

+ ∂〈n↓〉
∂ε↑

) are nonequivalent because ∂〈n↓〉
∂ε↑

�= 0.
Therefore, the MPC-determined local temperature depends on
the specific choice of local observable O. Nevertheless, our
calculations have shown that over a wide range of parameters
the use of χm and χc result in very close values of T ∗ (see
Fig. 3).

As it has been pointed out in Sec. II B, in principle, the MPC
can be imposed directly on the system reduced density matrix
ρ, and the determined T ∗ would truly reflect the change of
system state and be independent of any observable. However,
in practice, it is difficult to monitor the change of ρ, and we
have to choose a physical observable so that the MPC-based
definition could become experimentally realizable.

Figures 3(a) and 3(b) depict the variation of T ∗ with
increasing U at a high (T = 
) and low (T = 0.1
) back-
ground temperature, respectively. Similar to the noninteracting
situation, the ZCC predicts an almost constant T ∗ over a
large range of U , while the MPC again gives rise to a
sharp transition of T ∗ within a small region (region II) of
U . The relative deviations [O0(T ∗,0) − O0(T ,V )]/O0(T ,V )
(O = χm and χc) are shown in Figs. 3(c) and 3(d). While
the ZCC-defined T ∗ does not conform to the correspondence
relation of Eq. (20), the MPC-determined T ∗ leads to rather
minor deviations so long as the zero perturbation of Eq. (21)
can be achieved (in regions I and III). Here, the regions I,
II, and III correspond to the off-resonant, near-resonant, and
resonant situations, respectively, as supported by the positions

FIG. 3. Calculated T ∗ versus U for an interacting QD under a
bias voltage V at the background temperature (a) T = 
 and (b)
T = 0.1
. The relative deviations between O0(T ,V ) and O0(T ∗,0)
are shown in (c) and (d), respectively. The QD parameters are (in units
of 
): εd = −2, μR = −μL = V/2 = 0.2, 
L = 
R = 0.5, �L =
�R = 0, and WL = WR = 20. The vertical lines and regions are
explained in the main text.

of the dot spectral peaks with respect to the excitation energy
window.

Figure 4 depicts the HEOM calculated dot spectral func-
tions of interacting QDs with different values of U . As shown
in Fig. 4(a), at a relatively higher background temperature
(T = 
) the renormalized Hubbard peak gradually moves
into the excitation energy window with the increase of U .
For instance, for the QD with U = 1.5
 the renormalized
Hubbard peak resides largely within the excitation window,
and hence the QD is in a resonant situation.

At a low background temperature (such as T = 0.1
)
the deviation between χm

0 (T ,V ) and χm
0 (T ∗,0) (with the

MPC-determined T ∗) assumes a small but finite value in region
III; see Fig. 3(d). This is because Kondo resonant states start
to emerge as U increases. As shown in Fig. 4(b), for the
QD with U = 5
 a prominent Kondo spectral peak forms
at the center of the excitation energy window. The presence
of Kondo resonance states is clearly demonstrated by the inset

FIG. 4. Dot spectral function A(ω) of a nonequilibrium QD with
a varying of U at the background temperature (a) T = 
 and (b) T =
0.1
. The inset of (b) shows the Kondo spectral peak at various T .
The vertical lines mark the excitation energy window (μL − ωL,μR +
ωR). The QD parameters are the same as in the caption of Fig. 3.

245105-6



THERMODYNAMIC MEANING OF LOCAL TEMPERATURE OF . . . PHYSICAL REVIEW B 94, 245105 (2016)

of Fig. 4(b), in which the peak height increases continuously
with the lowering of temperature. Under a bias voltage, Kondo
resonant states facilitate electron co-tunneling processes,
which can be understood as the concurrence of local spin-flip
and nonlocal electron-transfer excitations. As in the case of
noninteracting electrons, such mixed-ranged excitations can-
not be fully captured by the single parameter T ∗, and hence the
correspondence relation for local observables does not hold.

V. CONCLUDING REMARKS

Based on the above analysis, we can now answer the
question of how to physically interpret the defined or measured
local temperature. The ZCC-based definition does give a T ∗
that is higher than the background T , indicating the presence
of local heating. However, the magnitude of T ∗ can hardly be
associated with the changes in system local observables. In
contrast, the MPC-based definition establishes a quantitative
correspondence between the nonequilibrium system of interest
and a reference equilibrium system. The correspondence
relation holds as long as the following three conditions are
met: (i) the perturbation induced by the probe minimizes to
zero, (ii) the monitored observable is a local property, and
(iii) the electronic excitations driven by the external source are
fully local.

Finally, from the experimental perspective the MPC-based
definition is obviously more practical, as it does not require
measuring the heat currents directly. Even if the zero perturba-
tion to a local observable is out of reach, the MPC of Eq. (3b)
always provides a definitive measurement for the magnitude
of T ∗. In fact, the nonzero minimal perturbation indicates
the presence of a nonlocal contribution to local heating from
electronic excitations in the environment. In view of the fact
that local thermal probes as those suggested in this work are
now being developed, we hope our studies will provide a firmer
basis for understanding the ensuing quantities they measure.
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