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We theoretically investigated the dependence of higher-order harmonic generation (HHG) in solid-state
materials on the ellipticity of the electric field. We found that in the multiphoton absorption and ac Zener
regimes, the intensity of HHG monotonically decreases with increasing ellipticity of the incident electric field,
while in the semimetal regime, the intensity reaches a maximum for finite values of ellipticity. Moreover, the
characteristics of the polarization of the emitted HHG change depending on the field intensity; only parallel
emissions with respect to the major axis exist in the multiphoton absorption and ac Zener regimes, while both
parallel and perpendicular emissions exist in the semimetal regime. These peculiar characteristics of the semimetal
regime can be understood on the basis of changes in the HHG mechanism and may be able to be identified in
experiments utilizing solid-state materials such as narrow-gap semiconductors.
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One of the most fundamental and prominent aspects of
nonlinear optics is higher-order harmonic generation (HHG)
in gaseous media [1,2]. The development of intense light
sources has opened the way to studying nonperturbative
optical phenomena through HHG [3–5] and has made it a
cornerstone of various applications, such as attosecond pulse
generation and molecular orbit tomography [6,7]. In recent
years, HHG in solid-state materials has been experimentally
observed, and this has ushered in an era of strong electric field
physics [8–14]. HHG in crystalline solids has been shown
to have characteristics different from those of atomic matter,
especially in terms of it reflecting the collective properties of
the periodic arrangement of atoms. These differences have led
to speculation on the generation mechanism and the possibility
of controlling HHG [15–21]. Moreover, it is thought that a
clear understanding of such matters is required for progress to
be made on high-intensity optical technology.

A recent study has shown that the HHG mechanism
in solid-state materials can be understood in terms of an
analogy between Zener tunneling in semiconductors and
tunnel ionization in gaseous media [22]. This consideration
also indicates that high-intensity ac electric fields would
introduce semimetallization of semiconductors corresponding
to the over-the-barrier ionization processes [23,24], which
ensures the same characteristics of HHG as those of gaseous
media. However, there are not enough experimental data on
the HHG of over-the-barrier ionization processes because the
high-intensity electric fields generate plasmas and deplete
neutral atoms, which break the phase-matching conditions
[1,2] and make it difficult to observe the characteristics of
HHG. This difficulty could be avoided in experiments on
solid-state materials if appropriate materials, such as narrow-
gap semiconductors, are used. The unique characteristics of
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semimetallization of semiconductors should be emphasized
by employing elliptically polarized electric fields, because the
initial velocities of the excited carriers would vary depending
on the electric field intensity and the trajectories predicted
by the simple man’s model could be controlled by changing
the ellipticity. These considerations indicate a necessity of
investigating the dependence of HHG on the ellipticity of the
incident electric field and point to the possibility of using
HHG to explore the unique characteristics of solid-state
materials.

On the basis of the above considerations, in this Rapid
Communication, we theoretically investigate the dependence
of HHG on the ellipticity of the incident electric field. Utilizing
the theoretical framework developed here, we find that HHG
spectra arising from the semimetallization of semiconductors
clearly show unique characteristics reflecting a change in the
HHG mechanisms. The obtained predictions focus on peculiar
aspects of HHG in solid-state materials that have yet to be seen
in gaseous media.

To investigate the dependence of HHG on the ellipticity of
the incident electric field, we will extend the theory employed
in a previous work [22], which is only adequate for the
case of linearly polarized light. For the derivation of the
Hamiltonian, we start from the well-known formula H =
(1/2m0)[ p − eA(t)/c]2 + �iV (x − Ri), where m0 is the elec-
tron mass, e is the electron charge, c is the velocity of light,
A(t) is the vector potential of incident electric fields, p is the
momentum of the bare electrons, and V (x − Ri) is the periodic
core potential of atoms located at Ri . In this framework, we will
ignore the quasistatic energy e2 A(t)2/2m0c

2 since it only shifts
the total energy of the system [25]. Using the second quantiza-
tion formulation, the Hamiltonian in the Coulomb gauge can be
written as H = H0 + HI , where H0 = ∫ dxψ†(x){(1/2m0) p2

+ �iV (x − Ri)}ψ(x) and HI = ∫ dxψ†(x){−(e/m0c) A(t) ·
p}ψ(x). Here, ψ(x) is the field operator of electrons. To
consider the most basic structure of solid-state materials, we
assume a two-dimensional covalent crystal in which two atoms
A and B exist in a unit cell keeping the space-inversion

2469-9950/2016/94(24)/241107(6) 241107-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevB.94.241107


RAPID COMMUNICATIONS

T. TAMAYA, A. ISHIKAWA, T. OGAWA, AND K. TANAKA PHYSICAL REVIEW B 94, 241107(R) (2016)

symmetry. This assumption is equivalent to only focus-
ing on the conduction and valence bands in a semicon-
ductor. Using the tight-binding model only considering
nearest-neighbor hopping of electrons and following the
transformation ψ̂(x) = (N )−1/2�k,R Ae

ik·RAφ(x − RA)âk +
(N )−1/2�k,RB eik·RB φ(x − RB)b̂k, where the wave functions
of the electrons bound to atoms A and B are described as
φ(x − RA) and φ(x − RB), we can arrive at the tight-binding
Hamiltonian

H0 =
∑

k

[γf (k)a†
kbk + γ f ∗(k)b†kak], (1)

HI = −�

∑

k

[�R(k,t)a†
kbk + H.c.]. (2)

Here, γ is the transfer integral, � is the Planck constant, f (k)
is a form factor defined as f (k) = �ie

ik ·δi = |f (k)|eiθ f (k) ,
δi is a lattice vector, ak (bk) is the annihilation operator of
electrons with wave number k on the sublattice A (B), and
�R(k,t) is the Rabi frequency [26] defined by �R(k,t) =
[eπ (k,t)/�m0c], where π (k,t) = �ie

ik ·δi ∫ d2xφ∗(x)A(t) ·
pφ(x − δi). In the following formulation, we will ignore
the k dependence of the Rabi frequency, which is usually
permitted in semiconductor physics [27]. Supposing the vector
potential of the elliptically polarized light to be A(t) =
A0(1 + ε2)−1/2 exp[−(t − t0)2/τ 2](cos ω0t,ε sin ω0t), we can
arrive at the Rabi frequency in the form �R(t) =
�R0(t)(1 + ε2)−1/2(cos ω0t + iε sin ω0t), where �R0(t) =
�R0 exp[−(t − t0)2/τ 2]. Throughout this Rapid Communica-
tion, the parameters of the incident electric field are fixed to
t0 = 12π/ω0 and τ = 4π/ω0. Here, we assume the major axis
to be the x axis and denote the ellipticity of the incident electric
field as ε varying in the range of − 1 ≤ ε ≤ 1. The plus and
minus signs of the ellipticity indicate left- and right-handed
elliptically polarized light; therefore, the same dependence
would be expected under space-inversion symmetry in solid-
state materials. The transformation from the lattice picture
to the band-structure picture can be performed by diagonal-
ization of the single-particle part H0 through the use of the
electron-hole picture defined as ek = 1/

√
2[ak + eiθ f (k)bk] and

h
†
−k = 1/

√
2[−ak + eiθ f (k)bk], where ek(hk) is the annihilation

operator of electrons (holes) with the Bloch wave vector k.
To consider the most simplified case, we assume γ |f (k)| ≈
(�2k2/2mμ + Eg/2) and θf (k) = θk. On the basis of this
transformation, we can derive a Hamiltonian in the form of
H = H0 + HI , where

H0 =
∑

k

[(
Ee

k+Eg/2
)
e
†
kek+(

Eh
k +Eg/2

)
h
†
−kh− k

]
, (3)

HI =��R0(t)
∑

k

(1+ε2)−1/2(cos ω0t cos θk+ε sin ω0t sin θk)

× (e†kek + h
†
−kh−k − 1) + i��R0(t)

∑

k

(1 + ε2)−1/2

× (cos ω0t sin θk − ε sin ω0t cos θk)(e†kh
†
−k − h−kek).

(4)

Here, Eσ
k = �

2k2/2mσ (σ = e,h) are the kinetic energies
of electrons and holes with Bloch wave vector k
and Eg is the band-gap energy. The zero value of
ellipticity can recover the Hamiltonian in Ref. [22].
The first term on the right-hand side in Eq. (4)

indicates the intraband transition caused by elliptically
polarized light, which can be renormalized in terms of
single-particle energies εσ

k in the form εσ
k (t) = Eσ

k + Eg/2 +
��R0(t)(1 + ε2)−1/2(cos ω0t cos θk + ε sin ω0t sin θk). This
expression corresponds to the temporal variations of the band
structures reflecting the features of the incident electric fields,
wherein linearly polarized light (ε = 0) causes variations only
along the direction of the major axis ( kx axis), while circularly
polarized light (ε = 1) causes anisotropic deformations in
the k plane. These variations can be ignored when focusing
on a weak electric field where the Rabi frequency is much
smaller than the band-gap energy, i.e., ��R0(t) � Eg .
In this case, the single-particle energies are transformed
into εσ

k (t) ≈ Eσ
k + Eg/2, and therefore the optical and

semiconductor Bloch equations [26] can be recovered for the
case of ε = 0 if the factors sin θk and cos θk are ignored. This
consideration indicates that the optical and semiconductor
Bloch equations are only adequate for weak electric fields and
would be violated by strong electric fields.

Using the above Hamiltonian, the time evolution equations
of the densities f σ

k = 〈σ †
kσk〉 and polarization Pk = 〈h†

−kek〉
with a Bloch wave vector k can be derived as

i�
∂

∂t
Pk = [

εe
k(t) + εh

k (t)
]
Pk + i��R0(t)(1 + ε2)−1/2

× (cos ω0t sin θk − ε sin ω0t cos θk)

× [
1 − f e

k − f h
k

] − i�γtPk, (5)

∂

∂t
f σ

k = 2 Im[i�R0(t)(1 + ε2)
−1/2

(cos ω0t sin θk

− ε sin ω0t cos θk)P †
k ] − γlf

σ
k . (6)

Here, γt and γl are the transverse and longitudinal relaxation
constants, and in this study, they are fixed to γt = 0.1ω0

and γl = 0.01ω0. The numerical solutions of these equations
give the time evolutions of the distributions of the carrier
densities and polarization in two-dimensional k space.
Figures 1(a1) and 1(b1) show the distributions of densities
f e

k = f h
k , and Figs. 1(a2) and 1(b2) show the distributions of

polarizations 2 Im[Pk] in the cases of linearly and circularly
polarized light for t = 12π/ω0. Here, we have set the Rabi
frequency and the band-gap energy to �R0 = 2ω0 and
Eg = 5ω0. These figures indicate that for the case of linearly
polarized light, the anisotropic distributions of densities
and polarization are only linked to the direction of the
polarization axes (kx axis), while for the case of circularly
polarized light, the distributions resemble a spiral reflecting
the temporal evolutions of the elliptically polarized light.
These anisotropies are caused by dipole transitions under
the temporal variations of the band structures characterized
by the single-particle energies as εσ

k (t) = Eσ
k + Eg/2 +

��R0(t)(1 + ε2)−1/2(cos ω0t cos θk + ε sin ω0t sin θk). Utiliz-
ing these distributions, the time evolution of the generated
currents along the x and y axes can be calculated using the
definition Jν(t) = −c〈∂HI/∂Aν〉 (ν = x, y), i.e., Jx(t) ∝∑

k[(1 − f e
k − f h

k ) cos θk − 2 Im(Pk) sin θk] and Jy(t) ∝
ε
∑

k[(1 − f e
k − f h

k ) sin θk + 2 Im(Pk) cos θk]. The numerical
results in Figs. 1(a3) and 1(b3) are for linearly and circularly
polarized light, respectively. These figures indicate that
currents are only generated along the major axis in the

241107-2



RAPID COMMUNICATIONS

HIGHER-ORDER HARMONIC GENERATION CAUSED BY . . . PHYSICAL REVIEW B 94, 241107(R) (2016)

FIG. 1. Density and polarization distributions characterized by linearly [(a1) and (a2)] and circularly polarized light [(b1) and (b2)] in the
case of Eg = 5ω0 and �R0 = 2ω0 for t = 12π/ω0. Current generations calculated by both distributions are plotted in (a3) and (b3), respectively.
Red and green lines show temporal evolutions of the currents generated along the x and y axes.

case of the linearly polarized light, while in the case of
elliptically polarized light, they occur along both the x

and y axes and exactly reflect the phase differences of the
incident electric fields characterized by E0(cos ω0t, sin ω0t).
Thus, we can obtain the time evolutions of the current in
the form J (t) = [Jx(t),Jy(t)], and can calculate higher-order
harmonic spectra from the definition I (ω) = ω2|J (ω)|2, where
J (ω) = [Jx(ω),Jy(ω)] is the Fourier transform of the current
vector J (t). As indicated in a previous paper [22], the HHG
mechanism can be classified into three regimes depending on
the Rabi frequency: (i) the multiphoton absorption regime
(�R0 ≤ 0.5ω0), (ii) ac Zener regime (0.5ω0 ≤ �R0 ≤ Eg/2�),
and (iii) semimetal regime (Eg/2� ≤ �R0), from which we
can expect the dependence of HHG on the ellipticity to
vary according to the field intensity. Below, we discuss the
characteristics of the higher-order harmonic spectra in each
regime, setting the band-gap energy to Eg = 10ω0.

Figure 2(a) shows the higher-order harmonic spectra in the
multiphoton absorption regime for ellipticity values of ε = 0

(red line), ε = 0.4 (green line), and ε = 0.8 (blue line) in the
case of �R0 = 0.4ω0. This figure clearly shows that the intensi-
ties of the N th -order harmonics monotonically decrease with
increasing ellipticity. Moreover, the decreasing ratio becomes
larger as the harmonic order increases. To investigate the de-
creasing ratio in more detail, we plot in Fig. 3(a) the ellipticity
dependence of the seventh-order harmonics (blue line), which
can be divided into parallel (red line) and perpendicular (green
line) emissions with respect to the major axis (x axis). This
figure shows a monotonic decrease in total HHG intensity with
increasing ellipticity as well as only parallel emissions. These
tendencies can be understood on the basis of perturbative
theory in gaseous media, which leads to the following
expression for the nth -order polarization, P (n)(nω) = (ex −
iε ey)(1 + ε2)−1/2E

(n−1)
0 [(1 − ε2/1 + ε2)](n − 1)/2χ (n)(−nω),

where χ (n)(nω) and eν are the nth -order susceptibilities
caused by linearly polarized electric fields and a unit
vector in the direction of the ν axis [28]. This indicates
an ellipticity dependence of the HHG intensity of the

FIG. 2. Higher-order harmonic spectra generated from two-dimensional semiconductors: (a) multiphoton absorption regime, (b) ac Zener
regime, and (c) semimetal regime. Red, green, and blue lines indicate the HHG spectra caused by the different elliptically polarized light.
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FIG. 3. Ellipticity dependences of higher-order harmonic intensities focusing on (a) seventh harmonics in the multiphoton absorption
regime, (b) 13th harmonics in the ac Zener regime, and (c) 28th harmonics in the semimetal regime. Red, green, and blue lines show the
harmonics generated from the current components of Jx(t), Jy(t), and Jtotal(t), respectively. These figures show that only parallel emissions
with respect to the major axis exist in the multiphoton absorption and ac Zener regimes, while both parallel and perpendicular emissions exist
in the semimetal regime.

form I total
N ∝ [(1 − ε2)/(1 + ε2)]N−1 and an emission

ratio between parallel and perpendicular components of
INy/INx ∝ |P N

y |2/|P N
x |2 = ε2. These expressions can explain

the characteristics of the HHG in our numerical calculations.
Note that they also indicate that circularly polarized electric
fields, with ε = 1, completely suppress HHG because of
the condition P (n)(nω) = 0. This characteristic can be also
identified in our numerical calculations.

Figure 2(b) shows the higher-order harmonic spectra in
the ac Zener regime, where the ellipticity values are ε = 0
(red line), ε = 0.4 (green line), and ε = 0.8 (blue line) in
the case of �R0 = 2ω0. This figure clearly indicates the
cutoff energy and the intensities of nth -order HHG decrease
with increasing ellipticity. We also plot in Fig. 3(b) the
ellipticity dependence of the 13th higher-order harmonic
(blue line), which can be divided into parallel (red line) and
perpendicular (green line) emissions with respect to the major
axis. Here, we chose the 13th harmonic for its cutoff energy,
evaluated as EC ≈ Eg + 1.6��R0 [22]. This figure shows a
monotonic decrease in the total intensity of HHG, whose
shape is roughly Gaussian and has already been identified
in a recent experiment [14]. Moreover, we can see there are
only parallel emissions with respect to the major axis. These
characteristics are very similar to those of gaseous media
[29–34]; thus, the semiclassical picture of the simple man’s
model [35] seems to be useful for explaining the tendencies of
HHG. As indicated by several researchers [29–34], the simple
man’s model shows that the origin of HHG is recombination
processes of accelerated carriers, and small ellipticity gives

large displacements from the recombination positions, as is
shown in Fig. 4(a). Accordingly, we can confirm that the
cutoff energy and the intensities of HHG become strongly
suppressed with increasing ellipticity and their suppression
ratio would have a Gaussian shape [34], which can be seen
in Figs. 2(b) and 3(b). The ellipticity dependence of the 13th
harmonics being mainly due to parallel emission and almost
no perpendicular emission supports this conjecture because
the trajectories of the carriers would be closed only when they
are driven by linearly polarized electric fields. Note that our
numerical calculations also show that a circularly polarized
electric field completely suppresses HHG. This tendency is the
same as in the multiphoton absorption regime and has already
been observed in an experiment utilizing a ZnO crystal wherein
a luminescence peak remained around the band-gap energy [8].

The higher-order harmonic spectra in the semimetal regime
are plotted in Fig. 2(c) in the case of �R0 = 8ω0 for ellipticity
values of ε = 0 (red line), ε = 0.3 (green line), and ε = 0.6
(blue line). Different from the multiphoton absorption and ac
Zener regimes, the spectra show a nonmonotonic tendency
with increasing ellipticity, where their intensities appear to
be enhanced around ε = 0.3. To investigate this tendency in
detail, we plot in Fig. 3(c) the ellipticity dependence of the 28th
harmonic (blue line), which can be divided into parallel (red
line) and perpendicular (green line) emissions with respect
to the major axis. The 28th order was evaluated from the
cutoff energy, estimated in the form EC ≈ 3.6��R0 [22]. The
ellipticity dependence of the total HHG intensities clearly
reaches a maximum around ε = 0 and ε = 0.3. Moreover,

Hole
Electron

(a) Carrier trajectories in ac Zener regime
Hole
Electron

(b) Carrier trajectories in semimetal regime

FIG. 4. Schematic diagrams of carrier trajectories caused by elliptically polarized electric fields in the cases of (a) ac Zener regime and
(b) semimetal regime, respectively.
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FIG. 5. Upper left: Higher-order harmonic spectra generated from the current components of Jx(t) (red lines), Jy(t) (green lines), and Jtotal(t)
(blue lines) in the case of �R0 = 8ω0 for ε = 0.3. Upper right, lower left, and lower right: Harmonic intensities as a function of ellipticity
focusing on (a) fifth, (b) 15th, and (c) 30th harmonics. Red, green, and blue lines show harmonics generated from the current components of
Jx(t), Jy(t), and Jtotal(t), respectively.

both perpendicular and parallel emissions can be identified,
especially for ε = 0.3. These tendencies have never been
observed in the multiphoton absorption and ac Zener regimes,
while a few experiments performed in gaseous media [31,32]
have reported similar characteristics and suggested a variation
in the HHG mechanisms between the lower- and higher-order
harmonics. Spurred by this consideration, we plot in Fig. 5(a)
the harmonic order dependence of HHG (blue line), which can
be divided into parallel (red line) and perpendicular (green
line) emissions in the case of ε = 0.3. This figure shows
that the lower-order harmonics mainly derive from parallel
emissions, while the higher-order harmonics derive only from
perpendicular emissions. This tendency is clearly seen in the
ellipticity dependences of the fifth, 15th, and 30th harmonics
plotted in Figs. 5(b)–5(d).

The physical interpretation of these tendencies would be
made on the basis of changes in the HHG mechanism. In the
semimetal regime, the carriers are excited when the band gap
closes, which indicates a long interval of overlap between the
conduction and valence bands. This interval has never been
seen in the ac Zener regime, where excitations mainly occur
when the x and y components of the incident electric field
reach a maximum and zero, respectively. Here, we suppose
the condition ε � 1. In this case, the initial velocity of the
excited carriers only has parallel components with respect to
the major axis. On the other hand, in the semimetal regime,
the long interval of overlap between the conduction and
valence bands ensures a finite time period for the excitation
processes and enhances both the parallel and perpendicular
components of the initial velocity. As shown in Refs. [29–34],
the perpendicular component of the initial velocity requires
the ellipticity to be finite for the closed trajectories and

elliptical orbits in real space [Fig. 4(b)]. On the basis of this
consideration, we can conclude that HHG in the semimetal
regime is enhanced by finite ellipticity, while the HHG in
the ac Zener regime monotonically decreases with increasing
ellipticity. We expect that the higher harmonics near the cutoff
energy mainly derives from the perpendicular components
which do not appear in the ac Zener regime, while the lower
harmonics derives mainly from the parallel components. Note
that the numerical calculations do not show that circularly
polarized light completely suppresses HHG.

In conclusion, we theoretically investigated the dependence
of HHG in solid-state materials on the ellipticity of the incident
electric field. By utilizing the framework developed in this
Rapid Communication, we found that the dependence of HHG
intensity changes according to the ellipticity of the electric
field. In the multiphoton absorption and ac Zener regimes,
the HHG intensity monotonically decreases with increasing
ellipticity and only emissions parallel to the major axis exist.
On the other hand, in the semimetal regime, the intensity
exhibits pronounced maximum peaks for finite values of
ellipticity and both parallel and perpendicular emissions exist.
The differences in these characteristics can be understood on
the basis of changes in the HHG mechanisms of solid-state
materials. The unique characteristics obtained here in the
semimetal regime, which would be difficult to observe in
gaseous media, should be able to be observed in narrow- and
zero-gap semiconductors, such as InSb and graphene.

This work was supported by a Grant-in-Aid for Scientific
Research (A) (Grants No. 26247052 and No. 23244065)
and a Grant-in-Aid for Scientific Research (B) (Grant
No. 26287087).
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