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Absence of full many-body localization in the disordered Hubbard chain
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We present numerical results within the one-dimensional disordered Hubbard model for several characteristic
indicators of the many-body localization (MBL). Considering traditionally studied charge disorder (i.e., the same
disorder strength for both spin orientations) we find that even at strong disorder all signatures consistently show
that while charge degree of freedom is nonergodic, the spin is delocalized and ergodic. This indicates the absence
of the full MBL in the model that has been simulated in recent cold-atom experiments. Full localization can be
restored if spin-dependent disorder is used instead.
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Introduction. The many-body localization (MBL) is a phe-
nomenon whereby an interacting many-body system localizes
due to disorder, proposed [1,2] in analogy to the Anderson
localization of noninteracting particles [3,4]. The MBL physics
has attracted a great deal of attention from theoreticians. Yet,
it has so far been predominantly studied within the prototype
model, i.e., the one-dimensional (1D) model of interacting
spinless fermions with random potentials, equivalent to the
anisotropic spin-1/2 Heisenberg chain with random local
fields. Emerging from these studies are the main hallmarks
of the MBL state of the system: (a) the Poisson many-body
level statistics [5–9], in contrast to the Wigner-Dyson one for
normal ergodic systems; (b) vanishing of dc transport at finite
temperatures T > 0, including the T → ∞ limit [10–17]; (c)
logarithmic growth of the entanglement entropy [18–20], as
opposed to linear growth in generic systems; (d) an existence of
a set of local integrals of motion [21–24]; and (e) a nonergodic
time evolution of (all) correlation functions and of quenched
initial states [25–29]. Because of these unique properties, the
MBL can be used, e.g., to protect quantum information [30,31].
For more detailed review, see Refs. [32,33].

The experimental evidence for the MBL comes from recent
experiments on cold atoms in optical lattices [34–37] and ion
traps [38]. In particular, for strong disorders, experiments
reveal nonergodic decay of the initial density profile in
uncoupled [34] and coupled [36] 1D fermionic chains, as
well as the vanishing of dc mobility in a three-dimensional
disordered lattice [35]. In contrast to most numerical studies,
being based on the spinless fermion models, the cold-atom
experiments simulate a disordered Hubbard model. The latter
has been much less investigated theoretically [34,39,40],
whereby results show that density imbalance might be
nonergodic at strong disorder [34,39], in accordance with
experiments [34,36].

The essential difference with respect to the interacting
spinless model is that the Hubbard model has two local degrees
of freedom: charge (density) and spin. The aim of this Rapid
Communication is to present numerical evidence that in the
case of a (charge) potential disorder and finite repulsion U > 0
(as, e.g., realized in the cold-atom experiments), both degrees
behave qualitatively differently. In particular, while for strong
disorder the charge exhibits nonergodic behavior (e.g., the
charge-density-wave and the local charge correlations fail

to reach the thermal equilibrium), the spin imbalance and
the local spin correlations show a clear decay. Similarly, we
find that dc charge conductivity vanishes with the increasing
disorder, whereas spin conductivity remains finite in the dc
limit or is at least subdiffusive. The entanglement entropy,
which incorporates both degrees, grows as a power law with
time. All these findings reveal that even for strong disorders the
system does not follow the full MBL scenario, requiring the
existence of a full set of local conserved quantities [21,22,32].
The present results point towards a phenomenon of a partial
nonergodicity and an effective dynamical charge-spin sep-
aration. Furthermore, we show that the localization of the
spin degree of freedom may be achieved when the symmetry
between the up and down fermions is lifted, for instance, by
introducing a spin-dependent disorder.

Model. The 1D disordered Hubbard model is given by the
Hamiltonian,

H = −t0
∑
js

(c†j+1,scjs + H.c.)

+U
∑

j

nj↑nj↓ +
∑

j

εjnj , (1)

where nj = nj↑ + nj↓ is the local (charge) density. In our
analysis, we consider the local (spin) magnetization as well,
given by mj = nj↑ − nj↓. The quenched local potential
disorder in Eq. (1) involves a random uniform distribution
−W < εj < W . t0 = 1 is used as the unit of energy. In order
to look for possible MBL features of the whole many-body
spectrum, we focus our numerical calculations on the T → ∞
limit. With the average density n̄ = 1

L

∑
j nj and the average

magnetization m̄ = 1
L

∑
j mj being constants of motion, we

choose to investigate the unpolarized system m̄ = 0 and the
half-filling n̄ = 1 case, which is a generic choice at high T .
Nevertheless, we also test the quarter-filling case, n̄ = 1/2
(see the Supplemental Material [41]), as it is the one realized
in experiments [34,36].

Imbalance correlations. In connection with cold-atom
experiments are most relevant charge (density) imbalance
correlations I (t) as they evolve in time from an initial out-of-
equilibrium configuration. Therefore, we first discuss related
charge-density-wave (CDW) and spin-density-wave (SDW)
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autocorrelation functions,

C(ω) = α

L
Re

∫ ∞

0
dt eiωt 〈nπ (t)nπ 〉,

S(ω) = α

L
Re

∫ ∞

0
dt eiωt 〈mπ (t)mπ 〉, (2)

calculated for a particular (staggered) wave vector q = π ,
with nq=π = ∑

j (−1)j nj for the CDW case, and mq=π =∑
j (−1)jmj for the SDW case. In Eq. (2), 1/α = n̄(1 −

n̄/2) so that C(t = 0) = S(t = 0) = 1, for T ,L → ∞. The
nonergodicity (after taking L → ∞) should manifest itself
as a singular contribution, C(ω ∼ 0) = C0δ(ω), S(ω ∼ 0) =
S0δ(ω), with C0 and S0 corresponding to the CDW and the
SDW stiffnesses, respectively. That is, the (full) MBL requires
that both C0 and S0 are finite. For the calculation of imbalance
correlations we employ the microcanonical Lanczos method
(MCLM) [42,43] on finite systems of maximum length L = 14
for n̄ = 1 (for n̄ = 1/2 see the Supplemental Material [41]).
The high frequency resolution is achieved by a large number
of Lanczos steps NL = 104, δω ∝ 1/NL. The averaging over
disorder realizations is performed over Ns = 20–100 different
εj configurations.

Instead of plotting spectra C(ω),S(ω), given by Eq. (2), it
is more informative to display quasi-time-evolution C,S(τ ) =∫ 1/τ

−1/τ
dωC,S(ω). In this way we omit fast oscillations with

typical ω = t0, while retaining the physical content of the limit
t = τ → ∞. In Fig. 1 we compare results for C(τ ) and S(τ ) at
half-filling n̄ = 1 for intermediate U = 4 and a wide span of
disorder W = 2–15, obtained by the MCLM for L = 14. (In
the Supplemental Material [41] we compare results obtained
for different L, showing that they are mutually consistent for
L � 10.) Results are plotted up to maximum times τm = 1/δω,
where for different L � 14 we get τm = 50–200, depending
on W .
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FIG. 1. Charge and spin imbalance correlations C(τ ) and S(τ ),
respectively, as evaluated by the MCLM at half-filling n̄ = 1 and
U = 4, at fixed system size L = 14. The potential disorder is varied
in the range W = 2–15.

The results presented in Fig. 1 reveal a qualitative difference
between charge and spin dynamics within the Hubbard
model. For C(τ ) we observe a behavior that is qualitatively
very similar to the behavior of the density imbalance in
the spinless model [7,28], or to the behavior reported in
experiments [34,36]. Namely, in the presence of finite U > 0,
the CDW correlations are ergodic C(τ → ∞) → 0 for weak
disorders W = 2,3, while for large disorders, e.g., W = 6,15,

the nonergodicity appears, C(τ → ∞) = C0 > 0. This is in
clear contrast with the spin imbalance case, S(τ ), which decays
to zero even for the strongest disorder W = 15. Although the
ergodic-nonergodic transition from CDW correlations in Fig. 1
cannot be precisely located, W ∗ ∼ 4–6, it is clearly there. On
the other hand, no such transition can be observed in SDW
correlations, which remain ergodic independently of disorder
strength.

A similar message is obtained from C,S(τ ), being presented
in Fig. 2 for fixed W as a function of interaction U . In Fig. 2, the
disorder strength is set to W = 6, because for U = 4 such W

corresponds to the nonergodic regime for CDW correlations, as
shown in Fig. 1. The noninteracting U = 0 case is a particular
one, involving the Anderson localization of single-particle
states. Consequently, for U = 0 both C(τ ) and S(τ ) in Fig. 2
saturate to a constant value after a short transient τ ∼ 1. For
U > 0, the behavior of C(τ ) and S(τ ) turns out to be very
different. C(τ ) exhibits a weak variation with U > 0, but
still with weak logarithmiclike time dependence [28]. On the
other hand, already the U = 1 case leads to a decay of spin
imbalance S(τ → ∞) = 0. This decay becomes even faster
for U = 4,8.

Local correlations. Next we study local charge and spin
dynamics, by considering the local real-time correlation
Cl(t) = A

∑
j 〈ρj (t)ρj 〉 and Sl(t) = B

∑
j 〈mj (t)mj 〉, where

ρj = nj − n̄, while A and B are normalization constants
such that Cl(0) = Sl(0) = 1. Similarly as for the imbalance,
in a MBL system these two quantities freeze at a nonzero
value [27], indicating the nonergodicity. The advantage of the
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FIG. 2. C(τ ) and S(τ ) calculated for half-filling n̄ = 1 and L =
12, for fixed disorder W = 6 and various interaction strengths U =
0–8.
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FIG. 3. Decay of the local charge and spin correlations for U = 1
and W = 16. (a) For the charge disorder, spin is delocalized (the red
dashed curve). (b) For the independent disorder for each spin, the
charge and the spin are both localized (note the two, the red and the
blue curves, almost completely overlapping). The averaging involves
over 400 product initial states, L = 64.

autocorrelation functions Cl and Sl over imbalance is that they
exhibit smaller fluctuations for generic initial states.

For the current analysis of the local correlations (as well
as for calculations of the entropy afterwards), we use the
time-dependent density matrix renormalization group method,
which is an efficient method for evolution of initial product
states provided the entanglement is small. For strong disorder
we are typically able to simulate significantly larger systems
(L ≈ 64) than with the MCLM. Details of the method as
well as references to original literature may be found in, e.g.,
Ref. [18]. In Fig. 3 we show the results of such a simulation.
One may see that even for very strong disorders W and
small interactions U the spin autocorrelation function decays
algebraically (unlike charge), again signaling the ergodicity of
the spin degree of freedom.

On the other hand, by considering a modification of the
disorder model in Eq. (1) and taking an independent disorder
for the each spin orientation, i.e.,

∑
j (pjnj↑ + qjnj↓) with

independent pj and qj ∈ [−W,W ], a dramatic change occurs.
As may be seen from Fig. 3(b), now both the spin and the
charge behave in the same way, freezing at a nonzero value, as
expected for the MBL system.

Dynamical conductivities. The question of dc transport is
frequently analyzed in the context of dynamical charge and
spin conductivities (or diffusivities, since we omit the prefactor
1/T ). In the T → ∞ limit, these two conductivities are given
by

σc,s(ω) = 1

L
Re

∫ ∞

0
dt eiωt 〈jc,s(t)jc,s〉, (3)

where jc,s are charge and spin uniform currents, respectively,
jc,s = i

∑
is(±1)s(c†i+1,scis − c

†
isci+i,s).

For the evaluation of σc,s(ω) we again employ the MCLM,
using periodic boundary conditions. The numerical require-
ments are similar as for C,S(ω). Namely, the crucial role is
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FIG. 4. Charge and spin dynamical conductivity σc(ω) and σs(ω),
respectively, evaluated at half-filling n̄ = 1, U = 4 at fixed size L =
14, but for various disorders W = 3–20.

played again by the high ω resolution, because the quantities
of interest here are the dc value σc,s(ω → 0) and the low-ω
scaling of σc,s(ω) − σc,s(0) with ω.

Results for σc(ω),σs(ω) are presented in Fig. 4, for
intermediate U = 4 and a wide range of disorders, W = 3–20.
It should be pointed out that due to insufficient sampling, Ns ,
the current results for strongest W > 10 suffer in part from
sample-to-sample fluctuations, which increase with W . On the
other hand, the results for weaker W are much less sensitive
to fluctuations [16]. Conclusions that follow from σc(ω) in
Fig. 4 are quite similar to those obtained for the spinless
model [11,15,16,44]. The maximum of σc(ω) at moderate
disorder W � 2 is at ω∗

c ∼ 2, reflecting the noninteracting
limit. At low ω 
 1, we find rather generic nonanalytical
behavior σc(ω) ∼ σc(0) + ζ |ω|α with α ∼ 1. dc value σs(0)
is rapidly vanishing for W > 4.

On the other hand, in Fig. 4, σs(ω) behaves qualitatively dif-
ferently. In general, it exhibits two maxima, whereby the lower
one at ω∗

s < 1 is not present in σc(ω), indicating a different
scale for the spin dynamics. In addition, finite σs(0) > 0 seems
to be well resolved all the way up to W = 20. Moreover, the
low-ω behavior appears to be given by σs(ω) ∼ σs(0) + ξ |ω|γ ,
with γ < 1 even for the largest W . The implication of γ < 1,
being an indication of a subdiffusive dynamics [12,45], is
divergent static magnetic polarizability χs ∝ ∫

dω σs(ω)/ω2,
even in the case of vanishing dc σs(0) = 0. This low-frequency
behavior of σs(ω) is compatible with a subdiffusive spin
transport �m ∼ t0.3, observed for initial states with global spin
imbalance (see the Supplemental Material [41] for details).
Thus, spin (magnetization) is transported globally even for
strong disorder.

Entanglement entropy. One of the defining properties of the
MBL is logarithmic growth of entanglement with time [18],
when starting from a product initial state. In Fig. 5 the behavior
of the entanglement entropy S2(t) = −tr[ρA(t) log2 ρA(t)] of
the reduced density matrix ρA(t) is shown for U = 1 and large
W . From the semilogarithmic plot (the inset in Fig. 5) one
may see that S2(t) has a slight upward curvature, not growing
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FIG. 5. Average von Neumann entropy S2(t) for U = 1 and W =
16 in a log-log plot. Inset: semilogarithmic plot of the same data
(red curve). For charge disorder (red curve) S2(t) is consistent with a
power law, while for an independent disorder (blue curve in the inset)
with a logarithmic growth. The same dataset as in Fig. 3, statistical
fluctuations are of the size of curves thickness.

logarithmically. Indeed, as shown in main frame, the growth
is better described by a power law, S2(t) ∼ t0.18 [the power
≈0.18 seems to be the same as the power of the decay of Sl(t)
in Fig. 3]. On the other hand, with the independent disorder
W = 16 on both spin orientations one gets S2(t) ∼ log(t) (the
blue curve in the inset in Fig. 5).

Symmetry argument. The ergodicity of the spin degrees
has been so far established numerically. However, we wish to
present additional symmetry arguments for n̄ = 1 and m̄ = 0
to demonstrate that Sl(t → ∞) → 0 for any fixed L. That is, in
the absence of degeneracy, Sl(t → ∞) in the eigenbasis of H

is given solely by diagonal matrix elements of mj . For charge
disorder, H is even under operation P that exchanges up and
down fermions. Consequently, all eigenstates for U �= 0 have
a well defined parity P , while mj is odd under P , and therefore
all diagonal matrix elements of mj are zero by symmetry. The
order of limits L → ∞,t → ∞ used above is opposite to the
one required for a proof of ergodicity. Namely, there is always a
possibility for the existence of an intermediate “freezing” time
scale tf (L) at which Sl(tf ) > 0, with tf (L) diverging in the
thermodynamic L → ∞ limit. However, our numerical data
(see also Ref. [41]) does not give any hints for such behavior
of tf (L).

Conclusions. We have presented numerical results for the
1D Hubbard model with random potentials, showing that the
interacting fermion system does not exhibit the full MBL
up to very strong disorder, W � 20. Several indicators are
inconsistent with accepted requirements for the MBL: (a)
spin imbalance correlations S(t) decay to zero as in ergodic
systems; (b) local spin correlations Sl(t) decay to zero as

well, although with a slow power-law decay; (c) dynamical
spin and charge conductivity behaves differently, i.e., we find
finite dc value σs(0) > 0, or at least subdiffusive σs(ω → 0),
for disorder strengths much above those for which σc(0)
vanishes; and (d) the entanglement entropy S2(t) does not
saturate or increase logarithmically with t , but rather grows
according to power law. While the above findings rule out
the existence of the full MBL in the model considered, they
offer a phenomenon which may be interpreted as a disorder
induced dynamical charge-spin separation at all energy scales.
It should be pointed out that in a 1D disordered Hubbard
model an effective charge-spin separation appears already at
weak to modest U ∼ t0, which should be distinguished from
the U � t0 limiting behaviors well known in a pure model [46]
and recently reported also for a disordered model [39,47]. We
cannot, however, exclude the possibility that charge also would
become ergodic at some very long time scale, which is so far
beyond numerical as well as experimental reach.

One might speculate that a particular absence of full MBL
can be related to SU(2) symmetry [9,48,49] of the Hubbard
model. Yet, the non-Abelian SU(2) spin rotation symmetry
can be lifted by introducing a constant-magnetic-field term
H ′ = B

∑
j mj , not changing our conclusions. Namely, time

evolution of any state with a fixed number of up and down
fermions remains the same. Therefore the presence or the
absence of SU(2) symmetry is irrelevant for T → ∞ averages
(where all states have an equal weight) or for time evolution of
specific states from any invariant subspace. It is also evident
from our results that the above effective decoupling of charge
and spin can be broken by, e.g., an addition of random local
(magnetic) fields. If fermions with different spin orientations
exhibit independent disorder charge and spin can be both
nonergodic and one can have (full) MBL. There is also an
interesting possibility that, if we use a spin disorder, i.e.,∑

j εj (nj↑ − nj↓) instead of the charge disorder, the spin
would be localized and the charge delocalized. Therefore,
by a simple choice of disorder type we can tune transport
properties of spin and charge—a potentially useful property
for engineered quantum devices.

Our findings are not in disagreement with measurements of
charge degree of freedom in cold-atom experiments, which
simulate a quarter-filled 1D Hubbard model and reveal a
nonergodic charge imbalance at strong quasiperiodic potential.
We show in the Supplemental Material [41] that with a random
potential of similar strength the charge is nonergodic, whereas
spin correlations decay to zero, exhibiting no localization.
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