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Type-II Weyl semimetals are a novel gapless topological phase of matter discovered recently in 2015. Similar
to normal (type-I) Weyl semimetals, type-II Weyl semimetals consist of isolated band touching points. However,
unlike type-I Weyl semimetals which have a linear energy dispersion around the band touching points forming
a three-dimensional (3D) Dirac cone, type-II Weyl semimetals have a tilted conelike structure around the band
touching points. This leads to various novel physical properties that are different from type-I Weyl semimetals. In
order to study further the properties of type-II Weyl semimetals and perhaps realize them for future applications,
generating controllable type-II Weyl semimetals is desirable. In this paper, we propose a way to generate a
type-II Weyl semimetal via a generalized Harper model interacting with a harmonic driving field. When the
field is treated classically, we find that only type-I Weyl points emerge. However, by treating the field quantum
mechanically, some of these type-I Weyl points may turn into type-II Weyl points. Moreover, by tuning the
coupling strength, it is possible to control the tilt of the Weyl points and the energy difference between two Weyl
points, which makes it possible to generate a pair of mixed Weyl points of type-I and type-II. We also discuss
how to physically distinguish these two types of Weyl points in the framework of our model via the Landau level
structures in the presence of an artificial magnetic field. The results are of general interest to quantum optics as
well as ongoing studies of Floquet topological phases.
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I. INTRODUCTION

Since the discovery and realization of topological insu-
lators [1–4], topological phases of matter have attracted a
lot of interest from both theoretical and practical points of
view. Topological insulators are characterized by the existence
of metallic surface states at the boundaries, which are very
robust against small perturbations as long as the topology is
preserved. These stable edge states are linked to the topological
invariant defining the topological insulator via the bulk-edge
correspondence [5]. As a consequence of their topological
properties, topological insulators are potentially useful to gen-
erate magnetoelectric effect better than multiferroic materials
due to the presence of the axionic term in the electrodynamic
Lagrangian [6]. In addition, Ref. [7] shows that by placing
a topological insulator next to a superconductor, proximity
effect will modify its metallic surface states and turn them
into superconducting states. These superconducting states can
in turn be used to realize and manipulate Majorana fermions,
which have potential applications in the area of topological
quantum computation [8].

The interesting properties and potential applications of
topological insulators have led to the development of other
topological phases. In 2011, Ref. [9] discovered a gapless
topological phase called Weyl semimetal. Weyl semimetals
are characterized by several isolated band touching points in
the 3D Brillouin zone, called Weyl points, around which the
energy dispersion is linear along any of the quasimomenta
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forming a 3D Dirac cone. Near these Weyl points, the system
can be described by a Weyl Hamiltonian, and the quasiparticle
behaves as a relativistic Weyl fermion. Unlike other gapless
materials such as graphene, the Weyl points in Weyl semimetal
are very robust against perturbations and cannot be destroyed
easily, provided the perturbations respect both translational
invariance and charge conservation [10]. Each Weyl point
is characterized by a topological charge known as chirality.
Under open boundary conditions (OBC), edge states are
observed in Weyl semimetals. In particular, a pair of edge
states meets along a line connecting two Weyl points of
opposite chiralities, which is called Fermi arc [9,11]. Weyl
semimetals are known to exhibit novel transport properties,
such as negative magnetoresistance [12–14], anomalous Hall
effect [15–18], and chiral magnetic effect [18–20]. In 2015,
a new type of Weyl semimetal phases called type-II Weyl
semimetals was discovered [21]. In type-II Weyl semimetals,
the energy dispersion near the Weyl points forms a tilted
cone. As a result, the quasiparticle near these Weyl points
behaves as a new type of quasiparticle which does not respect
Lorentz invariance and thus has never been encountered in high
energy physics. Moreover, type-II Weyl semimetals possess
novel transport properties different from normal (type-I) Weyl
semimetals. For example, in type-II Weyl semimetals, chiral
anomaly exists only if the direction of the magnetic field
is within the tiled cone [21], and the anomalous Hall effect
depends on the tilt parameters [22].

Despite the increasing efforts to realize these topological
phases, engineering a controllable topological phase is quite
challenging. One proposal to attain a controllable topological
phase is to introduce a driving field (time periodic term)
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into a system. By using Floquet theory [23–26], it can be
shown that such a driving field can modify the topology of
the system’s band structure. This method has been used to
generate several topological phases such as Floquet topolog-
ical insulators [27,28] and Floquet Weyl semimetals [29].
Our recent studies have also shown how a variety of novel
topological phases emerge in a periodically driven system [30].
Note however, when the coupling with the driving field is
sufficiently strong and the field itself is weak, then it becomes
necessary to treat the driving field quantum mechanically as
a collection of photons. On one hand, the total Hamiltonian
including the photons has a larger dimension; on the other
hand, it becomes time independent and our intuition about
static systems can be useful again. This can sometimes offer
an advantage over Floquet descriptions in the classical driving
field case. As a result, several works have also been done on
the constructions of nontrivial topological phases induced by
a quantized field [31,32].

In this paper, we show another example of topological phase
engineering via interaction with a driving field. Our starting
static system is the generalized Harper model, i.e., Harper
model with an off-diagonal modulation. This effectively one-
dimensional (1D) model has been known to simulate a Weyl
semimetal phase with the help of its two periodic parameters
which serve as artificial dimensions [30,33]. In our previous
work [30], we have shown that adding a driving term in a
form of a series of Dirac delta kicks leads to the emergence of
new Weyl points. Here, we consider a more realistic driving
term of the form ∝ cos(�t), with � being its frequency, to
replace the kicking term in our previous model. As a result,
our model is now more accessible experimentally. In addition,
the simplicity of the model allows us to treat the driving term
quantum mechanically and consider the full quantum picture of
the system, which can then be compared with the semiclassical
picture, i.e., by treating the particle quantum mechanically and
the driving term classically. We find that when the driving
term is treated classically, only type-I Weyl points are found.
However, by treating the driving term quantum mechanically,
some of the type-I Weyl points may turn into type-II Weyl
points. Moreover, by tuning the coupling strength, we can
control the tilt of the Weyl points and the energy difference
between two Weyl points. This makes it possible to generate
a pair of mixed Weyl points, with one belonging to type-I and
the other belonging to type-II.

This paper is organized as follows. In Sec. II, we introduce
the details of the model studied in this paper and set up some
notation. In Sec. III A, we focus on the semiclassical case
when the driving field is treated classically. We elucidate from
both numerical and analytical perspectives how new type-I
Weyl points emerge when the coupling strength is increased
and discuss its implications on the formation of edge states
and quantization of adiabatic pump. In Sec. III B, we briefly
explain the comparison with the static version of the model.
In Sec. IV B, we focus on the fully quantum version when the
driving field is treated quantum mechanically. We show that
the Weyl points are formed at the same locations as those in
the semiclassical case. However, some of these Weyl points are
now tilted and the energy at which they emerge is shifted by an
amount which depends on the coupling strength. In Sec. V A,
we briefly propose some possible experimental realizations.

In Sec. V B, we examine a way to distinguish type-II Weyl
points from type-I Weyl points in our system based on the
formation of Landau levels when a synthetic magnetic field is
applied [34]. In Sec. VI, we summarize our results and discuss
possible further studies.

II. THE MODEL

In this paper, we focus on the following Hamiltonian,

H (t) =
N−1∑
n=1

{[J + (−1)nλ cos(φy)]|n〉〈n + 1| + h.c.}

+
N∑

n=1

(−1)n[V1 + V2 cos(�t)] cos(φz)|n〉〈n| , (1)

where n is the lattice site index, N is the total number of lattice
sites, J and λ are parameters related to the hopping strength,
V1 is the onsite potential, V2 represents the coupling with the
harmonic driving field, and � = 2π

T
with T being the period of

the driving field. The parameters φy and φz can take any value
in (−π,π ], so that they can be regarded as the quasimomenta
along two artificial dimensions [35]. As a result, although
Eq. (1) is physically a 1D model, it can be used to simulate 3D
topological phases. For example, if V2 = 0, Eq. (1) reduces
to the off-diagonal Harper model (ODHM), which has been
shown to exhibit a topological Weyl semimetal phase [30,33].
For nonzero V2, the system is effectively coupled to a periodic
driving field, and thus its topological properties are expected
to change depending on the values of V2. We shall refer to this
system as the continuously driven off-diagonal Harper model
(CDODHM), which is a modification of the off-diagonal
kicked Harper model (ODKHM) considered in our previous
work [30].

Under periodic boundary conditions (PBC), Eq. (1) is
invariant under translation by two lattice sites. Therefore,
Eq. (1) can be expressed in terms of the quasimomentum k

by using Fourier transform as

H (t) =
∑

k

Hk(t) ⊗ |k〉〈k| , (2)

where |k〉 is a basis state representing the quasimomentum k,
and Hk is the momentum space Hamiltonian given by

Hk(t) = 2J cos(k)σx + 2λ cos(φy) sin(k)σy

+ [V1 + V2 cos(�t)] cos(φz)σz

= Hk,0 + V2 cos(�t) cos(φz)σz , (3)

where σx , σy , and σz are Pauli matrices representing the
sublattice degrees of freedom.

III. CLASSICAL DRIVING FIELD

A. Emergence of type-I Weyl points

Since the Hamiltonian described by Eq. (1) is time
periodic, its properties can be captured by diagonalizing its
corresponding Floquet operator (U ), which is defined as a one
period time evolution operator. In particular, under PBC, by
diagonalizing the momentum space Floquet operator (Uk) as
a function of k, φy , φz over the whole 3D Brillouin zone,
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FIG. 1. A typical quasienergy spectrum of the CDODHM under
PBC at a fixed (a) φy = π

2 , (b) φz = arccos ( π

5 ), and (c) k = π

2 .
Parameters used are J = 1, λ = 0.5, V1 = 5, and V2 = 12. Here and
in all other figures, plotted quantities are in dimensionless units.

i.e., the region (−π,π ] × (−π,π ] × (−π,π ] (with the lattice
constant set to 1 for simplicity), we can obtain its Floquet
band (quasienergy band). Figure 1 shows a typical quasienergy
spectrum of the CDODHM in the unit where T =�=1

and the parameters J , λ, V1, and V2 are dimensionless.
Here, the quasienergy (ε) is defined as the phase of the
eigenvalue of the Floquet operator, i.e., Uk|ψ〉 = exp(iε)|ψ〉.
By construction, ε is only defined up to a modulus of 2π , and
thus ε = −π and ε = π are identical. Therefore, unlike the
ODHM, which only exhibits band touching points at energy
0, in the CDODHM, it is possible for the two bands to touch
at both quasienergy 0 and π , which is evident from Fig. 1.

Near these band touching points, time dependent perturba-
tion theory can be applied to obtain an approximate analytical
expression of the momentum space Floquet operator. By
leaving any technical details in Appendix A, it is found that
the momentum space Floquet operator around a band touch-
ing point at (k,φy,φz) = (π

2 , π
2 ,φl), with φl = arccos ( lπ

V1
), is

given by

U(kx,ky,kz) = exp{−i{lπ − [V1kz sin(φl)σz + 2JkxJl(lc)σx

+ 2λkyJl(lc)σy]}} , (4)

where kx ≡ k − π
2 , ky ≡ φy − π

2 , kz ≡ φz − φl , c = V2
V1

, and Jl

is the Bessel function of the first kind. By comparing Eq. (4)
with the general form U = exp [−iHeff] of the momentum
space Floquet operator, with Heff being the momentum space
effective Hamiltonian, it is found that

Heff = lπ − [V1kz sin(φl)σz+2JkxJl(lc)σx +2λkyJl(lc)σy].
(5)

Equation (5) is in the form of a Weyl Hamiltonian with chirality
χ = −sgn[V1Jλ sin(φl)] [10] and quasienergy

ε =
⎧⎨
⎩

±[
π −

√
V 2

1 k2
z sin2(φl) + 4J 2k2

xJ
2
l (lc) + 4λ2k2

yJ
2
l (lc)

]
if l is odd

±
√

V 2
1 k2

z sin2(φl) + 4J 2k2
xJ

2
l (lc) + 4λ2k2

yJ
2
l (lc) if l is even

. (6)

In particular, because of the absence of any tilting term [21] in
Eq. (5), it describes a type-I Weyl Hamiltonian. Consequently,
the band touching point at (k,φy,φz) = (π

2 , π
2 ,φl) corresponds

to a type-I Weyl point.
In order to verify their topological signature, Fig. 2 shows

the quasienergy spectrum of the Floquet operator associated
with Eq. (1) under OBC, i.e., by taking a finite N = 100.
Figure 2(a) shows that two dispersionless edge states (marked
by red circles and green crosses) emerge at quasienergy π

connecting two Weyl points with opposite chiralities when
viewed at a fixed φz. These edge states are analogues to
Fermi arcs in static Weyl semimetal systems [9], and they
arise as a consequence of the topology of the Floquet
Su-Schrieffer-Heeger (SSH) model [30]. When viewed at a
constant |φy | < π

2 , as shown in Fig. 2(b), two edge states are
shown to traverse the gap between the two Floquet bands and
meet at the projection of the Weyl points onto the plane of
constant φy . These edge states emerge due to the topology
of two mirror copies of Floquet Chern insulators [33], and
disappear when |φy | > π

2 , due to the topological transition
from Floquet Chern to normal insulators. Floquet Fermi arcs
observed in Fig. 2(a) are formed by joining these meeting
points starting from the plane φy = −π

2 to the plane φy = π
2 ,

i.e., the locations of two Weyl points with opposite chiralities.

The 3D nature of the CDODHM can therefore be constructed
by stacking a series of Floquet Chern insulators sandwiched
by normal insulators. The Weyl points emerge at the interface
separating the Floquet Chern and normal insulators.

The topological charge (chirality) of the Weyl points can
also be manifested in terms of the quantization of adiabatic
transport. According to our previous work [30], by preparing
a certain initial state and driving it adiabatically along a closed
loop in the parameter space (φy and φz), the change in position
expectation value after one full cycle is given by


〈X〉 = aχenc , (7)

where a is the effective lattice constant, which is equal to 2
in this case since one unit cell consists of two lattice sites,
and χenc is the total chirality of the Weyl points enclosed by
the loop. By following the same procedure in Ref. [30], we
prepare the following initial state,

|�(t = 0)〉 = 1

2π

∫ π

−π

|ψ−(k,φy(0),φz(0))〉dk , (8)

where |ψ−(k,φy,φz) is the Floquet eigenstate associated with
the lower band in Fig. 1, and φy and φz are tuned adiabatically
according to φy = φy,0 + r cos[θ (t) + ] and φz = φz,0 +
r sin[θ (t) + ], with  a constant phase and θ (t) = 2πi

M
for
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FIG. 2. A typical quasienergy spectrum of the CDODHM under
OBC at a fixed (a) φz = arccos ( π

5 ) and (b) φy = 0.3π . Parameters
used are J = 1, λ = 0.5, V1 = 5, V2 = 2, and N = 100. Red circles
and green crosses denote edge states localized around the right and
left end, respectively.

i − 1 < t � i and 0 < i � M . Adiabatic condition is reached
by setting M to be very large. Figure 3 shows the change in
position expectation value of Eq. (8) after it is driven along
various closed loops in parameter space. It is evident from the
figure that Eq. (7) is satisfied. For instance, when the loop is
chosen to enclose two Weyl points with the same chiralities,
i.e., Figs. 3(a), 3(b), and 3(e), 
〈X〉

2 = ±2 after one full cycle,
whereas if it encloses Weyl points with opposite chiralities or
no Weyl point, i.e., Figs. 3(c) and 3(d), 
〈X〉

2 = 0 after one full
cycle.

B. Comparison with the ODHM

According to our findings in Sec. III A, the CDODHM
is able to host as many type-I Weyl points as possible by
simply increasing the parameter V1. As V1 increases, there are
more integers satisfying lπ � V1, and hence more type-I Weyl
points emerge. On the other hand, in the ODHM, i.e., V2 = 0
case, no matter what the values of the parameters J , λ, and
V1 are, there are only eight type-I Weyl points touching at
energy 0, corresponding to (k,φy,φz) = (±π

2 ,±π
2 ,±π

2 ). This
can be understood as follows. If l �= 0, then Jl(lc) = Jl(0) = 0,
which implies that terms proportional to Pauli matrices σx

and σy in Eq. (4) are missing. As a result, Eq. (5) no longer
describes a Weyl Hamiltonian, and the band touching point
at (k,φy,φz) = (±π

2 ,±π
2 ,φl) for l �= 0 is not a Weyl point. If

however l = 0, i.e., φl = φ0 = ±π
2 , then Jl(lc) = J0(0) = 1,

and the terms proportional to Pauli matrices σx and σy in
Eq. (4) remain nonzero. Consequently, Eq. (5) still describes
a type-I Weyl Hamiltonian, and the band touching point
at (k,φy,φz) = (±π

2 ,±π
2 ,±π

2 ) corresponds to a type-I Weyl
point.

The emergence of the additional type-I Weyl points in the
CDODHM can be understood as follows. First, we separate
the time dependent and independent part of Eq. (3). The
time independent part is simply the ODHM momentum
space Hamiltonian, whereas the time dependent part can be
understood as its interaction with the driving field, which can in
general induce transition between the two energy bands of the
ODHM and hence modify its band structure. When V1 � lπ ,
there exists a point in the Brillouin zone at which the energy
difference between the two bands of the ODHM is equal to 2lπ .
In the unit we choose, this energy difference also represents the
transition frequency between the two energy levels, which is on
resonance with the frequency of the driving field � = 2π . As
a result, the two energy levels will be dynamically connected
with each other, yielding a type-I Weyl point in the quasienergy
spectrum.

FIG. 3. The change in position expectation value as a function of i when Eq. (8) is driven adiabatically along various loops in the parameter
space. The loops are chosen to enclose Weyl points at (a) (k,φy,φz) = (± π

2 , π

2 , π

2 ), (b) (k,φy,φz) = (± π

2 , π

2 ,φ1), (c) (k,φy,φz) = (± π

2 , π

2 , π

2 )
and (k,φy,φz) = (± π

2 , π

2 ,φ1), (d) no Weyl point, and (e) new Weyl points at (k,φy,φz) = (± π

2 , π

2 ,φ2) emerging when V1 > 2π . The parameters
chosen are J = 1, λ = 0.5, (a) and (d) V1 = V2

2 = 2, (b) and (c) V1 = V2
2 = 5, (e) V1 = V2

2 = 7. In (a)−(d), N = 400, whereas in (e), N = 800.
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IV. QUANTUM DRIVING FIELD

A. Quantized model

Quantum mechanically, the Hamiltonian of the driving field
takes the form of the harmonic oscillator Hamiltonian, which
can be written as

Hfield = �a†a , (9)

where a (a†) is the photon destruction (creation) operator, and
the zero point energy 1

2� has been suppressed since it will not
contribute to our present analysis. In the Heisenberg picture,
the time dependence of a and a† can be found by solving the
following equation of motion,

da

dt
= − [Hfield,a]

i
= −i�a . (10)

It can be immediately verified from Eq. (10) that a(t) =
a(0) exp (−i�t) and a†(t) = a†(0) exp (i�t). By including
the quantized driving field as part of our system, the total
Hamiltonian can be written as

Htot = Ip ⊗ HODHM + Hfield ⊗ IODHM + Hint , (11)

where HODHM is the ODHM Hamiltonian [the time inde-
pendent part of Eq. (1)], Ip and IODHM are the identity
operator in the photon and the ODHM space, respectively, and
Hint is the interaction Hamiltonian describing the coupling
between the ODHM and the driving field. The form of Hint

can be obtained from the time dependent part of Eq. (1).
By writing cos (�t) = 1

2 [exp (−i�t) + exp (i�t)] in Eq. (1),
we can identify exp (−i�t) and exp (i�t) terms as a(t) and
a†(t), respectively. The time dependence of a and a† can be
transferred to the corresponding basis states in the photon
space (by changing from the Heisenberg to the Schrodinger
picture) [36], so that Eq. (11) is time independent, with Hint

given by

Hint =
N∑
n

(−1)n
V2 cos(φz)

2
(a + a†) ⊗ |n〉〈n| . (12)

Under PBC, the momentum space Hamiltonian associated with
Eq. (11) is given by

Htot = Ip ⊗ Hk,0 + Hfield ⊗ I2 + Hint , (13)

where Hk,0 is given by Eq. (3), I2 is a 2 × 2 identity

matrix, and

Hint = V2 cos(φz)

2
(a + a†) ⊗ σz . (14)

Figures 4 and 5 show a typical energy band structure of
the model under PBC and OBC, obtained by diagonalizing
Eq. (13) and Eq. (11), respectively. It is observed from
Fig. 4 that in addition to the Weyl points at (k,φy,φz) =
(±π

2 ,±π
2 ,±π

2 ), new Weyl points emerge at some other points.
Fermi arc surface states connecting each pair of these new
Weyl points, similar to what we observed in Sec. III A, are
also evident from Fig. 5(a), which confirms their topological
nature. Near these new Weyl points, the energy dispersion
forms a tilted cone [blue circle in Fig. 4(b)], suggesting that
they might be categorized as type-II Weyl points. In Sec. IV B,
we are going to show analytically that these type-II Weyl
points emerge at the same points as the additional type-I Weyl
points were the driving field treated classically, as elucidated
in Sec. III A. This result suggests that in the quantum limit,
some type-I Weyl points will turn into type-II Weyl points.

B. Emergence of type-II Weyl points

Although Eq. (13) is time independent, it now has a larger
dimension since it includes the photon space. By introducing
the quadrature operators X and P satisfying the commutation
relation [X,P ] = i and are related to a and a† by

a = 1√
2

(X + iP ) , (15)

a† = 1√
2

(X − iP ) , (16)

Eq. (13) becomes (at k = φy = π
2 )

Htot,±
(π

2
,
π

2
,φz

)
= 2π

{
P 2

2
+ 1

2

[
X ± V2 cos(φz)

2
√

2π

]2

− 1

2

}

±V1 cos(φz) − V 2
2 cos2(φz)

8π
. (17)

Equation (17) is simply the harmonic oscillator Hamiltonian
with shifted “position” expectation value. Near (k,φy,φz) =
(π

2 , π
2 ,φ1), with φ1 = arccos ( π

V1
), it is shown in Appendix B

that the energy dispersion is given by

En,± = π (2n − 1) − πV 2
2

8V 2
1

+ V 2
2

4V1
kz sin(φ1) ±

√
V 2

1 sin2(φ1)k2
z + 4J 2J1

(√
nV2

V1

)2

k2
x + 4λ2J1

(√
nV2

V1

)2

k2
y , (18)

where, similar to our previous notation, kx = k − π
2 , ky = φy − π

2 , and kz = φz − φ1. Furthermore, Eq. (13) will be block
diagonal in the basis spanned by the eigenstates associated with Eq. (B11) in Appendix B, where each subblock consists of a
2 × 2 matrix which can be written in the following form,

[Hq]n = π (2n − 1) − πV 2
2

8V 2
1

+ V 2
2

4V1
kz sin(φ1) − V1 sin(φ1)kzτz − (2Jkxτx + 2λkyτy)J1

(√
nV2

V1

)
, (19)

where τx , τy , and τz take the form of Pauli matrices.
Equation (19) is in the form of a Weyl Hamiltonian, which

resembles a similarity with Eq. (5) found in Sec. III A, apart

from the extra tilting term V 2
2

4V1
kz sin(φ1) and the energy shift
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FIG. 4. A typical energy spectrum of the quantized CDODHM under PBC for the first three bands at a fixed (a) φz = 0.2π , (b) φy = π

2 ,
and (c) k = π

2 . Parameters used are J = 1, λ = 0.5, V1 = π

cos(0.2π ) , V2 = 8, and the photon number is truncated at Np = 50. The blue circle in
(b) highlights the tilted cone in the energy spectrum.

−πV 2
2

8V 2
1

. These extra terms in turn lead to novel phenomena
which are not captured if the driving field is treated classically.
First, because of the tilting term, it is possible for the Dirac
cone around the Weyl point described by Eq. (19) to tip

FIG. 5. A typical energy spectrum of the quantized CDODHM
under OBC at a fixed (a) φz = arccos ( π

5 ) and (b) φy = 0.3π .
Parameters used are J = 1, λ = 0.5, V1 = 5, V2 = 12, N = 50, and
the photon number is truncated at Np = 10. (a) shows the second and
third energy bands, while (b) shows the first four energy bands. Red
circles and green crosses denote edge states localized around the right
and left end, respectively.

over at a sufficiently large matter-field coupling V2, so that
it is categorized into type-II Weyl points. According to the
classification in Ref. [21], this Weyl point is a type-II Weyl
point if V2 > 2V1. Second, the energy shifting term will shift
the energy at which the Weyl point is formed, so that it is not
an integer multiple of π .

These two phenomena are the main results of this paper,
which have some fascinating implications. First, they show the
difference between quantum and classical treatments of light,
which is one of the main interests in the studies of quantum
optics [36]. Second, since both the tilting and energy shifting
terms are proportional ∝V 2

2 , they can be easily controlled by
simply tuning V2. Moreover, we note that these two terms
will not affect the Weyl points at (k,φy,φz) = (±π

2 ,±π
2 ,±π

2 ),
which can be easily verified by expanding Eq. (17) up to first
order near these points. By following the same procedure that
leads to Eq. (19), it can be shown that both the second (the
energy shifting) and the third (the tilting) terms are missing.
As a result, these Weyl points always correspond to type-I
Weyl points and are located at a fixed energy regardless of
V2. This implies that by tuning V2, it is possible to generate a
pair of mixed Weyl points, with one belonging to type I while
the other belonging to type II, separated by a controllable
energy difference. This might serve as a good starting point
to study further the properties of such mixed Weyl semimetal
systems. For example, by fixing φy and φz in between a pair of
mixed Weyl points and applying a magnetic field, one could
explore the possibility of generating the chiral magnetic effect
[18–20], i.e., the presence of dissipationless current along the
direction of the magnetic field, which is known to depend
on the energy difference between two type-I Weyl points
[10,18].
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FIG. 6. The change in position expectation value as a function
of i when an initial state similar to Eq. (8) is driven adiabatically
along various loops in the parameter space. The loops are chosen
to enclose Weyl points at (a) (k,φy,φz) = (± π

2 , π

2 , arccos [ π

V1
]),

(b) (k,φy,φz) = (± π

2 , π

2 , π

2 ), (c) no Weyl point, and (d) Weyl points
at (k,φy,φz) = (± π

2 , π

2 , arccos [ π

V1
]) and (k,φy,φz) = (± π

2 , π

2 , π

2 ). The
parameters chosen are J = 1, λ = 0.5, (a) and (d) V1 = 5 and
V2 = 12, (b) and (c) V1 = V2 = 2. In (a) and (d), N = 800, whereas
in (b) and (c), N = 400.

Despite the difference between the semiclassical and fully
quantum results described above, they share some similarities
in terms of the quantization of adiabatic transport. Figure 6
shows the change in position of expectation value when an
initial state similar to Eq. (8) is driven adiabatically along
various closed loops by tuning φy and φz in the same manner
as that elucidated in Sec. III A. Similar to what we observed in
Sec. III A, the change in position expectation value after one
full cycle still obeys Eq. (7) regardless of the type of the Weyl
points enclosed. This indicates clearly that a transition from
type-I to type-II Weyl point will preserve its chirality. This
makes sense since such a transition is induced by a term that
doesn’t depend on any of the Pauli matrices, and hence will
not affect its chirality.

We end this section by presenting a comparison between
Eq. (19) and Eq. (5). By identifying V2 in Eq. (5) as V2

√
n

in Eq. (19), it can be immediately shown that Eq. (19)
will reduce to Eq. (5) when V2 → 0 while n → ∞, such
that V2

√
n remains finite. In this regime, Eq. (18) will be

periodic with a modulus of 2π , which is the same as Eq. (6).
This explains why the extra tilting and energy shifting terms
are not observed in the classical driving field case. Since
these two terms are proportional to V 2

2 , their effect will
diminish as we move from the quantum to classical driving
field regime. This observation can also be understood more
physically as follows. In both quantum and classical field
regime, the additional Weyl points emerge as a result of the
resonance between the particle transition frequency and the
frequency of the driving field. Since the interaction between
the particle and a single photon depends on the parameter
φz, it is expected in general that the modification of the
band structure near the resonant points (the additional Weyl

points) also depends on φz, resulting in the emergence of
the tilting term in the full quantum field regime. Since the
Weyl points at (k,φy,φz) = (±π

2 ,±π
2 ,±π

2 ) are not resonant
with the driving field, the interaction effect will be quite small,
and the φz dependence effect of the interaction will not be
visible near these Weyl points, which explains the absence
of the tilting term even in the full quantum field regime. The
energy shifting term in the full quantum field regime is a
result of the change in the energy difference between the Weyl
points at (k,φy,φz) = (±π

2 ,±π
2 ,±π

2 ), and the resonant points
before and after the driving field is introduced. Finally, in the
classical field regime, the interaction between the particle and
a single photon is very weak. Although there are infinitely
many photons in the classical field case, both the tilting and
energy shifting terms depend only on the interaction strength
with a single photon even near the resonant points. Therefore,
the most visible effect of the interaction with all the photons
is to just dress the band structure near the Weyl points, which
is uniform up to first order in φz.

V. DISCUSSIONS

A. Possible experimental realizations

There have already been several proposals to experimen-
tally realize the Harper model in the framework of ultracold
atom systems [37,38] as well as optical waveguides [39,40].
The semiclassical version of our model can be easily realized
by slightly modifying some of these experimental methods to
incorporate the time periodic driving field. For example, in the
ultracold atom realizations of the Harper model [37,38], which
make use of noninteracting Bose-Einstein condensate (BEC)
under a 1D optical lattice, the time dependent term ∝ cos(�t)
can be obtained by linearly chirping the frequencies of two
counter-propagating waves [41,42]. Meanwhile, in the optical
waveguide realization proposed by Ref. [39], where time is
simulated by the propagation distance of the light, the time
dependent term ∝ cos(�t) can be implemented by varying
the refractive index of each waveguide periodically along its
length.

In order to realize the fully quantum version of our
model, ultracold atom realizations of the Harper model [37,38]
might be more suitable as a starting point. Interaction with
a quantized driving field can be simulated by placing the
noninteracting BEC systems inside a quantum LC circuit [43].
Alternatively, as proposed by Ref. [32], optical cavity setups
can be used, and single mode photon field can be selected from
a ladder of cavity modes by using a dispersive element and
dielectric mirrors. The coupling strength V2 can be tuned by
varying the position of the mirrors. Finally, we note that strong
coupling regime between optical cavities and atomic gases
or various qubit systems have been achieved experimentally
[44–47]. This opens up many other possibilities to realize our
model.

B. Towards possible detection of type-II Weyl points

Here we discuss one possible way to manifest type-II
Weyl points and distinguish them from type-I Weyl points via
applying an artificial magnetic field. It was shown recently that
the tilting term in the Weyl Hamiltonian causes a “squeezing”
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FIG. 7. Landau level structures around Weyl points (see green dashed line) in the semiclassical case when a lattice-site-dependent phase
modulation is introduced to φz. Parameters chosen are J = 1, λ = 0.5, φy = π

2 , V1 = π

cos(0.2π ) , (a),(b) V2 = 4, (c),(d) V2 = 9. (a),(c) are plotted
without lattice-site-dependent phase modulation, (b),(d) are plotted under eB = 0.02. The quasienergy region is chosen to be in [0,2π ].

in the Landau level solutions if the direction of the magnetic
field is perpendicular to the direction of the tilt [34,48]. Under
such a magnetic field, as the Weyl points undergo a transition
from type-I to type-II, the Landau levels are expected to
collapse [34], namely, the two bands in the vicinity of the
type-II Weyl points start to overlap with each other. For
our CDODHM with only one physical dimension, Artificial
magnetic field [49–51] can be introduced to simulate the
effect of magnetic field in real 3D systems. For example,
in order to simulate a magnetic field along the y direction,
which corresponds to the vector potential A = (0,0,−Bx) in
the Landau gauge, Peierls substitution amounts to modifying
φz → φz + eBx, so that Eq. (1) becomes

H (B) =
∑

n

{[J + (−1)nλ cos(φy)]ĉ†n+1ĉn + H.c.}

+
∑

n

(−1)n[V1 + V2 cos(�t)] cos(φz + eBn)ĉ†nĉn

(20)

in the semiclassical case. It is seen above that such artificial
magnetic field is achieved by a lattice-site-dependent phase
modulation introduced to φz. In the quantum case, cos(�t) →
a+a†

2 and Hfield as given by Eq. (9) are added into the
Hamiltonian.

By diagonalizing the Floquet operator associated with
Eq. (20) numerically, the quasienergy spectrum can be ob-

tained for the semiclassical case, which is shown in Fig. 7. In
order to make a comparison with the fully quantum case, we
are focusing on the Weyl points at quasienergy π , which may
turn into type-II Weyl points in the quantum regime, and hence
we choose the region of the quasienergy to be in [0,2π ]. As
is evident from the figure, in the vicinity of the Weyl points
at quasienergy π (Weyl points marked by the green dashed
line), the Landau level structures remain qualitatively the same
regardless of the value of the coupling strength V2 when the
lattice-site-dependent phase modulation is added. In order to
understand the robustness of the Landau level structures near
the Weyl points, we calculate the quasienergies associated
with Eq. (5) but now under such a lattice-site-dependent phase
modulation. Because here we treat an effective Hamiltonian
exactly like that of a Dirac Hamiltonian in the presence of a
magnetic field, we easily find

εn�=0 = lπ − sgn(n)
√

v2
0k

2
y + |n|ω2

c , (21)

ε0 = lπ + v0ky , (22)

where v0 = 2λJl(lc) and ωc = √
4eV1J sin(φl)Jl(lc)B. Equa-

tions (21) and (22) imply that the quasienergy solutions are
independent of φz (which is somewhat expected because
eigenvalues of Landau levels should not depend on where
electrons are). This explains the observation of plateaus in
the vicinity of the Weyl points in Fig. 7. In addition, when
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FIG. 8. Landau level structures around Weyl points (see red and green dotted lines) in the fully quantum case when a lattice-site-dependent
phase modulation is introduced to φz. The parameters used are the same as those used in Fig. 7. Note that in panel (b) where only type-I Weyl
points are present, two bands on each side of the green or red line can still be clearly seen after the lattice-site-dependent phase modulation
is introduced to φz; whereas in panel (d), the two bands around the green line (but not around the red line) start to overlap each other in the
vicinity of type-II Weyl points.

ky = 0 (φy = π
2 ), the zeroth Landau level quasienergy ε0 is

equal to an integer multiple of π . Finally, we note that the
only effect of the coupling strength V2 (c ≡ V2/V1) here in
Eq. (21) and Eq. (22) is to renormalize v0 and ωc via the Bessel
function Jl(lc), without modifying the form of the quasienergy
solutions.

In the fully quantum case, the first four bands of the energy
spectrum have also been obtained numerically in Fig. 8. By
focusing on the Weyl points along the green dotted line, which
acquire a tilt as the coupling strength is tuned (i.e., these Weyl
points in panel (c) have more tilting compared to those in panel
(a)), it is evident that when the tilting term is not too large (the
Weyl points still belong to type-I), the Landau level structures
around the green dotted line in the vicinity of these Weyl
points remain qualitatively the same, as shown in Fig. 8(b).
However, as the tilting term gets larger such that a transition
from type-I to type-II Weyl points takes place, these Landau
level structures collapse (levels start to overlap one another),
as is depicted in Fig. 8(d) around the green dotted line in
the vicinity of the original type-II Weyl points. By contrast,
the Weyl points along the red dotted line do not acquire any
tilt as the coupling strength is varied. As a result, in both
Figs. 8(b) and 8(d), the Landau level structures around the
red dotted line do not change much. This observation can

also be understood in terms of the Landau level solutions
of the effective Hamiltonian near these Weyl points. Near
the Weyl points marked by the red dotted line, the effective
Hamiltonian takes the same form as Eq. (5), thus leading to
similar quasienergy solutions and properties (i.e., robustness
of the quasienergy structures under a change in the phase
parameter φz and coupling strength V2) as Eq. (21) and Eq. (22)
as we have elucidated earlier. Near the Weyl points marked by
the green dotted line, the technique introduced in Ref. [34]
can be applied to derive the energy solutions associated with
Eq. (19) under the lattice-site-dependent phase modulation
introduced to kz. The derivations are not trivial [34] and we
finally obtain

En,m�=0 = π (2n − 1) − πV 2
2

8V 2
1

− sgn(m)
√

α2v2
0k

2
y + |m|α3ω2

c , (23)

En,0 = π (2n − 1) − πV 2
2

8V 2
1

+ αv0ky , (24)

where α =
√

1 − β2, β = V2
2V1

, v0, and ωc are similar to those in

Eqs. (21) and (22) with Jl(lc) replaced by J1(
√

nV2

V1
). Due to the
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additional α factor in Eqs. (23) and (24), the spacing between
each Landau level decreases. Moreover, for type-II Weyl
points, we have V2 > 2V1, which implies β > 1. As a result,
Eqs. (23) and (24) become imaginary and no longer correctly
describes the energy structures near such Weyl points, i.e.,
Landau level solutions collapse [34].

The above observed Landau level collapse in the vicinity
of type-II Weyl points suggests a possible detection of type-II
Weyl points by using ideas borrowed from standard means
such as the Shubnikov-de Haas oscillations or the scanning
tunneling spectroscopy (STS) as mentioned in Ref. [34]. In
addition, since the generation of an artificial magnetic field
only involves the modification of the phase parameter φz,
it should be feasible in terms of the experimental proposals
elucidated in Sec. V A. The measurement of the Landau
level structures under the introduction of such a lattice-site-
dependent phase modulation thus provides a physical way to
distinguish type-II from type-I Weyl points in our physically
1D model.

VI. CONCLUSIONS

In this paper, we consider an extension to our previous
work [30] to explore the generation of novel topological phases
by using a more realistic driving term, i.e., in the form of
a harmonic driving field. We then show that an interaction
between the ODHM and a harmonic driving field leads to the
emergence of additional Weyl points, similar to the ODKHM
studied in Ref. [30]. However, the simplicity of the model
considered in this paper allows us to study the system in both
full quantum (quantum field) and semiclassical (classical field)
pictures.

When the driving field is treated classically as a time
dependent potential, we have found using Floquet theory the
locations at which new Weyl points emerge. By expanding
the Floquet operator around the Weyl points, we are able to
show that these Weyl points belong to type-I Weyl points. The
topological signatures of these Weyl points are confirmed by
the existence of Fermi arc edge states connecting each pair of
Weyl points of opposite chiralities when the Floquet operator is
diagonalized under OBC. Furthermore, by driving a localized
Wannier state along a closed loop in parameter space, the
change in its position expectation value is proportional to the
total chirality of the Weyl points enclosed.

When the field is treated quantum mechanically, i.e., by
taking both the atom and photons as a single system, we
have shown that Weyl points emerge at the same locations
as those found in the classical field case. However, some of
these Weyl points acquire an extra tilting and energy shifting
terms which depends on the matter-light coupling strength V2.
As a result, when V2 is sufficiently large, it is possible for
some of these type-I Weyl points to transform into type-II
Weyl points. In addition, since both extra terms will not affect

the Weyl points at (k,φy,φz) = (±π
2 ,±π

2 ,±π
2 ), it is possible

to generate a pair of mixed Weyl points with tunable energy
difference, which opens up a possibility to realize or explore
further the properties of such mixed Weyl semimetals. We
have also verified that Fermi arc edge states connecting two
Weyl points of opposite chiralities emerge. Moreover, via
the quantization of adiabatic transport, we confirm that the
chirality of the Weyl points is preserved under the transition
from type-I to type-II. Possible experimental realizations have
also been briefly discussed for both the semiclassical and fully
quantum case. Finally, a scheme to distinguish type-II from
type-I Weyl points discovered in our 1D system has also been
elucidated.

Following this paper, we could now focus on studying
the properties of more general Weyl semimetal systems
which possess both type-I and type-II Weyl points, e.g.,
chiral anomaly induced transport properties, and verify them
experimentally by designing an experimental realization of our
model. It might also be interesting to design an experimental
scheme which can realize both semiclassical and full quantum
versions of our model within a single framework to observe
the quantum to classical transition occurring in the model.
There are some other aspects that deserve further explorations.
For example, given that an interaction with a single photon
mode gives rise to such controllable novel topological phases,
considering multimode photon fields is imagined to be more
fruitful. However, even with just a single photon mode, a
possible future direction might be to consider its interaction
with a topologically nontrivial many-body system (such a set
up is also related to superradiant phase transition [52]). Finally,
it is hoped that such a controllable mixed Weyl semimetal
system as we discovered can be useful for future devices.
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APPENDIX A: DERIVATION OF EQ. (4)

Consider a rotating frame which corresponds to a transfor-
mation |ψ〉 → R|ψ〉, where R = exp (iV2 cos(φz) sin(�t)

��
σz). The

Hamiltonian in this new frame is given by

H′
k = [2J cos(k) cos(2a) + 2λ sin(k) cos(φy) sin(2a)]σx

+[−2J cos(k) sin(2a) + 2λ sin(k) cos(φy) cos(2a)]σy

+V1 cos(φz)σz , (A1)

where a = V2 cos(φz) sin(�t)
��

. Near a band touching point at
(k,φy,φz) = (π

2 , π
2 ,φl), where φl is as defined in the main text,

Eq. (A1) can be approximated as

H′
k ≈ {−2Jkx cos[lc sin(�t)] − 2λky sin[lc sin(�t)]}σx + {2Jkx sin[lc sin(�t)] − 2λky cos[lc sin(�t)]}σy

+ [lπ − V1kz sin(φl)]σz = Hpert + [lπ − V1kz sin(φl)]σz , (A2)

where kx , ky , kz, and c are as defined in the main text. By applying the time dependent perturbation theory, a one period time
evolution operator in the interaction picture can be obtained as [53],
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UI (1,0) ≈ I −
∫ 1

0
exp {i[lπ − V1kz sin(φl)]t}Hpert exp {−i[lπ − V1kz sin(φl)]t}dt

= I + i
∫ 1

0
dt(2Jkxσx + 2λkyσy) cos {2[lπ − V1kz sin(φl)]t + lc sin(�t)}

+ i
∫ 1

0
dt(2Jkxσx − 2λkyσy) sin {2[lπ − V1kz sin(φl)]t + lc sin(�t)}

= I + i(2Jkxσx + 2λkyσy)J
l− V1kz sin(φl )

2π

(lc) ≈ I + i(2Jkxσx + 2λkyσy)Jl(lc) . (A3)

Finally, in order to obtain the Floquet operator, which is interpreted as a one period time evolution operator in the Schrodinger
picture, i.e., U(kx,ky,kz) = U (1,0), we need to convert Eq. (A3) back to the Schrodinger picture. Therefore,

U (1,0) ≈ exp{−i[lπ − V1kz sin(φl)]σz}[I + i(2Jkxσx + 2λkyσy)Jl(lc)]

≈ exp(−ilπ )[I + iV1kz sin(φl)σz][I + i(2Jkxσx + 2λkyσy)Jl(lc)] ≈ exp(−ilπ )[I + iV1kz sin(φl)σz.

. + i(2Jkxσx + 2λkyσy)Jl(lc)]

≈ exp{−i{lπ − [V1kz sin(φl)σz + 2JkxJl(lc)σx + 2λkyJl(lc)σy]}}, (A4)

which proves Eq. (4).

APPENDIX B: DERIVATION OF EQ. (19)

We start by introducing the following unit vectors,

n̂ = 2J cos(k)x̂ + 2λ sin(k) cos(φy)ŷ + V1 cos(φz)ẑ
1
2ω

,

(B1)

m̂ = −2λ sin(k) cos(φy)x̂ + 2J cos(k)ŷ
1
2ω′ , (B2)

l̂ = −ω′

ω
ẑ + V1 cos(φz)

2λ sin(k) cos(φy)ŷ + 2J cos(k)x̂
1
4ωω′ ,

(B3)

where x̂, ŷ, and ẑ are unit vectors along the x, y,

and z direction, 1
2ω =

√
1
4ω′2 + V 2

1 cos2(φz) and 1
2ω′ =√

4J 2 cos2(k) + 4λ2 sin2(k) cos2(φy). It can be verified that l̂,
m̂, and n̂ are three unit vectors that form a right-handed system
similar to x̂, ŷ, and ẑ. Next, we define σ± = l̂ · σ ± im̂ · σ . If
|ψ±〉 is the eigenstate of n̂ · σ corresponding to eigenvalue
±1, then σ+|ψ+〉 = σ−|ψ−〉 = 0, σ+|ψ−〉 = 2c+|ψ+〉 and
σ−|ψ+〉 = 2c−|ψ−〉, where c± is a unit of complex numbers
which depends on the representation of the eigenstates. It can
also be shown that σ± and n̂ · σ satisfy the following algebra,

[σ−,σ+] = −4n̂ · σ , (B4)

[σ±,n̂ · σ ] = ∓2σ± . (B5)

In terms of the notations defined above, Eq. (13) can be recast
in the following form,

Hq = 1

2
ωn̂ · σ + �a†a − V2 cos(φz)ω′

4ω
(a + a†)

×
[
σ+ + σ− − 4V1 cos(φz)

ω′ n̂ · σ

]
. (B6)

In X representation and in the basis {|ψ+〉,|ψ−〉}, where X

is one of the quadrature operators defined in the main text,
the energy eigenvalue equation associated with Eq. (B6) near
(k,φy,φz) = (π

2 , π
2 ,φ1), up to first order in kx , ky , and kz defined

in the main text, can be written as(
A(x) + B(x) C(x)ω′c−
C(x)ω′c+ A(x) − B(x)

)(
f1(x)
f2(x)

)
= E

(
f1(x)
f2(x)

)
,

(B7)
where x is the eigenvalue of X, E is the energy eigenvalue,
and

A(x) = 1

2
�

(
x2 − ∂2

∂x2
− 1

)
, (B8)

B(x) ≈ 1

2
ω +

V1V2
[

π2

V 2
1

+ 2πkz

V1
sin(φ1)

]
ω

√
2x , (B9)

C(x) ≈ − V2

4V1

√
2x . (B10)

Since kx and ky are very small quantities, ω′ is also very
small by construction and thus the off-diagonal terms in
Eq. (B7) can be treated as perturbations. Without the off-
diagonal terms, Eq. (B7) reduces to two uncoupled harmonic
oscillator eigenvalue equations, which can readily be solved
for the energy E(0) and the eigenfunctions f1(x) and f2(x). In
particular,

E
(0)
n,± = π (2n ± 1) ∓ V1kz sin(φ1) − πV 2

2

8V 2
1

+ V 2
2

4V1
kz sin(φ1) ,

(B11)
where n is a non-negative integer.

To understand the effect of the off-diagonal term, we define
the following operators,

A+ = 1√
2

[(
X +

√
2V2

2V1

)
+ iP

]
, (B12)

A− = 1√
2

[(
X −

√
2V2

2V1

)
+ iP

]
. (B13)
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The off-diagonal perturbation term and the unperturbed diag-
onal term can then be written as, respectively,

Hoff = − V2

8V1
ω′(A†

+ + A−)(σ+ + σ−) , (B14)

Hon = [π − V1 sin(φ1)kz]

(
1 0
0 −1

)
− πV 2

2

8V 2
1

+ V 2
2

4V1
kz sin(φ1) + 2π

(
A†

+A+ 0
0 A†

−A−

)
.

(B15)

Since ω′ is a very small quantity, rotating wave approximation
(RWA) could be made if A†

+ and σ−, as well as A− and σ+, are
governed by approximately the same frequency of evolution.
Therefore, let’s first analyze the equations of motion for A±
and σ± (in the interaction picture):

dσ±
dt

= [σ±,Hon]

i

≈ ∓2πσ±
i

∓ 2V2π

iV1
(A†

+ + A−)σ± , (B16)

dA±
dt

= [A±,Hon]

i

= 2πA±
i

∓ πV2

iV1
+ πV2

iV1

(
1 0
0 −1

)
. (B17)

Let’s first assume V2 to be sufficiently small, so that the
solutions to the above equations are approximately σ±(t) ≈
σ±(0)e±i2πt and A±(t) ≈ A±(0)e−i2πt . RWA can then be
invoked, and the total Hamiltonian can be divided into sub-
blocks spanned by the states |n,−〉 and |n − 1,+〉, which are
eigenstates of Hon corresponding to E

(0)
n,− and E

(0)
n−1,+ as given

in Eq. (B11), respectively. The reduced 2 × 2 Hamiltonian in
the {|n,−〉,|n − 1,+〉} basis is

[Hq]n =̂
(

E
(0)
n−1,+ − V2

4V1
ω′√nc+

− V2
4V1

ω′√nc− E
(0)
n,−

)
. (B18)

By considering a representation where c− = 4Jkx

ω′ + i 4λky

ω′ , and
τx , τy , and τz take the usual Pauli matrices form, the reduced

FIG. 9. A typical band structure of the quantized CDODHM
along a curve in the Brillouin zone parameterized by t

according to (k(t),φy(t),φz(t)) = ( 0.5πt

r
, 0.5πt

r
, 0.2πt

r
), where r =√

0.52 + 0.52 + 0.22. The blue curve is obtained by diagonalizing
Eq. (B6), whereas the red dotted curve is obtained by plotting
Eq. (18) near a Weyl point. The system parameters are J = 1, λ = 0.5,
V1 = π

cos (0.2π ) , and V2 = 8.

Hamiltonian can be written more compactly as,

[Hq]n = π (2n − 1) − πV 2
2

8V 2
1

+ V 2
2

4V1
kz sin(φ1)−V1 sin(φ1)kzτz

− (2Jkxτx + 2λkyτy)

√
nV2

2V1
. (B19)

Let’s now relax the assumption that V2 is sufficiently small.
We notice that

√
nV2

2V1
corresponds to the lowest order term in

the series expansion of a certain function, e.g., J1(
√

nV2

V1
). Since

the Hamiltonian is required to reduce to Eq. (5) in the classical
limit n → ∞ and V2 → 0, we argue that for an arbitrary
value of V2 (not necessarily small), Eq. (B19) needs to be
modified by replacing the

√
nV2

2V1
factor in the τx and τy terms

by J1(
√

nV2

V1
), so that Eq. (19) follows. Although this argument

is not obvious to be justified analytically, it is still possible to
verify Eq. (19) numerically by comparing the eigenvalues of
Eq. (B6) obtained directly from exact diagonalization and the
eigenvalues of Eq. (19) near a Weyl point when V2 is at the
same order as the other parameters, as confirmed in Fig. 9.
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