
PHYSICAL REVIEW B 94, 235443 (2016)

Hermitian description of localized plasmons in dispersive dissipative
subwavelength spherical nanostructures
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The canonical quantization procedure in dispersive and lossy media assumes the eigenstates of the system to
be collective excitations of the electromagnetic field and reservoir degrees of freedom. In this paper, we show that
in low loss limit, the collective plasmonic modes in a quasistatic approximation separate from the reservoir. As
an example, we consider the localized surface plasmon on a spherical metallic nanoparticle in a vacuum and find
the macroscopic longitudinal electric near field per plasmon in the cases of gold and silver. Using our canonical
approach, we calculate the correction to the electric near field per plasmon obtained from phenomenological
quantization. The canonical conjugated variable to the electric near field is determined.
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I. INTRODUCTION

The latest achievements in nanotechnology make it possible
to manufacture subwavelength metallic structures, which can
be used for plasmon excitation [1,2]. The amplification of
plasmons on such subwavelength structures allows the creation
of nanolasers [3,4], spasers [5,6], and subwavelength optical
transition lines [7–9]. Therefore, the problem of interaction
of the plasmons with molecules [10–12], semiconductor
medium [13,14], quantum dots [13], and quantum wells [14]
is important. In many cases, only a few plasmon quanta are
excited [15–20] on the structure, which is why the quantum
properties of plasmons play a considerable role [21–24]. One
of the main quantum characteristics of the systems is the
electric field per plasmon. This quantity appears to be valuable
for such key characteristics of plasmonic structures as the inter-
action constant between the field and the matter [25] and
threshold pump level [6].

The quantum description of an electromagnetic field was
developed in the 20th century [26,27]; nowadays it is the
main study approach for the description of numerous physical
phenomena. The most convenient way to quantize the electro-
magnetic field in a vacuum is to use the Coulomb gauge to
eliminate the longitudinal component of the electric field [28].
This is possible due to Maxwell’s first equation in vacuum
divE = −�U = 0, and the absence of the canonical conjugate
variable to scalar potential U . However, in the medium, the
longitudinal electromagnetic field is derived by the equation
ε0�U = divP, where P is the total medium polarization, so
it cannot be eliminated in the same way as in a vacuum. In
macroscopic electromagnetic field quantization, the problem
has not been investigated appropriately [29–31]. The most
consistent approach is to quantize the medium polarization
and the field simultaneously [32–34]. This approach demands
the choice of a model of the medium. One of the simplest and
most usable models for this purpose is the Lorentz model [35].
It assumes that the medium consists of dumped harmonic
oscillators. Their relaxation is provided by including additional
degrees of freedom (reservoir) [36]. The Hamiltonian of the
system “field + dipole oscillators + reservoirs” is Hermitian,
and its quantization can be performed in the standard way

by the introduction of creation and annihilation operators.
The eigenmodes of the system are collective oscillations
of field and medium and can be determined by the Fano
diagonalization method [36,37]. First, the described procedure
was used for the bulk medium [32–34], then it was generalized
to nonuniform media [37]. To obtain the exact solution in the
nonuniform case, it is necessary to use the Green functions
formalism and the noise current approach [38–40] which was
justified in [37] from the first principles. However, it is very
difficult to give the physical interpretation of each mode of the
system, and to separate the field modes from the system. As
a result, this approach cannot be applied to find the number
of excited plasmons or the electric near field per plasmon of
plasmonic nanoparticle.

The widely used phenomenological approach [41–44]
to plasmon quantization is much simpler but not canon-
ical. It treats the localized plasmons as the harmonic
oscillators whose eigenfrequencies are the frequencies of
the plasmon resonances and determines the electric field
per plasmon through the specific normalized condition for
each plasmon mode. Namely, the total electric field energy
per plasmon is supposed to be equal to the quantum of the
oscillator’s energy. This condition seems to be reasonable,
although it has not been derived from the canonical procedure.
Therefore, the phenomenological quantization has some draw-
backs. In particular, there is no way to describe the Joule losses
consistently. For example, the near electric field per plasmon
obtained from this method does not depend on the imaginary
part of the permittivity. Therefore, the canonical verification
of the phenomenological plasmon quantization method is a
current and important problem.

The paper is organized in the following way. In Sec. II
we describe the model. In Sec. III we canonically quan-
tize the plasmons, describing the permittivity through the
Lorentz model using the approach of [32]. The difficulty
here is the system under consideration is inhomogeneous.
Therefore we cannot treat the longitudinal and the transverse
electromagnetic fields independently as was performed in
Ref. [32]. We show that the electric field per plasmon is fully
described by the permittivity defined from the solution for
bulk medium. In Sec. IV, we show that in the low loss limit,
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the quantum of plasmon electric field has the same value as
the quantum obtained from phenomenological theory [41–44].
Also, we find the correction to the quantity obtained from
phenomenological theory. We find in the Coulomb gauge the
oscillations of medium subsystem response for quantization
of scalar potential, separately we quantize the vector po-
tential corresponding to photon subsystem. These quantum
subsystems interact due to excitation of plasmonic reso-
nances in the nanosphere. The excitation of one of the
subsystems causes the excitation of the other. This fact,
as we show, relates to the retardation character of the
electromagnetic field outside the nanosphere. We derive a
canonically conjugated variable to electric field. Finally, we

replace the model permittivity by the real values for gold and
silver to obtain the electric near field per plasmon for real
materials.

II. DESCRIPTION OF THE MODEL

As mentioned earlier, to quantize the electromagnetic field
in a medium, it is necessary to consider the medium as a part
of the system “field + medium oscillators + reservoir.” We
consider a subwavelength sphere with radius R consisting of
Lorentz oscillators, placed in a vacuum. The Lagrangian of the
system is

L =
∫

d3r
{

ε0[Ȧ(r,t) + gradU (r,t)]
2

2
− [rotA(r,t)]2

2μ0

}
+

∫
r<R

d3r
{
κ

Ṗ(r,t)2

2
− κω2

P0
P(r,t)2

2

}

+
∫

r<R

d3r
{∫ ∞

0
d�

[
ẎP(r,�,t)2

2
− �2 YP(r,�,t)2

2

]}

+
∫

r<R

d3r{U (r,t)div[P(r,t)] + Ṗ(r,t)A(r,t)} −
∫

r<R

d3r
{∫ ∞

0
d�[VP(�)P(r,t)ẎP(r,�,t)]

}
, (1)

where A(r,t) is vector potential, U (r,t) is scalar potential,
P(r,t) is induced medium polarization density, ωP0 is the
frequency of the dipole harmonic oscillators, κ is the ratio of
the mass and charge density of the dipole harmonic oscillators,
YP(r,�,t) are reservoir variables (e.g., phonons), and VP(�)
is a coupling constant between dipole harmonic oscillators
and reservoir. The physical meaning of each part of the
Lagrangian (1) is as follows:∫

d3r
{
ε0

[Ȧ(r,t) + gradU (r,t)]
2

2
− 1

μ0

[rotA(r,t)]2

2

}

is the Lagrangian of electromagnetic field;∫
r<R

d3r
{
κ

Ṗ(r,t)2

2
− κω2

P0
P(r,t)2

2

}

is the dipole harmonic oscillators part, which models the
polarization;∫

r<R

d3r
{∫ ∞

0
d�

[
ẎP(r,�,t)2

2
− �2 YP(r,�,t)2

2

]}

is the reservoir part, comprising a continuum of harmonic
oscillators, which are used to model losses;∫

r<R

d3r{U (r,t)div[P(r,t)] + Ṗ(r,t)A(r,t)}

is the interaction part, which includes interaction between
the electromagnetic field and induced polarization. −divP(r,t)
and Ṗ(r,t) are the polarization charge density and polarization
current density, respectively. The final part

−
∫

r<R

d3r
{∫ ∞

0
d�[VP(�)P(r,t)ẎP(r,�,t)]

}

is the interaction part, which includes the interaction between
induced dipole moments and the reservoir. The reservoir
is modeled by a continuum of harmonic oscillators, which

provide the dissipation of the energy of the dipole harmonic
oscillators [36]. Indeed, when an exited harmonic oscillator
is coupled to the continuum harmonic oscillators, which are
not exited in the initial moment of time, the oscillators energy
is fully transferred into the continuum harmonic oscillators
[45–48]. The exited harmonic oscillator loses the energy, but
the total energy of the system is conserved.

III. LOCALIZED PLASMONS QUANTIZATION

Following the standard approach to QED for nonrelativistic
phenomena, we choose the Coulomb gauge divA(r,t) = 0,
so that the vector potential is purely a transverse field. Now
we enter into momentum space and write it according to the
Fourier transformation as

A(r,t) =
∑
λ=1,2

∫
d3keik·re(λ,k)A(λ,k,t), (2)

where the vectors e(λ,k) are polarization vectors that satisfy
the following relations

k · e(λ,k) = 0,

e(λ,k) · e∗(λ′,k) = δλλ′ .

We expand the variables P, YP, scalar potential U , and electric
near field Enear = −gradU in Laplace spherical harmonics.

P(r,t) =
∑
l,m

Plm(t)

{
Rgrad[(r/R)l	lm(θ,ϕ)], r < R

0, r > R
, (3)

YP(r,�,t)=
∑
l,m

Ylm(�,t)

{
Rgrad[(r/R)l	lm(θ,ϕ)], r<R

0, r>R
,

(4)

U (r,t) =
∑
l,m

Ulm(t)

{
(r/R)l	lm(θ,ϕ), r < R

(R/r)l+1	lm(θ,ϕ), r > R
, (5)
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Enear(r,t) = −
∑
l,m

Elm(t)

{
Rgrad[(r/R)l	lm(θ,ϕ)], r < R

Rgrad[(R/r)l+1	lm(θ,ϕ)], r > R
, (6)

where 	lm(θ,ϕ) are the spherical functions. Note that the electric near field Enear = −gradU is not the total electric field
E = −gradU − Ȧ. The set of the Laplace spherical harmonics is not the basis for the polarization P and the reservoir YP. For an
instant this decomposition does not include the whispering gallery modes. However, it describes all the modes in a quasistatic
approximation [7,41,49]. Therefore the expansions (3–6) are not exact, but they have the small parameter R/λ [50,51], where
λ is the characteristic wavelength in a vacuum. From the physical point of view, the expansion assumes that we can omit all
retardation effects on the sphere scale R.

We insert expansions (2–6) into the Lagrangian (1) and obtain

L = 1

2

∑
l,m

{
κR3lṖ 2

lm(t) − κω2
P0R

3lP 2
lm(t)

} + 1

2

∑
l,m

{
ε0R(2l + 1)U 2

lm(t) − 2R2lUlm(t)Plm(t)
}

+ 1

2

∑
l,m

{∫ +∞

0
d�

[
R3lẎ 2

lm(�,t) − �2R3lY 2
lm(�,t)

]} − 1

2

∑
l,m

{∫ +∞

0
d�[2R3lVP(�)Plm(t)Ylm(�,t)]

}

+
∑
λ=1,2

∫
half

d3k
{
ε0|Ȧ(λ,k,t)|2 − 1

μ0
k2|A(λ,k,t)|2

}
+

∑
λ=1,2

∑
l,m

∫
d3k{ṖlmR3�lm(λ,k)A(λ,k,t)}, (7)

where �lm(λ,k) = ∮
r=R

dS{eik·re(λ,k)	lm(θ,ϕ)}/R2 is a new interaction constant, which includes the interaction between
the transverse vector potential and polarization current. The interaction is nonlocal in space because of the chosen Coulomb
gauge [52]. We discuss this coupling term in the Appendix B. This interaction results in impossibility of independent consideration
of longitudinal and transverse components of electromagnetic field as it was performed in [32]. Therefore more accurate
consideration of transverse and longitudinal modes is required.

To obtain (7), we use the Gauss’s flux theorem and the fact that function U (r,t) is continuous and piecewise continuously
differentiable. The “half” in the integration over k in (7) denotes that the integration is restricted to half the space (for example,
kz > 0). The integration over half space is sufficient because of A∗(λ,k,t) = A(λ, − k,t), which results from the representation
of the real function. Here and after we will associate the vector potential with the electromagnetic field in a vacuum, because in
empty space only this term remains in the Lagrangian. We will associate the scalar potential with the near field, because it obeys
the Poisson equation.

We join the medium oscillations and the electric near field into collective oscillations to obtain the plasmon. We use the
Euler-Lagrange equation [53] for Ulm(t) to eliminate it from the Lagrangian (7)

δL

δUlm(t)
= 0 ⇒ Ulm(t) = 1

ε0

l

2l + 1
RPlm(t) (8)

and finally we obtain

L =
∑
l,m

κR3l

2

{
Ṗ 2

lm(t)−
[
ω2

P0 + 1

ε0κ

l

2l + 1

]
P 2

lm(t)

}
+

∑
l,m

R3l

2

{∫ +∞

0
d�

[
Y 2

lm(�,t) − �2Y 2
lm(�,t)

]}

−
∑
l,m

R3l

{∫ +∞

0
d�[VP(�)Plm(t)Ẏlm(�,t)]

}
+

∑
λ=1,2

∫
half

d3k
{
ε0|Ȧ(λ,k,t)|2 − 1

μ0
k2|A(λ,k,t)|2

}

+
∑
λ=1,2

∑
l,m

∫
d3k{R3�lm(λ,k)Ṗlm(t)A(λ,k,t)}. (9)

The elimination of the scalar potential leads to the change of the dipole harmonic oscillators frequencies. The change relates
to the additional electrostatic forces. The particular value of the frequency change is defined by the shape of the body. Therefore,
the surface plasmonic resonance frequencies differ from the frequency of the bulk plasmonic resonance [54–56].

The Lagrangian (9) can be used to obtain the canonical conjugate variables

QPlm(t) = κR3lṖlm(t) +
∑
λ=1,2

∫
d3kR3�lm(λ,k)A(λ,k,t),

QYlm(�,t) = R3lẎlm(�,t) − R3lVP(�)Plm(t)

QA(λ,k,t) = ε0Ȧ(λ,k,t) (10)
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and the Hamiltonian

H = 1

2

∑
l,m

{
Q2

Plm(t)

κR3l
+ κR3l

[
ω2

P0 + 1

ε0κ

l

2l + 1
+

∫ +∞

0
d�V 2

P (�)

]
P 2

lm(t)

}

+ 1

2

∑
l,m

{∫ +∞

0
d�

[
Q2

Ylm(�,t)

R3l
+ �2R3lY 2

lm(�,t)

]}
+ 1

2

∑
l,m

{∫ +∞

0
d�[2VP(�)Plm(t)QYlm(�,t)]

}

+
∑
λ=1,2

∫
half

d3k
{ |Q(λ,k,t)|2

ε0
+ 1

μ0
k2|A(λ,k,t)|2

}
−

∑
λ=1,2

∑
l,m

∫
d3k

{
�lm(λ,k)

κl
QPlm(t)A(λ,k,t)

}

+ 1

2

∑
l,m

R3

κl

[ ∑
λ=1,2

∫
d3k�lm(λ,k)A(λ,k,t)

]2

. (11)

The first term of the Hamiltonian (11) is the energy of the collective medium oscillations, including the energy of scalar potential.
This part of the Hamiltonian is described by two sets of variables {Plm(t),QPlm(t)} and {Ylm(�,t),QYlm(�,t)}.

It is not obvious which part corresponds to the plasmonic modes. The solution of the problem is to find the canonical
transformation, which makes the medium part of the Hamiltonian diagonal. Such a transformation can be obtained by using the
method of Fano diagonalization [32,36,37,57]:

Plm(t) =
∫ ∞

0
d�

[
2l + 1

l

√
2ε0

πR3l

√
Imε(�)∣∣ε(�) + l+1

l

∣∣√�Zlm(�,t)

]

QPlm(t) = κ

∫ ∞

0
d�

[
2l + 1

l

√
2R3lε0

π
,

√
Imε(�)∣∣ε(�) + l+1

l

∣∣√�QZlm(�,t)

]
, (12)

where Zlm(�,t) and QZlm(�,t) are new canonical conjugated variables, and ε(�) is the permittivity of the bulk medium,
consisting of the same harmonic oscillators. The permittivity is derived in Appendix A. If at some frequencies the permittivity is
negative, we may observe the localized surface plasmon. The canonical transformation (12) changes the Hamiltonian (11) to

H =
∑
l,m

∫ +∞

0
d�

{
Q2

Zlm(�,t)

2
+ �2Z2

lm(�,t)

2

}
+

∑
λ=1,2

∫
half

d3k
{ |Q(λ,k,t)|2

ε0
+ 1

μ0
k2|A(λ,k,t)|2

}

−
∑
λ=1,2

∑
l,m

∫
d3k

∫ ∞

0
d�

{
2l + 1

l

√
2R3

πl

√
�ε0Imε(�)∣∣ε(�) + l+1

l

∣∣ �lm(λ,k)QZlm(�,t)A(λ,k,t)

}

+
∑
l,m

∫ +∞

0
d�

{
(2l + 1)2

πl3
R3 �ε0Imε(�)∣∣ε(�) + l+1

l

∣∣2

}[ ∑
λ=1,2

∫
d3k�lm(λ,k)A(λ,k,t)

]2

. (13)

As mentioned, the physical meaning of the first term is
the energy of the collective medium oscillations, so we call
it the localized plasmon energy. The second term can be called
the energy of the electromagnetic field in a vacuum, because it
is the only part of the Hamiltonian that remains in empty space.
The third part of the Hamiltonian is the interaction energy
between the electromagnetic field in a vacuum and plasmons.
The final part of (13) which contains the A2 term is the minimal
light-matter coupling Hamiltonian [58]. Note that this term is
not present in Lagrangian (9) and appears after transition to
Hamiltonian by using appropriated generalized momentum
conjugated by generalized coordinate, see Ref. [53]. This term
is substantially connected with interaction of electromagnetic
field with medium despite that the “plasmon” operator is
absent. The multiplier proportional to Imε and �lm indicates
this fact. This term is absent when medium is absent.

In Fig. 1 we show the dependence of the interaction constant
between the electromagnetic field in a vacuum and plasmons

on the frequency. The form of the permittivity

ε(ω) = 1 + ω2
p

ω2
0 − ω2 − iγ ω

, (14)

which is used in Fig. 1 can be obtained from the Eq. (A7) if
the function VP(�) is set to be the constant

√
2γ κ . One can

see the resonance behavior of the interaction constant when
Re(ε(ω)) + (l + 1)/l = 0.

The canonical quantization of the photons and plasmons can
be performed in a standard way by replacing Poisson brackets
by commutators [28]

[P̂lm(t),Q̂Pl′m′ (t)] = i�δll′δmm′

[Ŷlm(�,t),Q̂Yl′m′(�′,t)] = i�δ(� − �′)δll′δmm′

[Â(λ,k,t),Q̂(λ′,k′,t)] = i�δ(k − k′)δλλ′

[Ẑlm(�,t),Q̂Zl′m′(�′,t)] = i�δ(� − �′)δll′δmm′ (15)
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When the procedure is finished, the variables can be written in terms of the creation and annihilation operators:

Â(λ,k,t) =
√

�

2ε0ck
[â+(λ, − k,t) + â(λ,k,t)],

Q̂(λ,k,t) = i

√
�ck

2ε0
[â+(λ, − k,t) − â(λ,k,t)], (16)

Ẑlm(�,t) =
√

�

2�
[d̂+

lm(�,t) + d̂lm(�,t)],

Q̂Zlm(�,t) = i

√
��

2
[d̂+

lm(�,t) − d̂lm(�,t)], (17)

where â+(λ,k,t) and â(λ,k,t) are photon creation and annihilation operation of wave vector k and polarization λ, and d̂+
lm(�,t)

and d̂lm(�,t) are plasmon creation and annihilation operators of mode lm and frequency �. The Hamiltonian can be written in
terms of introduced operators as

Ĥ =
∑
l,m

∫ +∞

0
d���d̂+

lm(�,t)d̂lm(�,t) +
∑
λ=1,2

∫
d3k�ckâ+(λ,k,t)â(λ,k,t) − i

∑
λ=1,2

∑
l,m

∫
d3k

∫ ∞

0
d���

×
{

2l + 1

l
√

2πl
R3/2

√
Imε(�)∣∣ε(�) + (l+1)

l

∣∣ [d̂+
lm(�,t) − d̂lm(�,t)]

[
�∗

lm(λ, − k)√
ck

â+(λ, − k,t) + �lm(λ,k)√
ck

â(λ,k,t)

]}

+
∑
l,m

∫ +∞

0
d���R3 (2l + 1)2

2πl3

Imε(�)∣∣ε(�) + l+1
l

∣∣2

{ ∑
λ=1,2

∫
d3k

[
�∗

lm(λ, − k)√
ck

â+(λ, − k,t) + H.c.

]}2

. (18)

This Hamiltonian describes the processes of emitting, scatter-
ing and absorbing photons by plasmons at the quantum level.
It can be seen from the Hamiltonian (18) that the power of
absorbed electromagnetic energy is proportional to the volume
of the plasmon particle.

The polarization modes P̂lm(t) can be obtained from (12)
and (17)

P̂lm(t) =
∫ ∞

0
d�

2l + 1

l

√
�ε0

πR3l

√
Imε(�)∣∣ε(�) + l+1

l

∣∣
× (d̂+

lm(�,t) + d̂lm(�,t)). (19)

Substitution of (19) into (8) leads us to the quantum longitu-
dinal electric near field of the plasmon:

Êlm(t) =
∫ ∞

0
d�El(�)(d̂+

lm(�,t) + d̂lm(�,t)), (20)

where we define electric near field per plasmon on frequency
�

El(�) =
√

�

πR3lε0

√
Imε(�)∣∣ε(�) + l+1

l

∣∣ . (21)

Note that the idea of the calculation of the electric field per
plasmon is similar to one used in the phenomenological quanti-
zation approach. Namely, using the commutation relations (15)
we diagonalize the plasmon part of the full Hamiltonian (11).
Then we set the quantum of the energy of the plasmon to be
�ω and obtain the dimensional prefactors. It is important that
the expression (21) is valid for arbitrary losses.

The developed formalism allows us to calculate the electric
near field per plasmon El(�) [see (21)] for a sphere made from

real gold and silver (Fig. 2). In other words the permittivity of
gold and silver taken from Ref. [59] were inserted in Eq. (21).
Then the quantity El(�) was plotted as a function of frequency.
One can see that these curves are Lorentz-like in the frequency
region before the interband transitions.

IV. LOW LOSS LIMIT: PHENOMENOLOGICAL
ELECTRIC NEAR FIELD PER PLASMON

In Sec. II we obtained the Hamiltonian (18) of the surface
plasmon are in the limit R/λ � 1. In this section, we will
show that the quantization procedure described above in the
low loss limit, Imε(�) � �(∂Reε(�)/∂�), leads to the same
result for the electric near field per plasmon, as predicted by
phenomenological theory.

When the imaginary part of permittivity tends to zero,
the interaction between dipole harmonic oscillators and the
reservoir tends to zero too. In this case, there is only one pair
of annihilation and creation operators for each plasmon mode.
As a result, the Hamiltonian of plasmon takes the following
form:

Ĥplasmons =
∑
l,m

�ωld̂
+
0lm(t)d̂0lm(t), (22)

where ωl is defined by the pole of (21), namely Reε(ωl) =
−(l + 1)/l. Here d̂0lm(t) and d̂+

0lm(t) are plasmon creation and
annihilation operators, respectively, subscript 0 points to zero
loss limit. The pole of (19) in the limit is close to the real axes,
so that

P̂0lm(t) = P0lm(d̂+
0lm(t) + d̂0lm(t)), (23)
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FIG. 1. Dependence of interaction constant on the frequency
for different plasmon modes. The permittivity of the sphere has
Lorentzian form ε(ω) = 1 + ω2

p/(ω2
0 − ω2 − iγ ω) with ωp/ω0 =

0.75 and (a) γ /ω0 = 0.3, (b) γ /ω0 = 0.1, and (c) γ /ω0 = 0.002.

Decrease of γ leads to decrease of the loss.

FIG. 2. Dependence of electric near field per plasmon Eq. (21)
on frequency for different plasmon modes for (a) gold and (b) silver
spheres. The permittivity data is taken from Ref. [59].

where P0lm is a polarization per plasmon. Transferring (19)
to (23) is nontrivial because integrating over frequencies in
both expressions includes operators. To perform this transfer,
we assume the commutation relation conservation condition[

P̂
(−)
lm (t),P̂ (+)

lm (t)
]∣∣

Imε(ω)
ω∂Reε(ω)/∂ω

�1 = [
P̂

(−)
0lm(t),P̂ (+)

0lm(t)
]
, (24)

where (+) and (−) denote the annihilation and creation part of
expressions (19) and (23). We substitute (23) and (19) into (24)
and obtain

P 2
0lm =

∫ ∞

0
d�

[(
2l + 1

l

)2
�ε0

πR3l

Imε(�)(
Reε(�) + l+1

l

)2 + Imε(�)2

]

�
∫ ∞

0
d�

[(
2l + 1

l

)2
�ε0

πR3l

Imε(ωl)

(∂Reε(�)/∂�|�=ωl
)2(� − ωl)2 + Imε(ωl)2

]

�
(

2l + 1

l

)2
�ε0

R3l|∂Reε(�)/∂�|�=ωl

(
1 − Imε(ωl)

2πωl|∂Reε(�)/∂�|�=ωl

)
. (25)

In the second equality we used the condition Imε(ω)/[ω∂Reε(ω)/∂ω] � 1. In the same way we can obtain

Êlm(t) =
√

�

|∂Reε(�)/∂�|�=ωl
R3lε0

(
1 − Imε(ωl)

2πωl|∂Reε(�)/∂�|�=ωl

)
(d̂+

0lm(t) + d̂0lm(t)). (26)

Expression (26) in the absence of losses is equal to that obtained in the phenomenological approach [41–43]. The electric near
field per plasmon is

E0 =
√

�

|∂Reε(�)/∂�|�=ωl
R3lε0

. (27)
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FIG. 3. Correction to the electric near field per plasmon due to
the imaginary part of permittivity depending on frequency for (a)
gold and (b) silver. The vertical dashed lines mark the interband
transition frequency. The vertical solid lines mark the frequency
of dipole plasmonic resonance. The permittivity data is taken
from Ref. [59].

We recall that, in the phenomenological consideration, the near
electric field per plasmon introduced by the equation

ε0

∫
d3r

∂(ωReε(r,ω))

∂ω

∣∣∣∣
ω=ωl

|E(r)|2 = �ωl (28)

leads to the same electric near field per plasmon.
We obtain the correction to the expression (27) due to the

imaginary part of the permittivity by noting that from (26) we
have

δE0(ω)

E0(ω)
= Imε(ω)

2πω|∂Reε(ω)/∂ω| . (29)

The Equation (27) is applicable when δE0/E0 � 1. In
consideration, which leads us to the (29) we used the Lorentz
model. Now we use the data taken from Ref. [59] to verify the
validity of the condition δE0/E0 � 1 for real gold and silver
spheres. It is possible to replace Lorentz model Eq. (A7) by
the real dielectric functions. The reason is as follows. First, if
in (A7) we set the function to be constant then we obtain the
Drude-Lorentz model with one resonance Eq. (14). Second,

as is mentioned in Appendix A, if we consider the number
of oscillators instead of one we obtain dielectric permittivity
in the form of sum Eq. (14). Finally, in the visible range
domain it is possible to fit actual permittivity of gold and silver
with the sum of Drude-Lorentz oscillators [60,61]. Thus, the
replacement of the model permittivity with the real permittivity
of gold and silver is possible.

The correction (29) is shown in Fig. 3. It can be neglected
in the range ω < 2.6 eV and ω < 4 eV for gold and silver,
respectively. One can see from Fig. 3 that the correction to the
electric near field per plasmon becomes sufficient when the
interband transitions start to play an important role.

One can see from (10), (19), (20), and commutators (15)
that the amplitudes of the polarization current ĵlm(t) = ˆ̇Plm(t)
and amplitudes of the electric near field Êlm(t) obey the
commutation relation

[Êlm(t),ĵl′m′ (t)] = i�δll′δmm′

ε0κ(2l + 1)R3
, (30)

in other words the electric near field Êlm(t) and the polarization
current ĵlm(t) are canonical conjugate variables. Note that this
commutation relation has been previously found in Ref. [44]
without rigorous derivation.

As mentioned the pure plasmon part of the Hamiltonian (18)
in the absence of the loss is the set of the harmonic
oscillators (22). The operators in the interacting term [the third
term in Eq. (18)], [see Eqs. (12) and (17)]

Q̂Plm(t) = iκ

∫ +∞

0
d�

2l + 1

l

√
�R3lε0

π

�
√

Imε(�)∣∣ε(�) + l+1
l

∣∣
× (d̂+

lm(�,t) − d̂lm(�,t)) (31)

in low loss limit takes the form

Q̂P0lm(t) = QP0lm[d̂+
0lm(t) − d̂0lm(t)] (32)

This transition can be done similarly to the Eqs. (23) and (24).
Namely,[
Q̂

(−)
Plm(t),Q̂(+)

Plm(t)
]

Imε(ω)
ω∂Reε(ω)/∂ω

�1 = [
Q̂

(−)
P0lm(t),Q̂(+)

P0lm(t)
]

(33)

One can obtain from this

Q̂P0lm(t) = iκ
2l + 1

l
ωl

√
�R3lε0

|∂Reε(�)/∂�|�=ωl

× (d̂+
0lm(t) − d̂0lm(t)) (34)

The integral over � in the last term of Eq. (18) in the low loss
limit can be transformed according to Eq. (25)

1

π

∫ +∞

0
d�

�Imε(�)∣∣ε(�) + l+1
l

∣∣2 � ωl

|∂Reε(�)/∂�|�=ωl

. (35)

Substituting all these expressions into the Hamiltonian (18)
we can obtain

Ĥ =
∑
l,m

�ωld̂
+
0lm(t)d̂0lm(t) +

∑
λ=1,2

∫
d3k�ckâ+(λ,k,t)â(λ,k,t) − i

∑
λ=1,2

∑
l,m

∫
d3k

{
2l + 1

l
√

l

�ωlR
3/2√∣∣ ∂Reε(ωl )

∂ω

∣∣
[
d̂+

0lm(t) − d̂0lm(t)
]

×
[
�∗

lm(λ, − k)√
2ck

â+(λ, − k,t) + H.c.

]}
+

∑
l,m

(2l + 1)2

l3

�ωlR
3∣∣ ∂Reε(ωl )

∂ω

∣∣
{ ∑

λ=1,2

∫
d3k

[
�∗

lm(λ,−k)√
2ck

â+(λ, − k,t) + H.c.

]}2

. (36)
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Thus, in the low loss limit, it is possible to introduce a
discrete plasmon spectrum. One can see applying the Fermi
golden rule that the Hamiltonian (36) provides the same
plasmon radiative decay rate as calculated in Ref. [44]. The
last term of the Hamiltonian (36) is rigorously derived first.
The presence of the term in the Hamiltonian may lead to
the decoupling effect, which has been recently studied in
Refs. [62,63].

V. CONCLUSIONS

The problem of canonical quantization of plasmons on the
subwavelength spherical nanoparticle has been investigated.
By using the Lorentz microscopic model of medium and
Fano diagonalization method, we transformed the plasmonic
part of the Hamiltonian into a diagonal form, and quantized
it in the standard way. The permittivity appears to be the
only parameter that defines all characteristics of the system.
The polarization and scalar potential are fully defined by the
plasmonic structure. The quantization of plasmonic structure
polarization causes the quantization of the scalar potential in
the Coulomb gauge. The obtained Hamiltonian describes the
plasmon oscillations and the plasmon and photon interaction.
This describes the transition of the quanta of plasmons
into those of the photons, and vice versa. It is shown that

polarization current is a canonically conjugated variable to the
electric near field.

It was shown that in the low loss limit, Imε(�) �
�(∂Reε(�)/∂�), the reservoir may be eliminated and Hamil-
tonian of the plasmons becomes equal to a set of independent
harmonic oscillators. The obtained electric near field per
plasmon in zero order in the imaginary part of permittivity co-
incides with the field obtained from phenomenological theory.
The first order gives the correction, which cannot be obtained
using phenomenological theory. The described method can
be extended to subwavelength plasmonic nanoparticles of
arbitrary shape.
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APPENDIX A: INTRODUCTION OF
DIELECTRIC PERMITTIVITY

In this appendix, we consider the bulk medium, consisting
of the Lorentz oscillators, as a classical system, and introduce
the permittivity. The Lagrangian of the system is

L =
∫

d3r
{

ε0[Ȧ(r,t) + gradU (r,t)]
2

2
− [rotA(r,t)]2

2μ0

}
+

∫
d3r

{
κ

Ṗ(r,t)2

2
− κω2

P0
P(r,t)2

2

}

+
∫

d3r
{∫ ∞

0
d�

[
ẎP(r,�,t)2

2
− �2 YP(r,�,t)2

2

]}
+

∫
d3r{U (r,t)div[P(r,t)] + Ṗ(r,t)A(r,t)}

−
∫

d3r
{∫ ∞

0
d�[VP(�)P(r,t)ẎP(r,�,t)]

}
. (A1)

The physical meaning of each part of (A1) is given after expression (1). The equations of motion can be evaluated from (A1) by
using the Euler-Lagrange equations [53]

Ä(r,t) + c2rotrotA(r,t) = [Ṗ(r,t) − ε0gradU̇ (r,t)]/ε0,

�U (r,t) = divP(r,t)/ε0,

κP̈(r,t) + κω2
P0P(r,t) = −Ȧ(r,t) − gradU (r,t) −

∫ +∞

0
dω[VP(�)ẎP(r,�,t)],

ŸP(r,�,t) + �2YP(r,�,t) = VP(�)Ṗ(r,t), (A2)

where c is the speed of light in vacuum. In the frequency domain, Equations (A2) take the form

ω2A(r,ω) − c2rotrotA(r,ω) = [iωP(r,ω) − iωε0gradU (r,ω)]/ε0,

�U (r,ω) = divP(r,ω)/ε0,

κ
(
ω2

P0 − ω2
)
P(r,ω) = iωA(r,ω) − gradU (r,ω) +

∫ +∞

0
d�[iωVP(�)YP(r,�,ω)],

(�2 − ω2)YP(r,�,ω) = −iωVP(�)P(r,ω). (A3)

The final equation leads to

YP(r,�,ω) = − iω

�2 − (ω + i0�)2 VP(�)P(r,ω). (A4)

Substitution of (A4) into the third equation of (A3) leads to

κ

(
ω2

P0 − ω2 − ω2 1

κ

∫ +∞

0
d�

[
V 2

P (�)

�2 − (ω + i0�)2

])
P(r,ω) = E(r,ω), (A5)
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where we define E(r,ω) = iωA(r,ω) − gradU (r,ω). Equation (A5) and the first equation of (A3) allow us to obtain to the
Helmholtz equation for the electric field

rotrotE(r,ω) −
(

ω

c

)2
⎡
⎣1 + 1

ε0κ

1

ω2
P0 − ω2 − ω2 1

κ

∫ +∞
0 d�

V 2
P (�)

�2−(ω+i0�)2

⎤
⎦E(r,ω) = 0. (A6)

The Helmholtz equation (A6) allows us to introduce the
permittivity of the bulk medium

ε(ω) = 1 + 1

ε0κ

1

ω2
P0 − ω2 − ω2 1

κ

∫ +∞
0 d�

V 2
P (�)

�2−(ω+i0�)2

.

(A7)

One can see from (A2) and (A3) and as mentioned in Ref. [32],
if one considers the number of dipole harmonic oscillators
interacting with reservoirs, then the dielectric permittivity is
the sum of Eq. (A7). This fact plays an important role if one
tries to fit the actual permittivity with the model one.

APPENDIX B: TRANSVERSE POLARIZATION CURRENT
IN THE QUASISTATIC APPROXIMATION

In this appendix, we discuss the interaction between the
transverse electromagnetic field and polarization current. The
interaction between medium and transverse field is introduced
through the term proportional AṖ in Lagrangian (1). Note that
the medium polarization is a discontinued function due to finite
volume of the metallic sphere. As a result, the transverse part of
the current, jt = Ṗ − ε0gradU̇ , is not zero because the terms Ṗ

and ε0gradU̇ do not cancel each other. Indeed, if we substitute
Eqs. (3), (5), and (8) into jt = Ṗ − ε0gradU̇ we obtain

jt(r,t) =
∑
l,m

Ṗlm(t)

×
{

l+1
2l+1Rgrad

[(
r
R

)l
	lm(θ,ϕ)

]
, r < R

− l
2l+1Rgrad

[(
R
r

)l+1
	lm(θ,ϕ)

]
, r > R

.

(B1)

One can see from the expression that this is indeed a transverse
current divjt(r,t) = 0 and this current is not vanishing.
No one summand is vanishing. That is the current, which
induces the vector potential. Indeed, from Lagrangian (1)
and the Euler-Lagrange equation we obtain in Coulomb
gauge wave equation for the vector potential in the form
(see also [52])

�A(r,t) − Ä(r,t)/c2 = −μ0jt(r,t), (B2)

which demonstrates the coupling between transverse current
and vector potential.
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Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Nat. Phys.
5, 470 (2009).

[21] R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller,
Nat. Nanotechnol. 8, 719 (2013).

[22] R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P.
Kouwenhoven, and V. Zwiller, Nano Lett. 10, 661 (2009).

235443-9

https://doi.org/10.1103/PhysRevA.57.4498
https://doi.org/10.1103/PhysRevA.57.4498
https://doi.org/10.1103/PhysRevA.57.4498
https://doi.org/10.1103/PhysRevA.57.4498
https://doi.org/10.1103/PhysRevLett.95.257403
https://doi.org/10.1103/PhysRevLett.95.257403
https://doi.org/10.1103/PhysRevLett.95.257403
https://doi.org/10.1103/PhysRevLett.95.257403
https://doi.org/10.1103/PhysRevB.75.085436
https://doi.org/10.1103/PhysRevB.75.085436
https://doi.org/10.1103/PhysRevB.75.085436
https://doi.org/10.1103/PhysRevB.75.085436
https://doi.org/10.1038/nature08318
https://doi.org/10.1038/nature08318
https://doi.org/10.1038/nature08318
https://doi.org/10.1038/nature08318
https://doi.org/10.1103/PhysRevLett.90.027402
https://doi.org/10.1103/PhysRevLett.90.027402
https://doi.org/10.1103/PhysRevLett.90.027402
https://doi.org/10.1103/PhysRevLett.90.027402
https://doi.org/10.1103/PhysRevLett.111.043601
https://doi.org/10.1103/PhysRevLett.111.043601
https://doi.org/10.1103/PhysRevLett.111.043601
https://doi.org/10.1103/PhysRevLett.111.043601
https://doi.org/10.1103/PhysRevB.74.235405
https://doi.org/10.1103/PhysRevB.74.235405
https://doi.org/10.1103/PhysRevB.74.235405
https://doi.org/10.1103/PhysRevB.74.235405
https://doi.org/10.1103/PhysRevB.72.075405
https://doi.org/10.1103/PhysRevB.72.075405
https://doi.org/10.1103/PhysRevB.72.075405
https://doi.org/10.1103/PhysRevB.72.075405
https://doi.org/10.1103/PhysRevB.84.153409
https://doi.org/10.1103/PhysRevB.84.153409
https://doi.org/10.1103/PhysRevB.84.153409
https://doi.org/10.1103/PhysRevB.84.153409
https://doi.org/10.1109/JSTQE.2008.2007918
https://doi.org/10.1109/JSTQE.2008.2007918
https://doi.org/10.1109/JSTQE.2008.2007918
https://doi.org/10.1109/JSTQE.2008.2007918
https://doi.org/10.1103/PhysRevLett.89.203002
https://doi.org/10.1103/PhysRevLett.89.203002
https://doi.org/10.1103/PhysRevLett.89.203002
https://doi.org/10.1103/PhysRevLett.89.203002
https://doi.org/10.1103/PhysRevLett.103.063003
https://doi.org/10.1103/PhysRevLett.103.063003
https://doi.org/10.1103/PhysRevLett.103.063003
https://doi.org/10.1103/PhysRevLett.103.063003
https://doi.org/10.1038/nature06230
https://doi.org/10.1038/nature06230
https://doi.org/10.1038/nature06230
https://doi.org/10.1038/nature06230
https://doi.org/10.1038/nmat1198
https://doi.org/10.1038/nmat1198
https://doi.org/10.1038/nmat1198
https://doi.org/10.1038/nmat1198
https://doi.org/10.1134/S0021364014200053
https://doi.org/10.1134/S0021364014200053
https://doi.org/10.1134/S0021364014200053
https://doi.org/10.1134/S0021364014200053
https://doi.org/10.1364/OE.23.021983
https://doi.org/10.1364/OE.23.021983
https://doi.org/10.1364/OE.23.021983
https://doi.org/10.1364/OE.23.021983
https://doi.org/10.1038/ncomms7407
https://doi.org/10.1038/ncomms7407
https://doi.org/10.1038/ncomms7407
https://doi.org/10.1038/ncomms7407
https://doi.org/10.1038/nphys2615
https://doi.org/10.1038/nphys2615
https://doi.org/10.1038/nphys2615
https://doi.org/10.1038/nphys2615
https://doi.org/10.1103/PhysRevLett.102.246802
https://doi.org/10.1103/PhysRevLett.102.246802
https://doi.org/10.1103/PhysRevLett.102.246802
https://doi.org/10.1103/PhysRevLett.102.246802
https://doi.org/10.1038/nphys1278
https://doi.org/10.1038/nphys1278
https://doi.org/10.1038/nphys1278
https://doi.org/10.1038/nphys1278
https://doi.org/10.1038/nnano.2013.150
https://doi.org/10.1038/nnano.2013.150
https://doi.org/10.1038/nnano.2013.150
https://doi.org/10.1038/nnano.2013.150
https://doi.org/10.1021/nl903761t
https://doi.org/10.1021/nl903761t
https://doi.org/10.1021/nl903761t
https://doi.org/10.1021/nl903761t


SHISHKOV, ANDRIANOV, PUKHOV, AND VINOGRADOV PHYSICAL REVIEW B 94, 235443 (2016)

[23] D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin,
Nat. Phys. 3, 807 (2007).

[24] A. L. Falk, F. H. Koppens, L. Y. Chun, K. Kang, N. de Leon
Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park,
Nat. Phys. 5, 475 (2009).

[25] E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P.
Vinogradov, and A. A. Lisyansky, Phys. Rev. B 85, 035405
(2012).

[26] P. A. M. Dirac, Proc. Roy. Soc. London A 114, 243 (1927).
[27] E. Fermi, Rev. Mod. Phys. 4, 87 (1932).
[28] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quan-

tum Electrodynamics (Butterworth-Heinemann, Oxford, 1982),
Vol. 4.

[29] P. D. Drummond, Phys. Rev. A 42, 6845 (1990).
[30] K. Watson and J. Jauch, Phys. Rev. 75, 1249 (1949).
[31] R. J. Glauber and M. Lewenstein, Phys. Rev. A 43, 467

(1991).
[32] B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992).
[33] O. Al-Dossary, M. Babiker, and N. Enfati, Phys. Rev. A 54,

2419 (1996).
[34] C. Eberlein and R. Zietal, Phys. Rev. A 86, 022111 (2012).
[35] L. Novotny and B. Hecht, Principles of Nano-Optics

(Cambridge University Press, Cambridge, 2006).
[36] T. G. Philbin, New J. Phys. 14, 083043 (2012).
[37] T. G. Philbin, New J. Phys. 12, 123008 (2010).
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