
PHYSICAL REVIEW B 94, 235432 (2016)

Thin-film growth dynamics with shadowing effects by a phase-field approach

Marco Salvalaglio,1,2,* Rainer Backofen,1 and Axel Voigt1,3

1Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
2IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany

3Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany
(Received 15 September 2016; published 23 December 2016)

Shadowing effects during the growth of nano- and microstructures are crucial for the realization of several
technological applications. They are given by the shielding of the incoming material flux provided by the growing
structures themselves. Their features have been deeply investigated by theoretical approaches, revealing important
information to support experimental activities. However, comprehensive investigations able to follow every stage
of the growth processes as a whole, particularly useful to design and understand targeted experiments, are still
challenging. In this work, we study the thin-film growth dynamics by means of a diffuse interface approach
accounting for both deposition with shadowing effects and surface diffusion driven by the minimization of the
surface energy. In particular, we introduce the coupling between a phase-field model and the detailed calculation
of the incoming material flux at the surface deposited from vacuum or vapor phase in the ballistic regime. This
allows us to finely reproduce the realistic morphological evolution during the growth on nonflat substrates, also
accounting for different flux distributions. A general assessment of the method, focusing on two-dimensional
profiles, is provided thanks to the comparison with a sharp-interface approach for the evolution of the early stages.
Then, the long-time-scale dynamics is shown in two and three dimensions, providing a general overview of the
features observed during deposition on corrugated surfaces involving flattening, increasing of surface roughness
with the growth of columnar structures, and voids formation.
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I. INTRODUCTION

The investigation of the morphological evolution during the
growth of crystalline thin films is crucial in order to optimize
the outcome of experiments tailoring material properties. In-
deed, such processes may be finely tuned leading, for instance,
to the formation of self-assembled nanostructures [1,2] and/or
to peculiar morphologies with a high degree of ordering
thanks to the patterning of the substrate [3]. Deeply patterned
substrates can be also adopted in order to move from planar to
three-dimensional crystal growth [4].

The growth dynamics of thin films can be generally de-
scribed within continuum approaches. This kind of modeling
is highly demanded as it allows for the description of the typical
time and length scales observed in experiments, not accessible
with atomistic approaches [5–7]. Usually, continuum models
account for local properties only, e.g., for the local chemical
potential [5]. However, in order to describe growth processes
like sputtering or glancing angle deposition [8,9], nonlocal
effects due to the ballistic shadowing have to be considered.
During sputtering deposition, for instance, the growth velocity
due to the incorporation of material in the solid phase is
expected to be proportional to the effective exposure angle
θ at the surface as shown in Fig. 1 [10,11]. Any undulation
due to the inherent surface roughness would then lead to
inhomogeneities in the growth velocity as local peaks collect
more material than the valleys. As a result, the surface
roughness increases during growth, resulting in the so-called
shadowing instability [10,12–14]. This strictly holds true
when material redistribution at the surface is negligible. If
not, as for instance during deposition at high temperatures,
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surface diffusion plays an important role and a different
behavior can be observed [11]. Indeed, this mechanism
leads to the flattening of wavy profiles according to surface
energy minimization [15,16], thus representing a competitive
mechanism with respect to the shadowing instability itself.
The growth of peculiar morphology as networks of columnar
structures and voids has been already explained accounting
for the simultaneous occurrence of these phenomena [11,17].
Moreover, these effects are generally found to be crucial for
explaining the outcomes of the deposition on deeply patterned
substrates [4,18,19].

The investigation of crystal growth from a vapor phase
and/or under vacuum including shadowing has been carried out
by several different approaches as sharp interface, continuum
modeling (see, e.g., Refs. [10,11,20,21]), and also by means of
discrete modeling with Monte Carlo sampling of the incoming
material flux (see, e.g., Refs. [13,22–25]). Within these
approaches, the main features of the morphological evolution
were described and scaling laws for the thin-film growth
dynamics were predicted [26]. However, they do not generally
cope with the complexity of real systems. A remarkable proce-
dure, able to describe shadowing effects in detail for etching,
deposition, and lithography has been introduced within a level
set approach [27,28]. By means of a similar approach, a
Monte Carlo ray-tracing procedure has been used to describe
etching processes in Ref. [29]. These models allow most of
the physics behind shadowing effects to be described, but they
are difficult to be used for the full modeling of nano- and
microstructures growth on flat and patterned substrates, in par-
ticular when considering other important contributions to the
evolution [7].

Phase-field (PF) models play a prominent role in contin-
uum modeling of materials [7,30–32]. Indeed, they allow
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FIG. 1. Illustration of the exposure angle θ for a 2D profile h(x).
Only rays with an orientation between τ̂1 and τ̂2 can reach the surface
in x. These vectors correspond to the tangent directions to h(x) at
x = x1 and x = x2, respectively.

differential equations describing the dynamics of specific
systems to be solved for complex geometries, also naturally
accounting for dramatic variations in the morphology with
topological changes. Moreover, when dealing with the defi-
nition of the solid and vapor/vacuum phase, such PF models
are effective in describing a lot of phenomena and features
typically present in thin solid films, such as anisotropic surface
energy minimization [33–35], evolution of elastically stressed
films [36,37], alloying [38], and contact angles between the
epilayer and the substrate [39]. Despite the versatility of the
PF approaches, a comprehensive modeling of the growth in the
ballistic regime including shadowing has not been introduced
yet. This is mainly due to the nonlocal character of these
effects, which generally requires us to know the coordinates
of the surface profile, not easily accessible within the implicit
description of the surface achieved with PF models.

In this work we provide an investigation of the thin-film
growth dynamics focusing on the competition between the
morphological evolution due to surface diffusion and deposi-
tion with shadowing effects. A convenient diffuse interface de-
scription of the material redistribution at the surface of the solid
phase, driven by the minimization of the surface energy, is se-
lected and it is coupled to a detailed modeling of the incoming
material flux including the shielding provided by the surface
profile itself. Thanks to this approach, several different regimes
are investigated just by varying the simulation parameters and
the features of the corresponding growth technique, such as the
material flux distribution. Moreover, it can be easily extended
to include other physical effects [7]. The PF model is briefly
illustrated in Sec. II. Then the calculation of the effective
material flux reaching the substrate is presented in Sec. III. In
Sec. IV the early stage dynamics of simple, wavy profiles in 2D
is analyzed by a sharp interface approach and it is compared to
the outcome of PF simulations to provide a general assessment
of the method. Then, the long time scale dynamics, deeply
exploiting the advantages of the PF approach, is illustrated
in Sec. V. Here the main features of the morphological
evolution during deposition are outlined both in two and three
dimensions (2D and 3D, respectively), unveiling the generality
of the observed features and the capabilities of the method.
Conclusions and remarks are summarized in Sec. VI.

II. PHASE-FIELD MODEL

The approach adopted in this work consists of evaluating the
evolution in time of an order parameter ϕ which describes the

solid (ϕ = 1) and the vacuum (ϕ = 0) phase, with a continuous
variation in between. The model is based on the standard
definition of the Ginzburg-Landau energy functional

G =
∫

�

γ

(
ε

2
|∇ϕ|2 + 1

ε
B(ϕ)

)
dx. (1)

� represents the entire domain where ϕ(x) is defined, ε is
the interface thickness between the two phases, and B(ϕ) =
18ϕ2(1 − ϕ)2 [31]. For the sake of simplicity, the surface
energy density γ is assumed to be isotropic with γ = 1. A
general extension of the model to anisotropic surface energies
can be found in Refs. [33,34]. The evolution law is then given
by

∂ϕ

∂t
= ∇ · [M(ϕ)∇μ] + 	|∇ϕ|, (2)

where the first term describes the diffusion along the surface
with μ = δG/δϕ the chemical potential, and the second term
accounts for the incoming material flux density 	 producing
the growth of the solid phase. M(ϕ) = (36/ε)ϕ2(1 − ϕ2) is the
mobility function restricted to the surface [31]. The equation
for μ reads

g(ϕ)μ = −εγ∇2ϕ + 1

ε
γB ′(ϕ). (3)

g(ϕ) = 30ϕ2(1 − ϕ2) is included to ensure higher order
convergence in the limit ε → 0 [36,40,41]. According to the
minimization of the energy functional of Eq. (1), the profile in
the direction perpendicular to the interface is well described
by

ϕ(x) = 1

2

[
1 − tanh

(
3d(x)

ε

)]
, (4)

with d(x) is the signed distance from the surface of the solid
phase [31]. An illustration of the PF representation of a generic
profile is reported in Fig. 2(a).

For deposition techniques and/or substrates which produce
a uniform incoming material flux at the surface, 	 is a
constant. In order to account for shadowing effects, 	 should
be described by a function of spatial coordinates and it is
defined as

	(x) = FS(x), (5)

where the shadowing function S(x) is a non-negative function
describing the shielding of the incoming material flux. That
is, S(x) is the amount of the total flux F that reaches x.
S(x) is chosen to be constant in the direction perpendicular
to the interface. Mass conservation of incoming flux leads to
a normalization condition:∫

�

S(x)|∇ϕ(x)|dx = 1. (6)

Notice that when shadowing effects are negligible, the S(x)
distribution should be constant at the surface. In Sec. III the
ray-tracing algorithm for the evaluation of this function on
a generic profile defined by ϕ is reported. The simulations
shown in this work are obtained by integrating Eqs. (2) and (3)
using the adaptive finite element toolbox AMDiS [42,43] with
a semi-implicit integration scheme and mesh refinement at the
interface as in Ref. [34].
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FIG. 2. Coupling of PF model and flux shielding algorithm. (a)
Generic 2D profile resembling the one in Fig. 1 defined within the PF
framework by ϕ(x). The interface thickness ε and the outer-pointing
surface normal n̂ are also shown. (b) Definition of the cells in the
regular grid for the calculation of the incoming material flux at the
surface. The dashed white line corresponds to the ϕ ∼ 0.5 isoline of
(a). The solid black line illustrates the region where the value of S
are extended to be used in Eq. (2).

III. FLUX SHIELDING ALGORITHM

We use a ray-tracing algorithm [44,45] in order to model
the source and the self-shadowing of the growth front. A point,
namely a dimensionless particle, with a prescribed evolution
direction represents a ray as, e.g., in Ref. [29]. The initial
position and direction distribution of the particles describe the
characteristics of the source of material. Then the amount of
particles reaching some part of the surface defines the local
flux density at the surface and thus the local growth velocity.
In order to efficiently track the particle impingement at the
surface, the interface between phases is first represented on
a regular grid as illustrated in Fig. 2(b). All the cells where
ϕ > 0.5 are set to be solid (solid cells, SC) and the other cells
to vacuum (vacuum cells, VC). The interface is defined by SC
with at least one VC as nearest neighbor [46]. For later use we
also define extended interface cells (EIC). EIC are SC (VC)
with at least one next-nearest neighbor cell which is VC (SC)
but not an IC. The ray-tracing particles are then propagated
along their predefined direction and collected in the first IC
they arrive. It is worth mentioning that the PF model is not
able to resolve any length scale smaller than the interface
thickness [31]. So that values of S are averaged over a number
of boundary cells given by the ratio between ε and the length of
the side of the squared cells in the regular grid �x. According
to this, we select �x = ε/n with n an integer number and
n � 2. In this work we select n = 8 and n = 4 for 2D and 3D
simulations, respectively. Normalized by the total number of
ray-tracing particles, chosen to provide the proper sampling of
the surface, S defines the value of shadowing in an interface
cell, namely S(IC). In order to apply this in the evolution

law, given by Eq. (2), S(x) has to be defined in the entire
interfacial region, i.e., where |∇ϕ| > 0. In a first step, S(x) is
defined in the EIC as an average of its values in the neighboring
ICs. Second, in the interface region, S(x) is extended in the
direction normal to the interface by solving [47]

∇S(x) · n̂ = 0. (7)

n̂ = −∇ϕ/|∇ϕ| is the outer-pointing normal to the interface,
as illustrated in Fig. 2(a). The extension is performed in
a region with a thickness equal to 2ε as illustrated in
Fig. 2(b). The interpolation of S(x) back to the locally refined
unstructured mesh used to solve the equations of Sec. II is
straightforward and, thus, Eq. (2) is well defined. The whole
algorithm can be summarized as follows:

(1) Define the interface on a regular grid.
(2) Collect the ray-tracing particles in ICs and calculate

S(IC).
(3) Extend S in the direction perpendicular to interface:

S(IC) → S(x).
(4) Interpolate to the unstructured finite element mesh.
(5) Solve the evolution law given by Eq. (2).
S(x) is a function of the distribution of ray-tracing particles.

Thus, a variety of different sources can be modeled. Isotropic
sources are modeled by choosing initial particles evenly
distributed in space far away from the surface with random
directions. Directional fluxes, e.g., mimicking glancing-angle
deposition, are modeled by restricting the motion of particles
to a preferred direction. Source location and geometries are
directly modeled by the initial distribution in space of the
ray-tracing particles. Even additional features like reflection
or scattering [25] may be easily included in this algorithm by
allowing for changes in the direction during the ray tracing
of a single particle and by introducing an incorporation rate
for particles reaching the surface. In this work, we focus
on the deposition in the ballistic regime. However, the same
procedure would apply also to other regimes, by accounting
for the proper evolution of the particles.

The outcome of the aforementioned procedure is illustrated
in Fig. 3 where S̄(x), namely the S(x)|∇ϕ| distribution
normalized by its maximum values, is shown for both 2D
and 3D profiles with different incoming fluxes. The total
number of the incoming particles is chosen large enough to
ensure no variation in the S(x) when increasing the number of
rays (∼105 in 2D and ∼106 in 3D). The same applies to any
simulation reported in the following. Figures 3(a)–3(d) show
S̄(x) values in the 2D simulation domain. In Figs. 3(e)–3(h) the
values of this quantity are shown at the ϕ ∼ 0.5 isosurfaces
while the gray domains correspond to the solid phase, i.e.,
to the region with ϕ > 0.5. The initial condition for ϕ(x)
is set by means of Eq. (4) with d(x) the signed distance
from h(x) = πR cos(x) + h0 in 2D with x ∈ [0,4π ] and
h(x,y) = πR[cos(x) + cos(y)] + h0 in 3D with x ∈ [0,4π ]
and y ∈ [0,4π ]. Different values for R, namely the aspect ratio
of the resulting profiles, are considered. Periodic boundary
conditions in the in-plane directions (x̂ and ŷ, the latter only in
3D) are set, along with no-flux boundary condition along the
vertical direction. The same boundary conditions are adopted
for all the other simulations of this work.

First, let us focus on the case of sputtering deposition, i.e.,
with particles generated randomly in the vacuum phase far
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FIG. 3. Maps of the S̄(x) distribution obtained by the flux-shielding algorithm on wavy profiles. (a)–(c) Results of sputtering deposition on
2D profiles with aspect ratio (R) values of 0.0, 0.2, and 0.5, respectively. (d) as in (c) with a prescribed direction α = −π/4 for the incoming
material flux (as illustrated in the panel). ε = π/5 and �x = ε/8. (e)–(g) Results of sputtering deposition on 3D profiles with aspect ratio (R)
values of 0.0, 0.2, and 0.5, respectively. (h) as in (g) with a prescribed direction for the incoming material flux with an angle of −π/4. ε = π/5
and �x = ε/4.

away from the interface with random directions α ∈ ] − π,0[.
According to the diffuse interface description, we obtained
nonvanishing values of S̄(x) only within the interface. For
R = 0, the surface profile is flat and shadowing effects are not
present. Indeed, a uniform flux distribution is obtained along
the surface, i.e., no variation of the shadowing function S(x)
is expected along ϕ isolines in 2D and isosurfaces in 3D as
shown in Figs. 3(a) and 3(e), respectively. Then, by increasing
R values, inhomogeneities of S̄(x) appear with higher values at
the peaks and lower values at the valleys as shown in Figs. 3(b)
and 3(f) for R = 0.2. Such differences increase for larger R

values as can be seen in Figs. 3(c) and 3(g) where R = 0.5.
As discussed previously, the ray-tracing algorithm allows
various features of deposition techniques to be considered.
This is illustrated in Figs. 3(d) and 3(h). Different to the
other cases, a directional deposition is considered there by
randomly generating particles in the vacuum phase with
a single orientation α = −π/4. The result consists of an
asymmetric S̄(x) distribution which has maximum values
where the rays can directly reach the surface and goes to zero
when they are completely shielded. These effects are clearly
observed during glancing angle deposition [8,9], resulting in
the growth of tilted structures.

IV. EARLY STAGES OF DEPOSITION
AND MODEL ASSESSMENT

We focus now on the first stages of the deposition on
corrugated surfaces. The method introduced in Secs. II and III
allows for the calculation of the velocity distribution on a
selected profile and, thus, the evaluation of the expected
evolution during deposition. Notice that in the very first
stages of the growth process, in the regime where surface
diffusion is active, dramatic changes in the geometries are not
expected [17]. Therefore, once the initial profile is known,
the velocity at the surface can be easily derived by other
approaches involving the explicit description of the surface. In

particular, this holds true for 2D profiles described by analytic
functions. In this section, a sharp-interface approach is adopted
to calculate the evolution of a surface profile during the first
stages of deposition. Then, the results obtained thereby are
compared to the outcome of PF simulations, assessing the
reliability of the method introduced in the previous sections.

A. Sharp-interface approach

Let us consider a 2D, wavy profile described by a cosine
function as in Fig. 4(a), given by

h(x) = A cos(qx), (8)

where A is the amplitude and q the wave number. L = 2π/q

defines the wavelength of the profile. The aspect ratio of the
profile is given by R = 2A/L. By assuming an isotropic,
unitary surface energy density, the evolution by surface
diffusion in terms of the magnitude of the velocity along the
outer-pointing surface normal is [15,16]

vd
n̂(x) = D∇2

�κ(x), (9)

with D the diffusion coefficient and κ the local curvature. The
latter is given by κ(x) = −h′′(x)/{1 + [h′(x)]2}3/2. ∇2

� is the
surface Laplacian along the surface profile � [48]. In Fig. 4(b)
the vd

n̂ values are shown for three different values of R with
q = 1 and D = 1.

In order to account for material flux during deposition, an
additional term vf

n̂ = FS(x) is considered and the evolution
law then reads vn̂ = vd

n̂(x) + vf
n̂(x). We focus here on the

general case of sputtering deposition. Therefore, the flux
shielding of the profile can be quantified by considering the
effective exposure angle θ at the surface as illustrated in
Fig. 4(a). The θ (x) distribution can be calculated as the angle
between vectors τ̂ 1 and τ̂ 2 (see Fig. 1) as

θ (x) = arccos

(
τ̂ 1(x) · τ̂ 2(x)

|τ̂ 1(x)||τ̂ 2(x)|
)

. (10)
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FIG. 4. Sharp-interface approach. (a) Exposure angle θ (x) for a cosine profile. Two different cases are shown: θA = θ (xA) represents the
construction required when x/L < 0.25, where x1 = x. A similar construction is expected for x/L > 0.75, with x2 = x. θB = θ (xB) represents
the case obtained for 0.25 < x/L < 0.75, where x1 < x < x2. (b) Values of vd

n̂(x)/A with q = 1 and D = 1 for different aspect ratios: R = 0.1
(solid line), R = 0.2 (dashed line), and R = 0.5 (dotted line). (c) θ (x) distribution for different R values. (d) Velocity distribution vn̂(x)/f for
a cosine with R = 0.5: D = 0.1 (solid line) and D = 0.01 (dashed line).

The τ̂ i vectors for profiles described by Eq. (8) are determined
by considering the points x1 and x2 whose tangent line τ̂ i

contains x without additional intersections with h(x). Such a
construction for the profile is illustrated in Fig. 4(a), where
the two qualitatively different cases are shown. The values of
the θ (x) distribution are shown in Fig. 4(c) for different values
of R.

The shadowing function is defined by the exposure angle
using the normalization condition:

S(x) = θ (x)∫
θ (x)d�

. (11)

By comparing the normal velocities due to surface diffusion
vd

n̂(x) and flux vf
n̂(x) the competition between surface diffusion

and shadowing can be investigated. In particular, we are
interested here in evaluating if the amplitude of the initial
profile increases, thus indicating the dominance of shadowing
effects, or decreases, showing the dominance of the surface
diffusion. Notice that the diffusion coefficient D directly set the
local velocity vd

n̂(x), while the parameter F set the total amount
of material reaching the entire surface. In order to compare D

with a parameter describing the local amount of the incoming
material, the total flux density f is introduced as f = F/Lx

with Lx the range of x values for a 2D profile. The same would
apply for a 3D profile with f = F/(LxLy) and Ly the range

of y values. This choice corresponds to normalize F by the
extension of a flat surface, for which the condition vf

n̂(x) = f

is achieved everywhere. The vn̂(x) distribution corresponding
to two values of the D/f ratios are shown in Fig. 4(d).

Let us consider the velocities v1 = vn̂(0) and v2 = vn̂(π ),
representative of the evolution rate at the peaks and the
valleys of the cosine profile with q = 1 as in Fig. 4(a). The
tendency to increase or decrease the amplitude is evaluated by
�v = (v1 − v2)/f . Notice that this quantity corresponds also
to the difference in the maximum and minimum velocity due
to deposition and surface diffusion (divided by the f factor).
The velocity difference �v as function of R and D/f values,
is shown in Fig. 5 (for q = 1). The solid red line represents
the condition v1 = v2, i.e., surface diffusion and growth com-
pensate exactly and the change in the amplitude is vanishing.
Moreover, �v = 0 condition is achieved also for vanishing R

values, as vd
n̂(x) = 0 and vf

n̂(x) = f in such a limit for any value
of D/f (see ±5 × 10−3 isolines). For R values larger than 0,
a positive �v is obtained if D/f ratios are smaller than the
ones corresponding to the solid red line. In this case, shadowing
effects are stronger than surface diffusion leading to larger dif-
ferences between the height of peaks and valleys of the surface
profile, i.e., to an increasing surface roughness. Conversely,
negative �v values are obtained for larger D/f values pointing
out the dominance of flattening. The information obtained by
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FIG. 5. �v values as function of R and D/f for q = 1. Solid
black lines show �v isolines. The solid red line represents the curve
at which �v = 0, separating the region where a global smoothing
is expected (flattening) from the one leading to an increasing of the
surface roughness (roughening).

such an analysis can be directly related to the features of the
growth process. For instance, the growth temperature can be
linked to the diffusion coefficient by an Arrhenius law [15].
That is, growth at high temperature would provide high values
of D and vice versa. If we consider now a growth condition
which provides surface roughening (i.e., in the region of Fig. 5
with �v > 0) and the temperature is raised, the importance of
surface diffusion increases and above certain values a global
flattening is expected. This result is in agreement with the
well-known dominance of kinetic effects for high fluxes or low
temperatures along with the onset of thermodynamic regimes
in the opposite case [5]. Notice that the quantitative results
reported in Fig. 5 are obtained for the specific choice of the
initial profile function as in Eq. (8) and they strictly refer to the
first stages of the evolution. Indeed, at later stages following the
very first ones, the initial profile assumes a different shape and
the equations cannot be readily applied anymore. However, the
plot in Fig. 5 provides an overview of the expected evolution
of wavy patterned profiles and it defines a benchmark for
computational approaches aiming to describe the competition
between surface diffusion and shadowing effects.

B. Model assessment

The behavior obtained by simulating the evolution as
described by PF equations can be directly compared to the
aforementioned results. A ϕ(x) function resembling a wavy
surface as in Fig. 3 is considered, focusing on the 2D
cosine profile as defined by Eq. (8). The evolution of such
a surface profile is described by Eq. (2). Parameters are set
to ε = π/10,�x = ε/8. Moreover, hereafter the parameter
controlling the amount of deposited material f is set to 1, so
that the competition between shadowing and surface diffusion
is controlled by means of D values, directly corresponding
to D/f ratios. Random directions and initial positions of
the particles for the ray-tracing algorithm are considered,

FIG. 6. �v values, as function of the D/f ratio, in the first
stages of the deposition on a cosine profile with R = 0.5. The
results obtained by PF simulations (filled dots) and semianalytical
sharp-interface approach (solid line) are reported. The value of �v in
the limit of D → 0 is also shown by a dashed line.

simulating sputtering deposition as in Figs. 3(a)–3(c). The
comparison between the results from PF simulations and the
prediction of the sharp-interface approach is provided in Fig. 6,
where a cosine profile with R = 0.5 is considered and the
�v values obtained with different D/f ratios are shown.
An almost perfect agreement between the predictions of the
sharp-interface model (solid line) and the PF simulation results
(filled dots) is obtained. So that we can conclude that the
method adopted here is able to reproduce the correct dynamics
including both surface diffusion and growth with shadowing
effects. While for later stages the evolution cannot be described
anymore by the aforementioned semianalytical sharp-interface
approach, it can be straightforwardly simulated by the PF
approach as illustrated in the following section.

V. LONG-TIME-SCALE EVOLUTION

Technology-relevant processes often involve deposition on
time scales well beyond the ones described by the results
in Sec. IV. Indeed, a large amount of material is typically
deposited to growth nano- and microstructures with significant
variation of the surface morphology. In this section, the
long-time-scale evolution during growth including shadowing
effects and surface diffusion is investigated. Along with
insights on the growth dynamics, these later stages of the
growth also reveal the real strength of the approach presented
in Secs. II and III.

Let us consider the cases illustrated in Fig. 3. Once the
features of the deposition process are set, the impinging flux
at the surface is uniquely determined by the choice of the
profile. However, according to the results of the previous
section, different evolutions are expected for different D/f

values. In Fig. 7 the growth of the profile of Fig. 3(c) is
shown for two different values of D/f . The reported profiles
correspond to the ϕ ∼ 0.5 isolines during the evolution. Four
representative stages are illustrated in the different panels by
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FIG. 7. PF simulations of sputtering deposition on a wavy profile:
(a) D/f = 1 and (b) D/f = 0.1. Blue lines show the initial profile.
Red lines correspond to the surface at the specific times reported in
the figure. �t between gray lines is 0.5.

red lines. The initial profile corresponds to the blue line and
intermediate stages are illustrated by gray lines. In Fig. 7(a)
the D/f ratio is set to 1. An almost conformal growth is
obtained in the first stages while the strong tendency towards
flattening, promoted by surface diffusion, finally leads to a flat
growth front. A different evolution is obtained in Fig. 7(b) with
D/f = 0.1. While in the very early stages the amplitude of
the cosine tends to decrease, as can be read from the plot in
Fig. 5, the evolution of the resulting morphology at later stages
shows a tendency to increase the difference between peaks
and valleys. This produces the growth of columnar structures
which, in turn, show an enlargement at the top with overhangs.
Then, such structures are found to touch each other and holes
are left in the material. Once they are formed a continuous
growth front is obtained on top, and it grows according to
the balance between shadowing effects and surface diffusion.
The material deposition is found to be not effective within
the voids as they result completely shielded. Therefore, they
evolve according to surface diffusion only. Notice that, despite
the presence of topological changes such as the merging of
columnar structures, the entire evolution is naturally tackled
by the PF approach thanks to the implicit treatment of the
evolving surface.

The mechanism outlined by simulations in Fig. 7 show a
good agreement with the evidence reported in the literature,
concerning the growth of columnar structures when shad-
owing effects dominate [11,17]. Moreover, mechanisms as
in Fig. 7(b) have been recently observed for the growth of
vertical microstructures on deeply patterned substrates, where

FIG. 8. PF simulations of directional deposition with α = −π/4,
on a wavy profile: (a) D/f = 1 and (b) D/f = 0.1. The same color
code of Fig. 7 is adopted. �t between gray lines is 0.25.

the key role of shadowing effects is combined to a relative
high growth temperature leading to enhanced contribution of
surface diffusion and merging of neighboring crystals [19]. A
general qualitative description of these experimental cases is
then achieved thanks to the method discussed in the previous
sections. Indeed, the possibility of ranging between flat sur-
faces and columnar structures is demonstrated just by varying
the D/f ratio. It is worth mentioning that similar behaviors
were also observed and modeled for far-from-equilibrium
crystalline structures during annealing, i.e., when surface
diffusion is promoted by high-temperature treatments [49,50].
Here such an effect is superposed to the detailed modeling of
the growth and similar results can be obtained just by setting
the proper initial morphology and F = 0, i.e., by turning
off the material deposition.

A similar investigation is also reported in Fig. 8 for the case
of directional deposition as in Fig. 3(d), with the same color
code as in Fig. 7. Figure 8(a) shows the evolution obtained
by deposition with a prescribed direction α = −π/4 for the
material flux and D/f = 1. Isolines reveal an accumulation of
material in some regions only, according to Fig. 3(d), yielding
to a strongly anisotropic growth front. However, the relevance
of surface diffusion is such to flatten the profile also in this
case and a planar surface is finally obtained. In Fig. 8(b) a
similar deposition is reported by setting D/f = 0.1. In this
case, the material redistribution provided by surface diffusion
does not lead to the flattening of the surface. Indeed, the growth
of tilted structures aligned along the direction set by α is
achieved. Then, also in this case, the formation of overhangs
is observed with the merging of different structures along
with the formation of voids. At variance with Fig. 7(b), the
holes formed here are smaller, and the evolution by surface
diffusion leads quickly to the equilibrium configuration, i.e.,
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voids with a circular shape. According to the balance between
deposition and surface diffusion, which is still present for
the continuous profile obtained on top, the evolution is
found here to form other voids, while a final flattening is
obtained for the simulation in Fig. 7(b) (not shown). These
results closely resemble the main features observed in the
classical glancing angle deposition methods [8,9], where tilted
columnar structures aligned to the direction of the flux are
obtained. The nontrivial effect of surface diffusion is here
superposed to the expected directional growth showing how
it can affect the formation of tilted and self-aligned structures
and films, along with regularly distributed holes.

The results reported in Figs. 7 and 8 reveal the main features
observed during the growth on nonplanar substrates. More-
over, the more detailed features depending on the deposition
flux can be identified thanks to the versatility of the considered
method. In addition, notice that the specific choice of a cosine
function as the initial profile is representative for the case
of pit-patterned substrates [2,51,52], thus providing specific
insights on such a realistic case. However, the general situation
for thin films consists of a rough profile with a random height
distribution. In Fig. 9 we illustrate this case by considering an
initial condition set as a continuous, random profile. Moreover,
to illustrate the versatility in tackling features of experiments,
we set the incoming material flux to be 50% vertical, i.e., α =
−π/2, and 50% isotropic, i.e., α ∈ ] − π 0[, mimicking some
peculiar growth regimes as adopted for instance in Ref. [18].
The size of the simulation domain is set here to Lx = 12π .
D/f ratio is set to 0.01. The aforementioned features of the
growth process are still observed here. Indeed, a smoothing
of sharp peaks, where the curvature is high, is achieved in the
first stages due to surface diffusion. Then, shadowing effects
produce anisotropic material flux distribution which leads to

FIG. 9. Simulation of the growth on a rough profile, described
by a random height distribution, with an external flux which is 50%
isotropic and 50% vertical with D/f = 0.01. The same color code of
Fig. 7 is adopted. �t between gray lines is 0.4.

different growth velocities at the surface and almost columnar
structures form. Coalescence may occur during the growth of
these structures forming holes within the material evolving
towards circular shape according to the minimization of the
surface energy.

Shadowing effects tend in general to form columnar struc-
tures with elongated trenches in between when the evolution
leads to an increase of the roughness, as can be seen from
simulations in Figs. 7 and 8. Moreover, as can be noticed
from the simulation in Fig. 9 (in between the two columnar
structures on the right), if the merging of two structures forms
a void with a very elongated shape, the evolution occurs with
changes in the topology involving the formation of more than
one hole in agreement with the expected kinetic pathway
towards equilibrium provided by surface diffusion [31,34]. The
formation of more than one hole between growing structures
is also observed in other regions of Fig. 9. We verified that
the evolution with larger diffusion coefficients suppresses the
formation of voids, leading to a flat growth front also starting
from the random profile considered here.

So far, only 2D results have been reported. However, the
modeling of 3D geometries is highly demanded to provide
comparisons with experiments and predictions on growth
processes. The PF method adopted here can tackle the
evolution of 3D geometries and, as already shown in Sec. III,
it allows for the calculation of the flux distribution with
shadowing on them. Therefore, the analysis of the evolving
profile during growth can be provided also for more realistic,
3D geometries. In Fig. 10 representative cases of deposition
on three-dimensional, wavy profiles are reported. In particular,
Fig. 10(a) shows the evolution obtained for the 3D profile
of Fig. 3(g) with D/f = 1. As in the corresponding 2D
simulation, a quick flattening is obtained in this case revealing
the dominance of surface diffusion. In Fig. 10(b) the evolution
of the same profile is shown for D/f = 0.1. Here the
contribution of surface diffusion is not enough to provide the
global smoothing of the profile and peaks grow more than the
deep valleys, which are present along 〈110〉 directions. At later
stages, this produces the formation of deep pits while a network
forms connecting the peaks. In contrast to the 2D simulations
in Fig. 7(b) this does not lead to the formation of overhangs and
topological changes. This reveals that some differences are in
general expected when changing the dimensions of the system
and, in particular, when accounting for the third dimension of
real structures. First, the impinging material flux results from
a solid view angle, thus accounting for surface corrugations
in a different way. Second, surface diffusion results enhanced
in 3D with respect to 2D as the curvature is given by the sum
of the principal curvatures [53], so that different values are
obtained for solids and for their equivalent sections in 2D [54].
Therefore, κ shows higher variations along the 3D profiles
thus producing higher velocities according to Eq. (2) in the PF
model or Eq. (9) in the sharp-interface approach. This effect,
in particular, is responsible for the stronger surface diffusion
observed in 3D which prevents the formation of overhangs
for the parameters of the simulation in Fig. 10(b). In order to
explore the parameter space more and provide information on
this comparison, in Fig. 10(c) the evolution obtained by further
decreasing the relevance of surface diffusion is reported,
setting D/f = 0.01. Here the peaks grow significantly more
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FIG. 10. Three-dimensional simulations of the growth on wavy profile. (a)–(c) Growth obtained by sputtering deposition on a profile as in
Fig. 3(g) with D/f equal to 1, 0.1, and 0.01, respectively. (d) Growth obtained by directional deposition as in Fig. 3(h) with D/f = 0.01.

than all the other regions and they also result enlarged in
shape. Then, as observed for the 2D simulations discussed
above, the growing structures touch each other with the
formation of holes in between and under the merged region.
Notice that, due to the numerical fluctuation, the merging
is not simultaneous in every direction, so that a slightly
irregular profile is obtained in the last reported step. The
case of a different deposition technique is also illustrated in
Fig. 10(d), where the flux distribution is set as in Fig. 3(h)
with D/f = 0.01. The growing profiles results from the
larger accumulation of material on a side of the peaks in
the substrate, and produces the formation of trenches in the
direction perpendicular to the incoming flux orientation.
Then, due to the peculiar surface morphology, overhangs
form over the deepest valleys (see the profile at t = 5.25)
and finally the merging of different regions is achieved, along
with the formation of voids buried in the material.

The results reported in Fig. 10 demonstrate the applicability
of the method to 3D patterned profiles, also pointing out the
expected differences according to the curvature definition and
the features of the flux shielding. However, they assess the
outcomes of 2D simulations, reproducing similar intermediate
stages during the growth. The evidence concerning flattening,
roughening, or growth of columnar structures depending of
the D/f ratio can then be regarded as general.

VI. CONCLUSIONS

In this work we investigated the growth dynamics of
crystalline films during deposition, accounting for both surface
diffusion and shadowing effects within a diffuse interface
approach. The goal was achieved by exploiting a PF model
of surface diffusion combined with a convenient description
of the incoming material flux by a ray-tracing algorithm.

The method was assessed thanks to the comparison with a
sharp-interface approach describing the expected evolution in
the early stages of the growth. Then, it was used to describe
the later stages of the growth process when surface diffusion
and shadowing effects are both relevant [11,17], e.g., during
high-temperature deposition on nonflat substrates [5].

The reported simulations outline the main features of
thin-film growth on undulated profiles. For high D/f ratios the
dominance of surface diffusion is observed, and the dynamics
towards flatting was reproduced. Moreover, the evolution
towards columnar structures was described by lowering the
D/f ratio. For low enough values of this quantity, the merging
of neighboring structures with the formation of bridges and
buried voids is also obtained. This behavior was reproduced
both in 2D and 3D within the selected framework. D and f are
both parameters which can be closely connected to the specific
features of the growth process, namely the temperature and the
amount of deposited material for a given flux distribution [5].
Then the morphological changes discussed here, and their
trends by varying such parameters, are expected to be observed
in experiments and they can be used to understand the results of
growth process as well as to design specific morphologies by
controlling the growth conditions. The direct correspondence
to the outcome of specific experiments [17,19] further assess
the reported investigation. Different flux distributions were
also considered in order to reproduce different experimental
conditions, namely sputtering and glancing-angle deposition.
Despite the simulations reproduced the features of the specific
processes, they also outlined the same aforementioned trends
for what concerns the possible growth of columnar structures
and their merging. For the sake of convenience, simple initial
surfaces, described by cosine functions, were mostly adopted,
still resembling the main features of profile adopted for several
technological application [2,51,52]. In addition, a case dealing
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with a generic rough surface was also reported to confirm and
extend the effectiveness of the reported results.

From the methodological point of view, a general ap-
proach for the investigations of the growth dynamics has
been introduced. Indeed, it allows for the description of the
impinging material flux at the surface with shadowing effects
taking advantage at the same time of the well-known features
of PF models, such as the easy managing of surfaces in
3D thanks to the diffuse domain approach along with the
natural description of complex topological changes [31]. This
coupling is proposed here and it paves the way to more
comprehensive and thorough investigations of growth process
on patterned substrates (see, e.g., Refs. [8,9,18]). Moreover,
it is also worth mentioning that more complex scenarios
can be present during crystal growth, e.g., showing crystal
faceting and/or elastic energy minimization [5]. These effects
are known to be described by PF models [7,34,36,55], which
are compatible with the one reported in Sec. II. So that the
shadowing calculations provided here can be used for several
other investigations.

Future studies will be devoted to the extension of the anal-
ysis reported in this work to the growth dynamics of thin films
when deposited on more complex patterned substrates. More-
over, an interesting perspective consists in driving the self-
assembly of voids in ordered arrays by exploiting the afore-
mentioned mechanisms and the reported simulation technique.
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