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Spin-electric Berry phase shift in triangular molecular magnets

Vahid Azimi Mousolou,1,* C. M. Canali,2,† and Erik Sjöqvist3,‡
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We propose a Berry phase effect on the chiral degrees of freedom of a triangular magnetic molecule. The
phase is induced by adiabatically varying an external electric field in the plane of the molecule via a spin-electric
coupling mechanism present in these frustrated magnetic molecules. The Berry phase effect depends on spin-orbit
interaction splitting and on the electric dipole moment. By varying the amplitude of the applied electric field, the
Berry phase difference between the two spin states can take any arbitrary value between zero and π , which can
be measured as a phase shift between the two chiral states by using spin-echo techniques. Our result can be used
to realize an electric-field-induced geometric phase-shift gate acting on a chiral qubit encoded in the ground-state
manifold of the triangular magnetic molecule.
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I. INTRODUCTION

Berry’s phase, originally discovered [1] for a nondegenerate
pure quantum state evolving adiabatically in a cyclic fashion,
has been subsequently extended to nonadiabatic evolution
[2,3], the evolution of degenerate quantum states [4], and
mixed states [5,6]. In parallel to the theoretical development,
these phases have been demonstrated experimentally in a
wide variety of contexts, including optical [7], molecular
[8], and solid-state [9] systems. The properties of the Berry
phase make it an essential unifying concept in the physical
sciences [10].

The emerging and partly overlapping fields of molecular
quantum spintronics [11] and magnon spintronics [12] offer a
promising approach to design devices for information storage,
transport, and processing. In this development, magnetic
molecules (MMs) [13] play a central role. MMs possess
rich quantum properties, which can be chemically engineered.
There has been considerable recent interest in MMs since they
all have, in contrast to, e.g., nanoparticles, identical properties,
which is an important advantage for the realization of scalable
ensembles of quantum computation entities. Antiferromag-
netic triangular molecules such as {Cu3} complexes [e.g.,
Na12[Cu3(AsW9O33)2 · 3H2O] · 32H2O] [14] are a special
class of MMs particularly suitable for quantum control and
manipulation. Due to the lack of inversion symmetry, these
triangular MMs display an effective spin-electric coupling
mechanism [15–17] acting within their quasidegenerate chiral
ground state. This provides a proper and applicable way to
do quantum information processing with spin systems, since
electric fields are simpler to apply and control at small spatial
scales and short time scales, compared to magnetic fields
[16,17]. For these reasons, electrical control of electron and
nuclear spin qubits is a subject intensively investigated, not
only in MMs [18], but also in semiconductor quantum dots
containing single electrons [19], and in devices consisting of
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single impurities in a semiconductor host, e.g., P donors in Si
[20], as originally proposed by Kane [21].

Laser-induced nonadiabatic (femtosecond) spin dynam-
ics in isolated triangular clusters, such as Co3

+(EtOh),
Co3

+(EtOh), Ni3(CH3OH), and Co+(CH3OH) have been
studied recently both theoretically (using advanced ab initio
methods) and experimentally in molecular beam experiments
[22,23]. These trinuclear transition-metal clusters are different
from the antiferromagnetic triangular molecules considered in
the present paper. Their spin properties make them closely
resemble single-molecule magnets (SMMs) [24]. Nevertheless
these studies show that efficient electric manipulations of the
molecular spin density, in this case mediated by spin-orbit
interactions, is feasible. In principle, similar molecular beam
experiments could be extended also to triangular antiferro-
magnetic molecules such as Cu3, where a coupling between
spin-chiral states and the electric field is present even in the
absence of spin-orbit coupling.

In this paper we show that in a triangular antiferromagnetic
MM subject to a time-dependent external electric field, the
spin-electric coupling induces a Berry phase in the spin-chiral
ground-state manifold. We use applied electric field pulses in
the presence of a static magnetic field to realize a conditional
dynamics of the system. We show that Berry phases with
arbitrary values between zero to π on the chiral degree
of freedom (chiral qubit) can be achieved by adiabatically
varying the electric field in the plane of the molecule, and
can be measured by using the spin-echo technique. The Berry
phase shift depends on the effective spin-orbit interaction and
electric dipole moment of the MM, which are the two most
important quantities that control the spin-electric coupling
mechanism. In the adiabatic limit, the ratio of these two
quantities can be determined by measuring the Berry phase
shift as a function of the electric field amplitude. The Berry
phase can be used to implement a phase-shift gate, with an
arbitrary phase, acting on the chiral part of the ground-state
manifold of the triangular MM, which encodes a single chiral
qubit. These gates are electric field generated and geometric,
two key ingredients to realize flexible and coherent switching,
which is needed for the implementation of efficient quantum
processors.
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FIG. 1. Schematic geometry of triangular molecular magnets.

The outline of the paper is as follows. In the next section,
we provide a brief introduction to spin-electric coupling in
triangular MMs and their ground-state manifold. In Sec. III,
we describe the conditional dynamics with respect to the spin-
chirality decomposition of the system. We demonstrate how
it can be used to test the geometric Berry phase effect on the
chirality in Sec. IV. The paper is summarized in Sec. V.

II. EFFECTIVE QUBIT SYSTEM

The degeneracy of the ground state (GS) of spin rings
containing an odd number of antiferromagnetically coupled
half-integer spins make them a suitable candidate for quantum
information processing. In particular, odd-number rings of
half-odd integer spins satisfy the conditions, which allow for
spin state manipulation via pulsed electric fields [17]. The
simplest nontrivial class of such a spin system is a triangular
ring of s = 1

2 spins, e.g., Cu3, V15, Co3. As depicted in Fig. 1,
the magnetic core of such MMs consists of three s = 1

2 spins
positioned at the vertices of an equilateral triangle and coupled
by an antiferromagnetic Heisenberg exchange interaction. In
the absence of external fields, the system can be described by
the spin Hamiltonian [17]

H =
3∑

k=1

Jk,k+1sk · sk+1 +
3∑

k=1

Dk,k+1 · (sk × sk+1), (1)

with a periodic boundary condition, where the first and fourth
sites are identified. Here, sk is a spin- 1

2 vector operator local-
ized at site k. In Eq. (1), the first term is an isotropic Heisenberg
interaction with antiferromagnetic exchange couplings Jk,k+1,
and the second term is an antisymmetric Dzyaloshinsky-
Moriya (DM) interaction [26,27]. Under the assumption that
the magnetic Hamiltonian of the molecule is invariant under
point group D3h, its parameters satisfy the constraints

Jk,k+1 = J, Dk,k+1 = (0,0,Dz), k = 1,2,3. (2)

The GS manifold of these frustrated MMs is given by two
degenerate total spin S = 1

2 doublets (Sz = ± 1
2 ) of opposite

spin chirality χ = ±1. Explicitly, the GS space is spanned by

the following linearly independent quadruplet,∣∣∣∣±1,+1

2

〉
= 1√

3
[|↓↑↑〉 + η±|↑↓↑〉 + η∓|↑↑↓〉],

∣∣∣∣±1,−1

2

〉
= 1√

3
[|↑↓↓〉 + η±|↓↑↓〉 + η∓|↓↓↑〉], (3)

η± = e±i2π/3,

constructed by symmetry adapted linear combination of
various possible spin configurations. The quantum basis states
given in Eq. (3) are simultaneous eigenvectors of the z

component of chirality and total spin operators, i.e., Cz and
Sz, respectively, where the components of the chirality vector
operator read

Cx = −2

3
(s1 · s2 − 2s2 · s3 + s3 · s1),

Cy = 2√
3

(s1 · s2 − s3 · s1), (4)

Cz = 4√
3

s1 · (s2 × s3).

One can verify that the chiral operators define the same algebra
as the spin-half operators. Namely, Ck , k = x,y,z, in the chiral
basis states |χ = ±1〉 are the same as Pauli matrix components,
and thus [Ck,Cl] = 2i

∑
m εklmCm, with εklm being the Levi-

Civita symbol.
The energy gap �J between the GS manifold and the first

excited state, the S = 3
2 quadruplet, is typically of the order of

1 meV [28]. The spin-orbit-induced DM interaction lifts the
degeneracy between the two chiral doublets with a splitting
�SO � 0.1�J [16,29]. What makes these triangular MMs
interesting for quantum manipulation is that an electric field
in the xy plane of the molecule couples the two GS doublets
of opposite chirality, due to the lack of inversion symmetry
[16,17,30].

In the presence of external electric (E) and magnetic (B)
fields, the dynamics of the GS space spanned by the basis
states given in Eq. (3) is described by the effective low-energy
spin Hamiltonian [16]

Heff = �SOCzSz + p E′ · C‖ + B ¯̄g · S, (5)

with C‖ = (Cx,Cy,0) and S = (Sx,Sy,Sz) being the chirality
and spin vector operators, respectively. E′ = Rz(α)E is the
electric field E rotated about the z axis by an angle α = 7π/6 −
2β, with β being the angle between the in-plane component
of the electric field E and a vector pointing from site 1 to 2.
Due to the symmetry of the molecule, ¯̄g = diag{g‖,g‖,g⊥}.
The parameter p has the units of an electric dipole moment,
and it gives the strength of the effective coupling between the
two states with opposite chirality brought about by the electric
field. In Cu3 MM p is not small [30], and for typical electric
fields generated by a scanning tunneling microscope (STM)
(≈102 kV/cm) the spin-chirality manipulation (Rabi) time is
10–103 ps [16,30].

We conclude this section with a discussion on the validity
of the effective spin Hamiltonian given in Eq. (1), satisfying
the constraints of Eq. (2) imposed by the D3h symmetry of the
molecule. It is known [31] that equilateral triangular molecules
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with an odd number of electrons undergo a Jahn-Teller (JT)
distortion that reduces the D3h symmetry. Typically, the
deformation makes one of the sides slightly shorter or longer,
leading to an isosceles triangle with C2v symmetry. For Cu3

complexes and other triangular molecules the deformation is
found to be very tiny both experimentally [14] and theoretically
[32] (the side change is of the order of 0.001 Å for Cu3

complexes [14]), and it is usually neglected [16]. The JT
distortion mechanism lifts the chiral degeneracy of the ground
state, even in the absence of spin-orbit coupling. We can
describe this effect within the spin Hamiltonian approach by
adding to Eq. (1) the JT-induced correction

δHJT =
3∑

k=1

δJk,k+1sk · sk+1, (6)

where δJk,k+1 are the modifications in the exchange constants
caused by the changes in the bond lengths. Since the defor-
mation is tiny, we typically have δJk,k+1/J � 1, where J is
the coupling constant for the equilateral nuclear configuration.
For example, for the case of Cu3, where J ≈ 1 meV, δJk,k+1 <

0.1 meV. For a distortion down to an isosceles triangle, two
of these δJk,k+1 are equal. Since δHJT is still rotationally
invariant in spin space, the total spin of the total Hamiltonian
remains a good quantum number. Therefore, δHJT couples
the two S = 1

2 chiral GS states, lifting the degeneracy of
the unperturbed Hamiltonian, but does not couple these
to the S = 3

2 excited state quadruplet. Using the definition
of the chiral vector operator in Eq. (4), one can see that δHJT

can be formally rewritten as

δHJT = pEJT · C‖, (7)

where EJT is an internal electric field describing the JT
deformation of the molecule [16]. Here, the components of the
vector pEJT can be easily related to the parameters δJk,k+1.

Since the JT reduces the symmetry of the molecule to
C2v , the DM term is also modified by the JT distortion.
This effect can also be studied by adding an appropriate spin
Hamiltonian to Eq. (1). This perturbation in general breaks
rotation symmetry in spin space, and besides coupling the two
GS S = 1

2 chiral states with each other, also couples these
to the S = 3

2 excited state. However, since the DM exchange
constant for the unperturbed system is at least one order of
magnitude smaller than isotropic J , its change induced by
the JT distortion is typically small with respect to δJk,k+1.
Therefore, we expect the effect of this JT-induced perturbation
on the low-energy levels of the system to be considerably
smaller than the one caused by Eq. (7).

In conclusion, the main effect of the JT distortion can be
described by the presence of a small intrinsic static in-plane
electric field, which is combined to the applied external electric
field E′ in Eq. (5).

Note finally that for an isolated triangular molecule in the
gas phase, there are three equivalent JT distorted (isosceles)
configurations, all with the same GS energy but separated by
an energy barrier. It is then possible for the system to quantum
tunnel from any one of these configurations to the other two.
This phenomenon, known as the dynamical JT effect, can
effectively restore the original D3h symmetry of the molecule
[33], provided that the energy barrier separating the three JT

FIG. 2. Schematic diagram of electric-field-induced transitions
between states of opposite chirality in the ground-state manifold
of a triangular MM, with the zero-field splitting �SO due to the
Dzyaloshinsky-Moriya interaction. Red solid (dashed) lines represent
the states with χ = +1 and Sz = + 1

2 (− 1
2 ), and blue solid (dashed)

lines represent the states with χ = −1 and Sz = + 1
2 (− 1

2 ).

distorted states is small compared to perturbations that couple
them.

III. CONDITIONAL DYNAMICS OF THE SYSTEM

In the presence of a static magnetic field in the z di-
rection, an electric field E induces transitions only within
each eigensubspace of Sz of the chiral state manifold. This
implies that the effective spin Hamiltonian in Eq. (5) can be
decomposed into two parts corresponding to the eigenvalues
± 1

2 of Sz. Therefore, the system describes two independent
chiral components, decoupled from each other and split by
the external magnetic field (see Fig. 2). For a time-dependent
oscillating electric field E(t), the corresponding Hamiltonian
takes the form

Heff(t) = �

2
[
0I + �+(t) · σ ] ⊗

∣∣∣∣+1

2

〉〈
+1

2

∣∣∣∣
+�

2
[−
0I + �−(t) · σ ] ⊗

∣∣∣∣−1

2

〉〈
−1

2

∣∣∣∣, (8)

where �
0 = g⊥Bz,

��±(t) = [pE cos(ωt + φ),pE sin(ωt + φ),±�SO] (9)

are the Rabi vectors, and σ = (σx,σy,σz) is the Pauli vector
operator that acts on the chiral degrees of freedom. ω, φ,
and E are the angular frequency, phase, and amplitude of the
oscillating electric field, respectively, and ±�SO are the zero-
field energy splittings between the chiral states, when the spin
is in state |± 1

2 〉.
The chirality dynamics conditioned on the spin state is

described by

d

dt
s±(t) = �±(t) × s±(t), (10)

where s±(t) are the instantaneous Bloch vectors parametrizing
the conditional chiral density operators

ρ±(t) = 1
2 [I + s±(t) · σ ] ⊗ ∣∣± 1

2

〉〈± 1
2

∣∣, (11)
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given by solving the equations of motion

i�
d

dt
ρ±(t) = [Heff(t),ρ±(t)]. (12)

In the rotating frame with angular frequency ω around the z

axis, Eq. (10) is equivalent to

d

dt
s′
±(t) = �′

± × s′
±(t), (13)

with the time-independent Rabi vectors

��′
± = (pE cos φ,pE sin φ,±�SO − �ω). (14)

If the Bloch vector s′
+ (s′

−) is initially aligned with �′
+ (�′

−), it
remains aligned with �′

+ (�′
−) under an adiabatic variation of

the electric field parameters E and φ. Therefore, since we can
realize different vectors �′

+ (�′
−) by controlling the electric

field parameters, we can adiabatically move the Bloch vector
s′
+ (s′

−) into different positions on the Bloch sphere.

IV. GEOMETRIC PHASE SHIFT

In the absence of an electric field, the energy eigenstates
of the Hamiltonian in Eq. (8) are the basis states given in
Eq. (3). Hence, the Bloch vector s′

± corresponding to each
energy eigenstate is either parallel or antiparallel to �′

±. This
implies that by varying the effective Hamiltonian in Eq. (8)
adiabatically by slowly changing the parameters of the electric
field, we can let each energy eigenstate evolve in a cyclic
fashion. Figure 3 depicts the cyclic evolution C accomplished
first by slowly increasing the field amplitude from zero to E ,
then precessing the field around the z axis by slowly varying

FIG. 3. Schematic picture of the paths in parameter space
corresponding to cyclic evolutions of conditional chiral states in the
adiabatic limit. Depending on whether the initial chiral Bloch vector
s′
± is parallel or antiparallel to the initial Rabi vector �′

±, the Bloch
vector remains parallel or antiparallel, respectively, to the Rabi vector
along the adiabatic evolution. Thus, the polar angle θ̃± between the
Bloch vector s′

± and the z axis throughout the precession would be θ±
or π − θ± depending on parallel condition between the initial Bloch
and Rabi vectors.

the phase φ, and finally switching the field off by slowly
decreasing its amplitude to zero.

In such an adiabatic evolution, each energy eigenstate
accumulates a Berry phase, being proportional to the solid
angle subtended by its corresponding path on the Bloch sphere
representing the chirality state space Span{|±1〉}. The associ-
ated geometric phases can be calculated by specifying the polar
angle θ̃± between the Bloch vector s′

± and the z axis throughout
the precession. In the adiabatic regime, this angle is given by
the angle between the Rabi vector �′

± and the z axis, i.e.,

cos θ± = ±�SO − �ω√
(±�SO − �ω)2 + (pE)2

. (15)

Note that, depending on whether the initial Bloch vector
is parallel or antiparallel to the initial Rabi vector, the polar
angle θ̃± is θ± or π − θ±, respectively (see Fig. 3). Along
this evolution, the instantaneous energy eigenstates can be
parametrized as

|�±(ζ,ξ )〉 = [cos(ζ/2)|+1〉 + eiξ sin(ζ/2)|−1〉] ⊗ ∣∣± 1
2

〉
,

(16)

where ζ varies smoothly between zero and the polar angle
θ̃±, and ξ changes slowly between zero and 2π . Using this
parametrization, one can calculate the Berry phases as

γ± = i

∮
C
〈�±(ζ,ξ )|d|�±(ζ,ξ )〉

= i

∫ 2π

0
〈�±(θ̃±,ξ )| d

dξ
|�±(θ̃±,ξ )〉dξ

= −π (1 − cos θ̃±). (17)

Considering the fact that the polar angles θ̃± depend on the
orientation of initial Bloch vectors, we obtain the following
Berry phases

γ+1,+ 1
2

= −γ−1,+ 1
2

= γ+ = −π (1 − cos θ+),
(18)

γ−1,− 1
2

= −γ+1,− 1
2

= γ− = −π (1 − cos θ−),

with corresponding dynamical phases

δ±1,+ 1
2

= −1

2�

∫ T

0
[g⊥Bz ±

√
(�SO − �ω)2 + (2pE)2]dt,

δ±1,− 1
2

= 1

2�

∫ T

0
[g⊥Bz ±

√
(�SO + �ω)2 + (2pE)2x]dt.

(19)

Clearly, the cyclic evolution C yields the unitary phase
transformation

|x,y〉 −→ ei(γx,y+δx,y )|x,y〉, x,2y = ±1, (20)

of the spin-chirality basis vectors.
In order to realize purely geometric phase shifts, it is

necessary to eliminate the dynamical phases δx,y . This can
be achieved by using a technique known as spin echo [34,35].
In this procedure, we apply the cyclic evolution C combined
with fast π transformations, which simply flip the spin or
chiral basis states by applying in the molecular plane a pulsed
magnetic or electric field, respectively. Explicitly, we let the
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system evolve through the following compound evolution,

Cnet : C → π2 → C → π1 → C−1 → π2 → C−1 → π1,

(21)

where π2 (π1) is a fast spin (chiral) flip transformation, and the
path C−1 in parameter space is the same as C described above,
but in the reverse direction. The net effect of this compound
transformation would be that the dynamical phases are all
canceled out and we are only left with geometric phase factors.
Thus, the net unitary transformation is given by

U (Cnet) = (ei2�γ |+1〉〈+1| + e−i2�γ |−1〉〈−1|) ⊗ 1̂spin,

(22)

purely dependent on the Berry phase shift

�γ = γ+ − γ− = π (cos θ+ − cos θ−)

= π

(
�SO − �ω√

(�SO − �ω)2 + (pE)2

+ �SO + �ω√
(�SO + �ω)2 + (pE)2

)
, (23)

and acting nontrivially only on the chiral degree of freedom.
This follows from the fact that the cyclic adiabatic evolution
in opposite directions induces the same dynamical phases but
Berry phases with opposite signs. The unitary operator U (Cnet)
can be viewed as a geometric phase-shift gate [34] |±1〉 �→
e±i2�γ |±1〉 acting on a chiral qubit encoded in the ground-state
manifold of the MM.

Figure 4 shows that by careful control of the electric field
amplitude any Berry phase shift associated with the chiral qubit
can be realized. It is worth noticing that �γ is a Lorentzian-
shaped phase shift with no local extrema and is independent
of the applied external magnetic field. In the adiabatic limit
ω → 0, we obtain

lim
ω→0

�γ = 2π
�SO√

(�SO)2 + (pE)2
, (24)

FIG. 4. Geometric phase shift �γ as a function of �ω

�SO
and pE

�SO
,

where ω is the angular frequency of the applied electric field, p is the
strength of the spin-electric coupling, E is the applied field amplitude,
and �SO is the zero-field energy splitting of the chiral states.

which establishes a fundamental relation between three quanti-
ties: Berry phase �γ , the strength of the spin-electric coupling
p, and the zero-field energy splitting �SO.

The relation in Eq. (24) provides in principle a method for
obtaining an estimate of the ratio �SO/p of the two primary
intrinsic quantities regulating the spin-electric coupling mech-
anism in these MMs. By measuring the geometric Berry phase
�γ as a function of the external electric field amplitude E , the
ratio can be evaluated.

The geometric phase can be measured interferometrically,
by canceling the dynamical phases picked up along different
interference pathways. In the MM case, one may measure the
Berry phase �γ by using a spin-echo interference setting,
where the spin degree of freedom plays the role of the
interferometer arms. One way to realize this would be to
initialize the interferometer in an eigenstate of σx ⊗ 1̂spin

with, e.g., a short π
2 electric field pulse applied in the plane

of the molecule. The system subsequently evolves through
the spin-echo compound evolution Cnet described above, by
carefully controlling the external fields. Right after completing
the spin-echo sequence, another π

2 electric field pulse is applied
followed by measuring the chirality of the output. One finds
the probabilities

P (chirality = +1) = cos2(2�γ ),
(25)

P (chirality = −1) = sin2(2�γ ),

from which the Berry phase shift can be extracted. A direct
measurement of the chirality in these MMs is a nontrivial
task. However, as it was pointed by Khomskii et al. [15,36],
the chiral GS states are characterized by the presence of
spontaneous orbital currents, giving rise to magnetic orbital
moments proportional to the chirality. Therefore it is in
principle possible to determine the state chirality by carrying
out a measure of the orbital moment via, e.g., Stern-Gerlach-
type experiments.

We conclude this section with two remarks on the effect of
the external magnetic field. First, we note that in the conditional
chiral spin dynamics described above, a static magnetic field
perpendicular to the plane of the MM plays only the passive
role of splitting the two chiral components with opposite spin
quantum numbers. Importantly, in creating ensembles of solid-
state molecular spin qubits, this function of the magnetic field
is one possible solution to the unwanted long-range magnetic
dipolar interaction, which is one of the strongest sources
of decoherence in crystals of quantum molecular magnets
[37]. However, a large magnetic field also renders coherent
manipulations of spin qubits impractical. An alternative way
of controlling spin decoherence of a spin qubits in a solid-state
environment involves diluting the concentration of spin, but
this has the drawback of weakening the nearest-neighbor spin
interaction, needed for qubit entanglement. Quite recently a
novel and more ingenious technique based on “atomic clock
transitions” has been demonstrated [38]. In our case this is not
an issue, since the chiral qubit of a triangular MM is entirely
manipulated by the electric field, while a constant magnetic
field is still used to freeze out one of the two spin components.

The second remark concerns the effect of a component
of a constant magnetic field in the plane of the molecule.
When this is present, spin-up and spin-down states are
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coupled by the transverse field Bxy . Nevertheless, if Bxy � Bz,
then the eigenstates of the effective Hamiltonian are still of
predominant spin character, with a small admixture of the
opposite spin contribution. When a time-dependent field is
applied, we can imagine repeating the same analysis of the
chiral state dynamics induced by the spin-electric coupling.
Now, however, since the states are no longer pure spin states,
the electric field couples chiral states of opposite chirality
and predominately opposite spin. Using two states of opposite
chirality and opposite spin to encode a qubit has the advantage
that transitions between them can be more easily read out via
a detection of the spin flip [39].

V. SUMMARY

In summary, we have investigated the Berry phase effect in
the system of triangular antiferromagnetic molecular magnets
(MMs). We have demonstrated the existence of a Berry phase
associated with the chiral degree of freedom (chiral qubit) of
the system that can be measured by using spin-echo techniques.
We show that a nontrivial Berry phase shift can be realized
even with an in-plane external field, due to the presence of
a spin-orbit term that couples the chiral and spin degrees
of freedom. We have derived a unifying relation between
the Berry phase, as a function of electric field and the two
primary intrinsic quantities in the MM being the spin-orbit
coupling strength and the electric dipole moment. In this
way, the ratio between these quantities can be estimated
by measuring the Berry phase shift on the chiral degree of
freedom. Furthermore, by considering the two chiral states as
defining a qubit embedded in the ground-state manifold of
the triangular MM, the Berry phase effect can be interpreted
as a single-qubit geometric phase shift gate. The research of
this paper provides an experimental test bed for exploring
the physical nature of the Berry’s phase effect in solid-state
systems.

We have confined ourselves to the study of the chiral
dynamics of isolated triangular MMs. As we mentioned in

the Introduction, these systems can be possibly addressed in
molecular beam experiments, similar to the ones realized in
Ref. [22]. An alternative experimental realization of the effect
studied in this paper could possibly involve the functional-
ization of the MMs onto an appropriate surface/substrate,
which are then electrically addressed by a nearby STM tip
and electric gates. The choice of the surface is crucial. First
of all, the D3h symmetry of the molecule has to be preserved
in such a way that the simple theoretical model discussed
above is applicable. Graphene and boron nitride are both
substrates that display the correct crystal symmetry. Second,
unwanted charge-transfer effects between the molecule and
substrate that would mask and complicate the realization
of the spin-electric coupling must be avoided or controlled.
This is in fact a challenging task. Ongoing first-principles
calculations [32] of Cu3 and V3 MMs on graphene and
boron nitride substrates can provide useful hints on the
effect of the environment on the chiral GS manifold and
the spin-electric coupling in these antiferromagnetic triangular
molecular magnets. Another interesting possibility to realize
experimentally the effects proposed in this paper consists in
utilizing self-regulated atom trapping in open nanocorrals to
built triangular clusters on surfaces with atomic-level precision
and without the need for ligands [40].
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