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Electromagnetic reflection, transmission, and energy density at boundaries of nonlocal media
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We consider a semi-infinite spatially dispersive dielectric with unequal transverse and longitudinal
susceptibilities. The effect of the boundary is characterized by arbitrary reflection coefficients for polarization
waves in the material that propagate to the surface. Specific values of these coefficients correspond to various
additional boundary conditions (ABCs) for Maxwell’s equations. We derive the electromagnetic reflection and
transmission coefficients at the boundary and investigate their dependence on material parameters and ABCs. We
also investigate the electromagnetic zero-point and thermal spectral energy density outside the dielectric. The
nonlocal response removes the boundary divergence of the spectral energy density that is present in a local model.
The spectral energy density shows a large dependence on the difference between the transverse and longitudinal
susceptibilities, even at distances up to 10 nm from the boundary.
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I. INTRODUCTION

The response of electromagnetic materials to applied fields
is spatially nonlocal, i.e., the response at any point depends on
the value of the fields throughout a neighboring region [1,2].
This nonlocal response, or spatial dispersion, can be neglected
in many regimes of interest, even when frequency dispersion
is significant. Nevertheless, there are cases where nonlocal
response is a significant factor and interest in this topic
has increased in recent years. Metallic nanostructures have
been developed whose properties can be accurately predicted
only by including their nonlocal response [3–7]. Near-field
radiative heat transfer between materials is also modified by
spatial dispersion [8,9]. More generally, thermal and zero-
point electromagnetic energy in the presence of materials is
significantly affected by spatial dispersion [10–12]. This has
implications for spontaneous emission rates of emitters inside
materials or placed close to surfaces [12–16], and also for
thermal and zero-point forces on curved boundaries [12]. There
are thus many interesting questions, some of them quite basic,
that require a proper account of spatial dispersion.

In this paper we employ the macroscopic Maxwell equa-
tions to explore boundary effects in nonlocal media. We
extend previous results on reflection and transmission at planar
boundaries to the most general isotropic spatially dispersive
dielectric. The key extra ingredient here is to allow for both
transverse and longitudinal susceptibilities that have different
values [1,2] (see below). We also show how the spectral energy
density of thermal and zero-point radiation depends on the
material susceptibilities in this general case.

The electric susceptibility χ is frequently described by
a damped-oscillator model, in which nonlocal response
may be incorporated by a simple wave-vector dependence
[17]:

χ (k,ω) = χ0 + ω2
p

ω2
T + σ 2k2 − ω2 − iγ ω

. (1)
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Here ωT is the resonant frequency, γ quantifies the absorption,
ωp is the oscillator strength, and σ is a spatial-dispersion
parameter. The term χ0 collects contributions from other
resonances and acts as a background susceptibility. A more
complete model would dispense with χ0 and include additional
resonance terms. A justification of (1) based on properties of
semiconductors was given by Hopfield and Thomas [17] but
it can also be derived from a simple classical model [18]. In
the local case σ = 0 the usual Maxwell boundary conditions,
namely, the continuity of the tangential components of E and
H and the normal components of D and B, are sufficient
to calculate the reflection coefficient at a sharp boundary.
However, the introduction of a nonlocal term as in (1)
leads to the presence of two transverse and one longitudinal
wave inside the medium [2]. The usual Maxwell boundary
conditions are now insufficient to solve for the four unknown
amplitudes of the transmitted and reflected waves. Additional
information is required about the relationship between the
amplitudes. Many authors have expressed this as additional
boundary conditions (ABCs) on the polarization P of the
medium associated with the spatially dispersive resonance
[19–42] (i.e., without the background term χ0). Each ABC is
motivated by the type of medium considered, as we describe in
more detail in Sec. III. Several of these authors note that ABCs
are equivalent to introducing a phenomenological scattering
term to the susceptibility in the presence of a boundary, in
order to describe the behavior of the medium at the surface.
The denominator of the second term in (1) has zeros that
correspond to the dispersion relation for waves of polarization
P in the material. These polarization waves are reflected at the
surface and complex parameters are introduced to serve as the
corresponding reflection coefficients. Halevi and Fuchs [43]
incorporated all previous examples of these extra parameters
into values of a set Ui (i ∈ {x,y,z}) of reflection coefficients for
the polarization waves (see below). They then derived a general
expression for the electromagnetic reflection coefficients at the
boundary in terms of arbitrary complex Ui , in the case of a
dielectric whose bulk susceptibility is the scalar χ (k,ω) of the
form (1).

However, in the presence of spatial dispersion the suscepti-
bility is a tensor, as the wave vector generates a distinctive
direction [1]. In a homogeneous, isotropic, nongyroscopic
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medium:

χij (k,ω) = δijχ⊥(k,ω) + kikj

k2
[χ‖(k,ω) − χ⊥(k,ω)], (2)

where ⊥ and ‖ denote transverse and longitudinal terms,
respectively. If one assumes χ‖ = χ⊥, then the susceptibility
(2) is essentially still a scalar, but the most general isotropic
susceptibility is a tensor in the nonlocal case. In comparison to
the simplified scalar case, the tensor nature of the susceptibility
is generally overlooked. While Rimbey and Mahan include
this in their calculation for a specific ABC [34], their choice of
Ui leads to the absence of a longitudinal wave in the medium.
Garcia-Moliner and Flores [44] derive the reflection coefficient
in the tensor case, but they restrict themselves to a scalar U

and obtain a result in an integral form.
The first aim of this paper is to extend Halevi and Fuchs’

derivation [43] to the tensor susceptibility (2), with χ‖ �= χ⊥,
where χ‖ and χ⊥ each have the form (1). We derive a general
expression for reflection and transmission coefficients at a
planar boundary, allowing for arbitrary complex reflection
coefficients of the polarization waves at the surface.

Our second goal is to use the general electromagnetic
reflection coefficients derived in the first part of the paper to
calculate the spectral energy density of thermal and zero-point
radiation outside the boundary of the spatially dispersive
medium. It is well known that the result for a local medium
is proportional to 1/z3 close to the surface [45–47]. Note that
the divergence of the spectral energy on the boundary also
occurs for purely thermal radiation (dropping the zero-point
part) so it is not due to the divergence of (total) vacuum energy.
This unphysical divergence can be removed by introducing a
cutoff wave vector [45] based on the interatomic or lattice
spacing. But a more accurate picture is obtained by the
inclusion of spatial dispersion, which must naturally remove
the divergence without the need for additional modifications
to the calculation. This has been shown [10] to work for the
Lindhard susceptibility of a plasma, which can be used to
model the response of the conduction electrons in a metal. The
susceptibility due to the core electrons, however, will still lead
to a divergence if it is taken to be local. We will show that the
general reflection coefficients derived here give a finite thermal
and zero-point spectral energy density at a planar boundary.
Moreover, we find that the difference χ‖ − χ⊥ between the
transverse and longitudinal susceptibilities has a large effect
on the spectral energy close to the boundary. The influence of
a metal boundary on the spectral thermal energy density has
been measured using near-field microscopy [48].

As our treatment is based on macroscopic electromag-
netism, we do not include quantum-mechanical features, such
as “electron spill-out,” that are not directly encoded in the
bulk susceptibility. This means that our results for quantities
close to a sharp boundary will lose accuracy below a few
nanometers. In practice, however, it has been found that some
quantum features of the surface can be incorporated through a
spatially dispersive susceptibility [4]. Our work also assumes
a smooth boundary, but surface roughness can potentially
be incorporated in a similar fashion to that employed for a
local medium [49,50]. Boundary layers containing slits [51]
or other nontrivial structures [52] would require additional
considerations of the field behavior in the interface layer. Our

model can be used to find the reflection and transmission
coefficients for spatially dispersive metamaterials when the
wavelength is such that an effective medium description
can be used. Finally, for materials such as thin films or
nanospheres, a different approach to that used here is required
because of more complicated possibilities for the behavior
of polarization waves (e.g., multiple reflections from closely
separated boundaries).

The paper is organized as follows. In Sec. II we present
the spatially dispersive susceptibility model for a half-infinite
dielectric with a tensor permittivity and derive the field
equations. In Secs. III and IV we derive the general expressions
for the reflection and transmission coefficients and present the
results for a variety of ABCs. In Sec. V we calculate the
zero-point and thermal spectral energy density and show in
detail how the nonlocal response removes the divergence in
this quantity that is present in a local model.

II. DIELECTRIC MODEL

We first consider an infinite, homogeneous, spatially dis-
persive dielectric with the susceptibility (2). The electric field
E and polarization field P satisfy the wave equation

∇ × ∇ × E(r,ω) − ω2

c2
E(r,ω) = ω2

c2
P(r,ω), (3)

where the polarization field is

Pi(r,ω) =
∫

d3r ′ ∑
j

χij (r − r ′,ω)Ej (r ′,ω). (4)

Using the Fourier transformation

Pi(r,ω) = 1

(2π )3

∫
d3kPi(k,ω)eik·r (5)

we have

Pi(k,ω) =
∑

j

χij (k,ω)Ej (k,ω). (6)

The wave equation (3) has solutions for E when the frequency
and wave vector satisfy the dispersion relation [2]

(ω/c)2[1 + χ⊥(k,ω)] = k2, (7)

for transverse waves with E · k = 0 or

1 + χ‖(k,ω) = 0, (8)

for longitudinal waves with E × k = 0. As the electric field is
parallel to the wave vector for the longitudinal wave, this wave
has no magnetic field. With an exp(ikzz) field dependence we
restrict ourselves to wave vectors with Im[kz] > 0. There are
two solutions to (7) which we denote k1, k2 and one solution
to (8) which we denote k3.

We now consider a half-infinite dielectric that occupies the
z > 0 region as shown in Fig. 1. In the vacuum region we have
the incident (E0) and reflected wave (Er ) with wave vectors k0

and kr (k0 = kr = ω/c), while in the dielectric we have the one
longitudinal wave (E(3)) and two transverse waves (E(1),E(2))
previously derived. We choose our coordinate system such that
the xz plane coincides with the plane of incidence, with ky = 0,
kx = K . The various wave vectors differ only in the value of
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FIG. 1. Schematic of the model. The z < 0 vacuum half-space
contains the incident (k0) and reflected (kr ) wave. The angle of
incidence is θi . The z > 0 spatially dispersive dielectric half-space
contains two transverse (k1, k2) and one longitudinal (k3) transmitted
waves. The coordinate system is chosen such that the xz plane
coincides with the plane of incidence and ky = 0.

kz. The angle of incidence is given by cos θi =
√

k2
0 − K2/k0.

The usual Maxwell boundary conditions are now insufficient
to solve for the unknown amplitudes of the three transmitted
and one reflected wave. Additional relationships between
the amplitudes are required. These are usually expressed as
additional boundary conditions on the polarization, denoted
Pi , at z = 0+ due to the second term in the susceptibility (1):

αjPj (0+) + βj∂zPj (0+) = 0, (9)

for some parameters αj and βj . A generalized approach was
developed by Halevi and Fuchs [43] for a scalar susceptibility,
equivalent to (2) with χ⊥ = χ‖. We will now modify their
derivation to the tensor case χij .

Due to the presence of the boundary, the polarization field
now depends on a position-dependent susceptibility χ ′:

Pi(r) =
∫

d3r ′ ∑
j

χ ′
ij (r,r ′)Ej (r ′), (10)

where we have omitted the ω dependence for notational
simplicity. After a Fourier transform in the xy plane:

P̃i(kx,ky,z) =
∫ ∞

0
dz′ ∑

j

χ̃ ′
ij (kx,ky,z,z

′)Ẽj (kx,ky,z
′). (11)

We assume that the overall susceptibility χ ′ of the half-infinite
dielectric can be expressed in terms of the bulk susceptibility:

χ̃ ′
ij (kx,ky,z,z

′) =

⎧⎪⎨
⎪⎩

χ̃ij (kx,ky,z − z′)+
Uij χ̃ij (kx,ky,z + z′) if z,z′ > 0

0 otherwise,

(12)

where we have Fourier transformed the bulk susceptibility
in (2) to real space in the z direction. The first term in
(12) for z,z′ > 0 is position independent and gives the
nonlocal bulk response. The second term depends on the
distance from the boundary and describes a polarization wave
propagating from z′ to the surface, reflecting with a (complex
in general) amplitude coefficient Uij and continuing to z, with
|Uij | = 1 implying elastic reflection. A similar expression to
(12) had been used previously [44], with a scalar U used
as a phenomenological description of the dielectric surface

response. Halevi and Fuchs [43] considered a scalar χ , leading
to a vector Ui with general values, and showed this to be
equivalent to using the ABCs in (9).

After substituting the half-infinite susceptibility (12) into
(11), the polarization field takes the form

P̃i(z) = 1

2π

∫ ∞

−∞
dq

∫ ∞

0
dz′

⎡
⎣eiq(z−z′)

∑
j

χij (q)Ẽj (z′)

+ eiq(z+z′)
∑

j

Uijχij (q)Ẽj (z′)

⎤
⎦, z > 0, (13)

where q = kz and we have omitted the kx and ky values as
they are the same in all arguments. We now substitute the
tensor (2) with expressions for χ⊥ and χ‖ of the form (1). The
susceptibility (1) can be rewritten as

χ (kx,ky,q,ω) = χ0 + ω2
p/σ 2

q2 − �2
, (14)

�2 = ω2 − ω2
T + iγ ω − σ 2

(
k2
x + k2

y

)
σ 2

. (15)

The transverse (longitudinal) susceptibility takes the form
in (14), but with σ and � replaced by σ⊥ (σ‖) and the
corresponding �⊥ (�‖). We define the relationship σ 2

‖ = (1 +
δ)σ 2

⊥, so that the susceptibility tensor reduces to δijχ⊥(k,ω) in
the δ → 0 limit.

At this point we introduce an ansatz for the E field inside
the medium—a linear combination of three plane waves [43]:

Ẽj (z) =
3∑

n=1

Ẽ
(n)
j eiqnz, (16)

where n = 1,2 are the transverse waves and n = 3 is the
longitudinal wave. Substituting (16) into (13) and evaluating
the integrals gives

P̃i(z) =
∑

n

∑
j

χij (qn)Ẽ(n)
j eiqnz +

∑
n

∑
j

φ
(n)
ij Ẽ

(n)
j ei�⊥z

+
∑

n

∑
j

ψ
(n)
ij Ẽ

(n)
j ei�‖z, (17)

where

φ
(n)
ij = − [qn(1 + Uij ) + �⊥(1 − Uij )]χ⊥(qn)

× 1

2�⊥

(
δij − k

(⊥)
i k

(⊥)
j

�2
⊥ + K2

)
, (18)

ψ
(n)
ij = − [qn(1 + Uij ) + �‖(1 − Uij )]χ‖(qn)

× 1

2�‖

(
k

(‖)
i k

(‖)
j

�2
‖ + K2

)
, (19)

and k(⊥/‖) = (K,0,�⊥/‖). This must be substituted into the
right-hand side (RHS) of the wave equation (3). All left-hand
side terms are proportional to exp(iqnz), so for the wave
equation to hold for all z values, we require the two RHS
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sums proportional to exp(i�⊥z) and exp(i�‖z) to equal zero:∑
n

∑
j

φ
(n)
ij Ẽ

(n)
j = 0,

∑
n

∑
j

ψ
(n)
ij Ẽ

(n)
j = 0. (20)

These two equations act as the additional boundary conditions
for the system, once the Uij in (12) are specified.

III. p POLARIZATION

The wave can be decomposed to components with E
perpendicular to (s polarized) or in (p polarized) the plane of
incidence. For s polarization there is no longitudinal wave and
the second term of the susceptibility (2) does not contribute,
effectively reducing the susceptibility tensor to the diagonal
form δijχ⊥(k,ω) used by Halevi and Fuchs [43]. The derivation
in this case is identical to their work and will not be repeated
here. In contrast, the p polarization includes the longitudinal
wave and the second term in (2) contributes. We proceed to
analyze this case.

A. Field equations

For p polarized light Ey = 0, Ex �= 0, and Ez �= 0. After
a Fourier transform in the xy plane, we write the x and z

components of the wave equation (3) inside the material (z >

0). Using Eq. (4) and the ansatz (16) these components are

3∑
n=1

{[
k2

0(1 + χxx(qn)) − q2
n

]
Ẽ(n)

x

+ [
Kqn + k2

0χxz(qn)
]
Ẽ(n)

z

}
eiqnz = 0, (21)

3∑
n=1

{[
Kqn + k2

0χzx(qn)
]
Ẽ(n)

x

+ [
k2

0(1 + χzz(qn)) − K2
]
Ẽ(n)

z

}
eiqnz = 0. (22)

These must hold for all values of z, giving

{
k2

0[1 + χxx(qn)] − q2
n

}
Ẽ(n)

x

+ [
Kqn + k2

0χxz(qn)
]
Ẽ(n)

z = 0, (23)[
Kqn + k2

0χzx(qn)
]
Ẽ(n)

x

+ {
k2

0(1 + χzz(qn)) − K2
}
Ẽ(n)

z = 0. (24)

If Ẽ(n)
x and Ẽ(n)

z are nonzero, the determinant of these equations
must vanish for all three values of n. This requirement leads to
the dispersion relation (7) for n = 1,2 and (8) for n = 3. For
the form of χ⊥ and χ‖ used here these dispersion relations are

[
(1 + χ0)k2

0 − K2 − q2
n

][
�2

⊥ − q2
n

] = k2
0

ω2
p

σ 2
⊥

, (25)

[
�2

‖ − q2
3

] = ω2
p

(1 + χ0)σ 2
‖
. (26)

Rearranging (23) and (24) gives relations between the compo-
nents of Ẽ:

Ẽ(n)
z = η(n)Ẽ(n)

x , (27)

where η(n) takes the role of γ (n) in the Halevi and Fuchs
derivation [43], and η(1) = −K/q1, η(2) = −K/q2, and η(3) =
q3/K .

B. Surface impedance

The reflection coefficient will be calculated below from the
surface impedance, which for p polarized light is given by

Zp = Ex(0+)

Hy(0+)
. (28)

(Here H = μ0 B.) The magnetic field By can be expressed in
terms of the electric field using k0 B = k × E and (16):

B(n)
y = 1

k0

[
qnE

(n)
x − KE(n)

z

]
eiqnz

=
[
qn − Kη(n)

k0

]
E(n)

x eiqnz

= τ (n)E(n)
x eiqnz. (29)

Here we have substituted for Ez using (27) and defined τ (n) by

τ (n) = q2
n + K2

qnk0
= k0

qn

(
1 + χ0 + ω2

p/σ 2
⊥

q2
n − �2

⊥

)
(30)

for n = 1,2 and τ (3) = 0 for the longitudinal wave. The surface
impedance can now be expressed in terms of field amplitude
ratios:

Zp = 1

μ0

E(1)
x + E(2)

x + E(3)
x

τ (1)E
(1)
x + τ (2)E

(2)
x

= 1

μ0

1 + E
(2)
x

E
(1)
x

+ E
(3)
x

E
(1)
x

q2
1 +K2

q1k0
+ q2

2 +K2

q2k0

E
(2)
x

E
(1)
x

. (31)

C. Additional boundary conditions

At this point we require the field amplitude ratios of the
transmitted waves to find the surface impedance (31). By
using the relation in (27), we rewrite the additional boundary
conditions in (20) solely in terms of Ex :∑

n

∑
j

φ
(n)
ij E

(n)
j =

∑
n

[
φ

(n)
ix E(n)

x + φ
(n)
iz E(n)

z

]

=
∑

n

[
φ

(n)
ix + φ

(n)
iz η(n)

]
E(n)

x = 0. (32)

We collect together the terms in square brackets to new
variables an and bn for i = x and z, respectively:∑

n

[
φ(n)

xx + φ(n)
xz η(n)

]
E(n)

x =
∑

n

anE
(n)
x = 0,

∑
n

[
φ(n)

zx + φ(n)
zz η(n)

]
E(n)

x =
∑

n

bnE
(n)
x = 0. (33)

The ψ terms in (20) are collected in a similar fashion to define
cn and dn:∑

n

[
ψ (n)

xx + ψ (n)
xz η(n)

]
E(n)

x =
∑

n

cnE
(n)
x = 0,

∑
n

[
ψ (n)

zx + ψ (n)
zz η(n)

]
E(n)

x =
∑

n

dnE
(n)
x = 0. (34)
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TABLE I. List of ABCs.

Uxx Uyy Uzz

Agarwal et al. [19–28] 0 0 0
Ting et al. [29] 1 1 1
Fuchs-Kliewer [29–33] 1 1 −1
Rimbey-Mahan [34–38] −1 −1 1
Pekar [39–42] −1 −1 −1

We now have four ABC equations, compared to the two in the
Halevi and Fuchs derivation [43], which must all be satisfied.
With some manipulation we obtain

E(2)
x

E
(1)
x

= (3,1)μν

(2,3)μν

,
E(3)

x

E
(1)
x

= (1,2)μν

(2,3)μν

, (35)

where we define the symbol (i,j )μν = μiνj − μjνi with
μ,ν ∈ {a,b,c,d} and μ �= ν. The field amplitude ratios in
(35) must give the same value for any combination of μ

and ν (μ �= ν). Given the fact that a and c contain only
Uxx and Uxz, while b and d contain only Uzx and Uzz, there
must be some restrictions on the values that Uij can take.
We find that (35) can be satisfied for all μ,ν combinations
with Uxx = Uzx, Uxz = Uzz, so that bn = (−k/�⊥)an and
dn = (�‖/k)cn, reducing (33) and (34) to two equations. Under
these conditions we can make clear comparisons to the choice

of ABCs presented by Halevi and Fuchs [43], by associating
their Ux and Uz with Uxx and Uzz as in Table I.

The choice of ABC is typically dependent on the type
of material, with various authors making arguments based
on the microscopic behavior of the system. Both the Pekar
[39–42] and Rimbey-Mahan [34–38] ABCs were developed
for Frenkel (tight-binding) exciton systems such as molecular
crystals, although the second excluded the coupling of light
to longitudinal modes of the medium. Ting et al. [29] looked
at a crystal model with Wannier-Mott (weak-binding) exci-
tons, typically found in semiconductors. The Fuchs-Kliewer
[29–33] ABC considered a metal with specular reflection of
electrons at the inner surface. The Agarwal et al.[19–28] ABC
was not for a specific type of material, but derived under the
assumption that changes in the susceptibility arising from the
presence of the boundary can be neglected when considering
bulk effects such as reflection and refraction. Henneberger [53]
considered a thin surface layer on the boundary as a source of
radiation and found the ABC of Ting et al. [29] in a simple case.

Using (35), the surface impedance (31) can be written

Zp = 1

μ0

(2,3)ac + (3,1)ac + (1,2)ac

k2
1

q1k0
(2,3)ac + k2

2
q2k0

(3,1)ac

, (36)

where k2
n = K2 + q2

n . From now on we will only use the
combination μ = a, ν = c in the symbol (i,j )μν , as in (36),
so hereafter we omit the subscript ac for notational simplicity.
In the simplest ABC case Uij = 0 and we find

Zp = − k0

μ0

⎧⎪⎪⎨
⎪⎪⎩�⊥ −

[
K4 + K2

(
q2

1 + q1q2 + q2
2

) + (q1 + q2)q1q2q3
] − (�‖−�⊥)(K2+q2

3 )
(�2

⊥+K2)+(�‖−�⊥)(�⊥+q3)
[q1q2(q1 + q2)]

[K2(q1 + q2 − q3) + q1q2q3] + (�‖−�⊥)
(
K2+q2

3

)
(�2

⊥+K2)+(�‖−�⊥)(�⊥+q3)
[K2 − q1q2]

⎫⎪⎪⎬
⎪⎪⎭

−1

. (37)

In the general case where Uxx = Uzx and Uxz = Uzz, (36)
reduces to the Halevi and Fuchs result in the δ → 0 limit
where χij = δijχ⊥.

D. Reflection coefficient

Using the vacuum surface impedance Z(0)
p =

√
k2

0 − K2/

μ0k0 and (36), we can construct the p polarization reflection
coefficient [30]:

rp = Z(0)
p − Zp

Z
(0)
p + Zp

, (38)

where

rp = Er

E0
. (39)

As an example, we consider parameters for ZnSe, the same
material used by Halevi and Fuchs [43,54], with χ0 = 8.1,
ωp = 3.25 × 1014 rad s−1, resonant frequency ωT = 4.25 ×
1015 rad s−1, and damping γ = 4.25 × 1010 rad s−1. We define
the nonlocal term σ 2 = �ωT /(me + mh) in the same manner
as Halevi and Fuchs [43], where me and mh are the electron
and hole mass. For ZnSe, σ⊥ = 7.45 × 105 m s−1. The exact
value for δ is unknown, so we will present our results over the
range δ = −0.5–0.5.

Figure 2 shows the absolute value of the reflection co-
efficient for a range of ABCs and δ values at the resonant
frequency ωT . The choice of Uij values, specifically Uxx , has
the greatest effect on rp near this frequency. The δ parameter

FIG. 2. Absolute value of the reflection coefficient of ZnSe at
ω = ωT as a function of incident angle θi for propagating waves
with δ = 0 (solid lines), δ = 0.5 (dashed), and δ = −0.5 (dotted).
Includes Agarwal et al. (red), Ting et al. (brown), Fuchs-Kliewer
(green), Rimbey-Mahan (blue), and Pekar (purple) ABCs. The black
curve has the spatial dispersion removed (σ‖ = σ⊥ = 0).
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FIG. 3. Absolute value of the reflection coefficient of ZnSe at
θi = π/4 as a function of ω. Plot styles follow the conventions in
Fig. 2. The parameter δ has the greatest effect near the reflection
minimum.

modifies the result to a much smaller extent, with the greatest
change near the reflection minimum in the Agarwal et al. ABC
[19–28], followed by Fuchs-Kleiwer [29–33], Pekar [39–42],
and Ting et al.[29]. The Rimbey-Mahan [34–38] result remains
unchanged by δ. This ABC was chosen so that no longitudinal
wave could be generated, so in this case χ‖ and δ have no effect
on rp.

Figures 3 and 4 show the ω dependence of |rp| for a fixed
angle θi = π/4. It can be seen that δ has the greatest effect at
frequencies slightly larger than ωT near the reflection minima.
Agarwal et al., Fuchs-Kliewer, and Pekar are the most affected
by δ, while the change in Ting et al. is significantly smaller.

IV. p POLARIZATION TRANSMISSION COEFFICIENTS

We can find the transmission coefficients for the three
transmitted waves by imposing the continuity of the tangential
E field across the boundary. Our choice of coordinate system
means we simply equate the Ex components on each side:

[E0 − Er ] cos θi = [
E(1)

x + E(2)
x + E(3)

x

]
. (40)

FIG. 4. Detail of Fig. 3 near the reflection minimum, where δ has
the greatest effect.

By using (35) and (39) and cos θi =
√

k2
0 − K2/k0, this can

be rewritten in terms of a single wave amplitude on the right:√
k2

0 − K2

k0
[1 − rp]E0 = [(2,3) + (3,1) + (1,2)]

(2,3)
E(1)

x . (41)

Similar expressions can be found for n = 2,3. By using

E(n) =
√[

E
(n)
x

]2 + [
E

(n)
z

]2
(42)

and (27), we derive the three transmission coefficients:

t (1)
p =(2,3)

k1

q1

√
k2

0 − K2

k0

[1 − rp]

[(2,3) + (3,1) + (1,2)]
,

t (2)
p =(3,1)

k2

q2

√
k2

0 − K2

k0

[1 − rp]

[(2,3) + (3,1) + (1,2)]
,

t (3)
p =(1,2)

k3

K

√
k2

0 − K2

k0

[1 − rp]

[(2,3) + (3,1) + (1,2)]
, (43)

where

t (n)
p = E(n)

E0
. (44)

Figure 5 shows the absolute value of the transmission
coefficients at ω = ωT as a function of incident angle for
ZnSe. For the two transverse waves, the Uij values, specifically
Uxx , have the greatest effect. Pekar and Rimbey-Mahan give
near-identical results, while Ting et al. and Fuchs-Kleiwer also
have similar values. The effect of δ is negligible for n = 1,
which corresponds to the wave present when the material has
local response, but its effect is larger for the second transverse
wave introduced by the nonlocal dependence. The longitudinal
wave shows different behavior. At normal incidence t (3)

p = 0,
since E0 is polarized parallel to the surface and there is no z

component to excite the longitudinal wave. The results show
a large spread with δ. Fuchs-Kleiwer is generally the largest,
while Rimbey-Mahan is always zero due to the absence of
a longitudinal wave in that case. Beyond these features, the
behavior of t (3)

p for the various ABCs, and also the effect of δ, is
strongly dependent on the material parameters and frequency.
For example, while Agarwal et al. and Ting et al. give similar
results in Fig. 5 while Fuchs-Kleiwer is not affected by δ, this
is not true in general.

We have already highlighted the Rimbey-Mahan ABC,
where the values of Uij lead to c1 = c2 = 0. As a result
(1,2) = 0 and there is no longitudinal wave (E(3) = 0). We
now check the possibility of choosing Uij to give no transverse
waves in the medium. With no transverse waves the B field in
the medium is zero, leading to Zp = ∞ and perfect reflection
with rp = −1. This requires a3 = 0 and c3 = 0, leading to the
following values of Uxx and Uzz:

Uxx = 1 + 2q3(�2
‖ + K2)

(�⊥�‖ + K2)(�‖ − q3)
,

Uzz = −1 + 2�⊥(�2
‖ + K2)

(�⊥�‖ + K2)(�‖ − q3)
. (45)
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FIG. 5. Absolute values of the transmission coefficient for the
three waves in ZnSe at ω = ωT as a function of incidence angle θi .
Plot styles follow the conventions in Fig. 2.

In the δ = 0 case, this reduces to

Uzz = Uxx = � + q3

� − q3
. (46)

Using the q3 definition in (26) we find from (46) the required
U to get a perfect reflection for given K and ω values in the
δ = 0 case:

Uxx = Uzz =
1 +

√
1 + 1

1+χ0

ω2
p

ω2
T +σ 2K2−ω2−iγ ω

1 −
√

1 + 1
1+χ0

ω2
p

ω2
T +σ 2K2−ω2−iγ ω

. (47)

The relation gives |Uxx | > 1, conflicting with the definition
of U as the reflection coefficient of the polarization waves at
the surface. Note that (47) does not allow |Uxx | = 1 because
the square-root quantity does not vanish for any real K and
ω. Thus we must have transverse transmitted waves in the
material.

V. SPECTRAL ENERGY DENSITY

We now apply the previous results to the problem of
electromagnetic zero-point and thermal radiation near material
boundaries. It is well known that the neglect of spatial disper-
sion leads to an unphysical divergence in the energy density of
thermal radiation at a planar boundary [46,47]. The divergence

occurs at the level of the spectral energy density (i.e., the
energy density per unit frequency) and this same divergence is
present for the zero-point spectral energy density. Although the
total zero-point energy density will always diverge if it is not
regularized, the spectral energy density of zero-point radiation
should be finite without regularization [12]. When the nonlocal
response of materials is taken into account, all these spurious
divergences must disappear and thus spatial dispersion is the
key property that determines the spectral energy density of
zero-point and thermal radiation near material boundaries.
It has already been shown [10] that a plasma described by
the nonlocal Lindhard susceptibility gives a finite spectral
energy density at a planar boundary. A similar model removes
an unphysical divergence in spectral zero-point and thermal
correlations inside a homogeneous material [11,12]. Here we
show that the quite general dielectric model used here is free
of the aforementioned divergences at a planar boundary, and
we also show that differences between the transverse and
longitudinal susceptibilities can have a large effect.

The average energy density of zero-point and thermal
radiation in the vacuum region outside the semi-infinite
dielectric of Fig. 1 is given by

〈U 〉 = ε0

2
〈|E(r,t)|2〉 + μ0

2
〈|B(r,t)|2〉

=
∫ ∞

0
dω utot(z,ω), (48)

where utot(z,ω) is the spectral energy density that depends on
z. We assume that the semi-infinite dielectric is in thermal
equilibrium with the surroundings and we will include the
zero-point contribution. The expression for utot(z,ω) can be
written in terms of the reflection coefficients for s- and p

polarized light at the planar boundary (see, for example,
Ref. [55]):

utot(z,ω) = u0

k0

∫ k0

0

KdK√
k2

0 − K2

×
[

1 + K2Re
[
(rs + rp)e−2i

√
K2−k2

0z
]

2k2
0

]

+ u0

2k3
0

∫ ∞

k0

K3dK√
K2 − k2

0

Im[rs + rp]e2
√

K2−k2
0z,

(49)

where u0 is the spectral energy density in the absence of the
material, given by

u0 = �(ω,T )ω2

π2c3
, (50)

�(ω,T ) = �ω

(
1

2
+ 1

e�ω/kBT − 1

)
. (51)

The quantity �(ω,T ) is the mean energy of a harmonic
oscillator in thermal equilibrium, the first term of which gives
rise to the electromagnetic zero-point energy. The first term in
(49) is the contribution of propagating waves, while the second
term comes from evanescent waves.
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FIG. 6. Logarithmic plot of Im[rp] used in the utot integration (49) at ω = 0.999ωT (top left) and ω = 1.01ωT (all others) as a function of
K for evanescent waves. Plot styles follow the conventions in Fig. 2.

If spatial dispersion is ignored, then as K → ∞ the
reflection coefficients have the limits rs → 0, rp → χ (ω)/
[2 + χ (ω)], where χ (ω) is the local susceptibility of the
isotropic medium. For large K the rp term in the second
integral in (49) is then proportional to K2, dominating the
final result for utot(z,ω) when z is much smaller than the
wavelength. This leads to a simple approximate expression
[47] for the second integral in (49) as z → 0:

1

4z3

Im[χ (ω)]

|2 + χ (ω)|2 , (52)

which diverges as z → 0 for complex χ (ω). This unphysical
divergence is removed when the bulk susceptibility has a
dependence on k of the form of the second term in (1),
which is the form we used for the transverse and longitudinal
susceptibilities. But the background term χ0 in (1) will still lead

to a divergence in the spectral energy density if it is complex.
As already noted, the background term χ0 should be replaced
by additional resonance terms in a more general susceptibility
χ (k,ω). For our parameters for ZnSe, however, χ0 is real and
so it causes no difficulties in the numerical calculations below.

We now consider the spectral energy density (49) for our
model with bulk tensor susceptibility (2). The p polarization
reflection coefficient rp was found in Sec. III [see (38)] and rs

is given by Halevi and Fuchs [43]:

rs = Z(0)
s − Zs

Z
(0)
s + Zs

, (53)

where Z(0)
s = k0/μ0

√
k2

0 − K2 and

Zs = (1 + Uyy)k0(q1q2 + �2
⊥) + (1 − Uyy)k0�⊥(q1 + q2)

(1 + Uyy)q1q2(q1 + q2) + (1 − Uyy)�⊥
(
q2

1 + q1q2 + q2
2 − �2

⊥
) . (54)

We will now substitute these refection coefficients into (49)
and perform the integration over K , with the same material
parameters as used previously. As we have seen, it is the
behavior of the rp term in the second (evanescent wave)
integral in (49) that determines the spectral energy density
near the boundary.

Figure 6 shows the behavior of Im[rp] at ω = 0.999ωT and
ω = 1.01ωT for evanescent waves (K > k0). In contrast to the
rp results for propagating waves in Sec. III, δ has a significant
effect on Im[rp] for evanescent waves. For K <

√
(1 + χ0)k2

0 ,
the reflection coefficient closely matches the local result,
whereas for K >

√
(1 + χ0)k2

0 the plots show how Im[rp] has
a very different behavior from the local model. Spatial disper-
sion causes Im[rp] to fall off as 1/K4 for large K , but its behav-

ior for smaller K differs significantly for ω < ωT compared
to ω > ωT . For ω = 0.999ωT , Agarwal et al., Fuchs-Kleiwer,
and Rimbey-Mahan are nearly identical in the δ = 0 limit,
while Ting et al. is larger and Pekar is smaller. The δ parameter
has the greatest effect on Fuchs-Kleiwer and a smaller effect on
Agarwal et al., Ting et al., and Pekar. Rimbey-Mahan remains
unchanged with δ due to the absence of the longitudinal wave.
For ω = 1.01ωT there is a peak in Im[rp], followed by a
sharp drop, at the value of K where Re[�2

⊥] changes sign
to a negative value, with a similar peak at the value of K

where Re[�2
‖] changes sign. For δ = 0 we have �⊥ = �‖ and

there is only one such peak. The exceptions to this behavior
are Rimbey-Mahan, which always displays only the �⊥ peak
and Fuchs-Kleiwer, which displays only the �‖ peak.
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FIG. 7. Rescaled spectral energy density at ω = 0.999ωT as a
function of distance from the surface z. Plot styles follow the
conventions in Fig. 2.

The large K behavior of Im[rp] at all frequencies means
the function in the evanescent integral of (49) without the
exponential is proportional to 1/K2 as K → ∞. As a result,
the integral over evanescent waves converges to a finite value
even in the z = 0 case.

Figures 7 and 8 show the spectral energy density utot(z,ω)
divided by u0 as a function of distance from the boundary.
Results for the various ABCs are shown together with the local
result. Figure 7 is for ω < ωT , while Fig. 8 is for ω > ωT . For
the smaller frequency ω = 0.999ωT (Fig. 7), the integral is
dominated by the smaller values of K for which Im[rp] is very
similar for all the ABCs. As a result the spectral energy density
shows small differences between the ABCs while differing
significantly from the local (diverging) result as |z| → 0. The
effect of δ is negligible as it only affects large-K values of
Im[rp] that are already very small. The choice of Uij and δ is
more significant at the larger frequency ω = 1.01ωT (Fig. 8).
In the δ → 0 limit, the Agarwal et al., Fuchs-Kleiwer, and
Rimbey-Mahan results are almost identical, while Ting et al.
is larger and Pekar is smaller. Fuchs-Kleiwer is affected the
most by δ, followed by Ting et al., Agarwal et al., and finally
Pekar, while Rimbey-Mahan remains unchanged.

FIG. 8. Rescaled spectral energy density at ω = 1.01ωT as a
function of distance from the surface z. Plot styles follow the
conventions in Fig. 2. Agarwal et al., Fuchs-Kleiwer, and Rimbey-
Mahan results are almost identical in the δ = 0 case.

FIG. 9. Rescaled spectral energy density as a function of ω at a
distance of 3 nm (top) and 10 nm (bottom) from the dielectric surface.
Note the difference in scales. Plot styles follow the conventions in
Fig. 2. The Agarwal et al., Fuchs-Kleiwer, and Rimbey-Mahan results
are almost identical in the δ = 0 case at z = 3 nm.

Below 20 nm for 0.999ωT and 8 nm for 1.01ωT , the
spatially dispersive result begins to differ from the local
medium. These values of |z| match the condition:

σ 2

(
2π

z

)2

= ∣∣ω2
T − ω2 − iγ ω

∣∣, (55)

since this distance corresponds to the wavelength of the
polarization waves. The nonlocal utot begins to saturate to a
finite value below 1 nm, removing the divergent 1/z3 behavior
of the local medium. This distance is given by

σ 2

(
2π

z

)2

= ω2
T , (56)

corresponding to wavelengths of the polarization waves below
which the nonlocal term starts to dominate the resonance term
(ω2

T ). Both of the distance scales (55) and (56) depend on
the relevant material parameters. For very small distances,
certainly below 1 nm, this model is no longer valid as other
effects need to be included, e.g., higher-order terms of k in the
denominator of χ , surface roughness, and quantum properties
of the surface.

Figure 9 shows utot as a function of frequency at fixed
distances of 3 and 10 nm from the surface for the different
ABCs. Similar behavior can be observed in both cases, with
two key features present. The first is the small peak at ωT ,
which is a feature of the Im[rs] integral and as a result is
unaffected by δ. The second, larger peak at higher frequencies
occurs when the sign of Re[�2

⊥] and Re[�2
‖] can change with K

leading to peaks in Im[rp] as a function of K . This larger peak
in utot increases and broadens as the surface is approached. In
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the δ → 0 limit, Ting et al. gives the largest value, Pekar is
the smallest, and Agarwal et al., Fuchs-Kleiwer, and Rimbey-
Mahan all take very similar intermediate values. The peak is
strongly dependent on the value of δ; for example, the greatest
effect is in the Fuchs-Kleiwer peak, which varies by almost a
factor of 3 over the range −0.5 < δ < 0.5 at 3 nm. The effect
of δ decreases in the order Ting et al., Agarwal et al., and finally
Pekar. This strongly contrasts with the almost negligible effect
δ has on the reflection coefficient for propagating waves.

From these results it is clear that the tensor nature of the
susceptibility and the difference between χ⊥ and χ‖ must be
taken into consideration when considering the spectral energy
density of zero-point and thermal radiation close to material
boundaries.

We note that the thermal energy density near metal surfaces
has been probed using near-field microscopy [48]. The zero-
point spectral energy density can be probed by measuring
spontaneous emission rates close to a boundary [13–16]. In
addition, curved boundaries experience a deforming force
(Casimir “self-force”) due to the local zero-point and thermal
radiation [12,45,58,59], although this effect will be difficult to
measure experimentally in any direct manner.

VI. CONCLUSION

We have derived exact expressions for reflection and
transmission coefficients at a boundary of an isotropic spatially
dispersive dielectric, taking into account that such a material
has a tensor susceptibility. Surface effects have been included
by introducing phenomenological reflection coefficients Uij

for polarization waves at the boundary. We have compared
the effect of specific values of Uij corresponding to different
ABC sets in the literature and also the effect of the inequality
between the transverse and longitudinal susceptibilities (χ⊥
and χ‖). As noted by Halevi and Fuchs [43], the coefficients
Uij will in reality depend on frequency, in contrast to the simple
constant values assumed in the ABC sets.

The reflection coefficient for s polarization has already been
derived by Halevi and Fuchs [43] so here we looked in detail at
the p polarization reflection coefficient and transmission coef-
ficients. For propagating waves, differences between χ⊥ and χ‖
have the greatest effect on rp near the reflection minima, but it
is the choice of ABC that has a far more significant effect on rp.

We also considered in detail the zero-point and thermal
spectral energy density utot(z,ω) outside the dielectric. The
inclusion of spatial dispersion naturally removes the 1/z3

divergence of the local-medium result so that utot(z,ω) attains
a constant value at distances of the order of 1 nm, depending
on material parameters. The inequality between χ⊥ and χ‖
was found to have a very significant effect on the maximum
of utot(z,ω) as a function of ω, even at a distance of 10 nm
from the surface. These results demonstrate that divergences in
the (regularized) zero-point energy density and stress at planar
boundaries [56,57] are due to the neglect of spatial dispersion
[12]. Similar divergences in zero-point and thermal radiation
at curved boundaries should also be removed by including
nonlocal response [12] and this will enable proper estimates
of Casimir self-forces on objects like the dielectric ball and
spherical shell [45,58,59].

The ABCs investigated here arose from consideration of
different materials and models (as described in Sec. III). The
question of which ABC is appropriate for a given dielectric is
difficult to assess in practice, given the necessarily simplified
analysis which leads to the ABCs. In the case of the conduction
electrons of a metal, far more is known both from theory
and experiment [3–7]. Comparison of further experimental
results with the predictions of different ABCs (such as those
calculated here) may shed light on this interesting question.
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