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We investigate the nature of the ordering among magnetic adatoms, randomly deposited on the surface of
topological insulators. Restricting ourselves to dilute impurity and weak coupling (between itinerant fermion
and magnetic impurities) limit, we show that for arbitrary amount of chemical doping away from the apex of
the surface Dirac cone the magnetic impurities tend to arrange themselves in a spin-density-wave pattern, with
the periodicity approximately π/kF , where kF is the Fermi wave vector, when magnetic moment for impurity
adatoms is isotropic. However, when magnetic moment possesses strong Ising or easy-axis anisotropy, pursuing
both analytical and numerical approaches we show that the ground state is ferromagnetic for low to moderate
chemical doping, despite the fragmentation of the system into multiple ferromagnetic islands. For high doping
away from the Dirac point as well, the system appears to fragment into many ferromagnetic islands, but the
magnetization in these islands is randomly distributed. Such magnetic ordering with net zero magnetization
is referred to here as ferromagnetic spin glass, which is separated from the pure ferromagnet state by a first
order phase transition. We generalize our analysis for cubic topological insulators (supporting three Dirac cones
on a surface) and demonstrate that the nature of magnetic orderings and the transition between them remains
qualitatively the same. We also discuss the possible relevance of our analysis to recent experiments.
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I. INTRODUCTION

Viewed from outside, a topologically nontrivial system
encodes requisite (and possibly sufficient) information in the
metallic surface/edge states to distinguish itself from trivial
vacuum, occupying the external world. Existence of such gap-
less surface states is the hallmark signature of a topologically
nontrivial phase of matter and cannot be eliminated unless the
bulk of the system undergoes a topological phase transition. A
celebrated example of such topologically nontrivial phase is
the three dimensional strong Z2 topological insulators (TIs)
that support odd number of massless Dirac cones on the
surface [1–4]. In nature such topologically nontrivial insulating
phase can be found in strong spin-orbit coupled weakly
correlated three dimensional semiconductors [5–8], such as
Bi2Se3, Bi2Te3, as well as in strongly correlated heavy fermion
compounds [9–14], such as SmB6.

Since the successful discovery of three dimensional topo-
logical insulators in various strong spin-orbit coupled mate-
rials, manipulating the gapless surface by external magnetic
field, ferromagnetic layer, magnetic doping has been an active
field of research [15–32]. Primary stimulation in this direction
arises due to the possibility of observing, for example,
quantum anomalous Hall effect [16–19], magnetoelectric
effect [15], Faraday and Kerr rotation [15,21,22], which rely
on the existence of fully gapped surface state (induced by
a ferromagnetic order), achieved at the cost of breaking the
time-reversal symmetry on the surface, while leaving the
topologically nontrivial bulk band structure unharmed. Due
to practical limitations, it seems most viable (experimentally)
to stabilize a ferromagnetic order for itinerant surface states
by injecting magnetic impurities on the surface, which has
attracted ample attention in recent time [23–32]. A question
of both fundamental and practical importance then arises
naturally regarding the nature of the ordering among the
magnetic impurities, when they are randomly deposited on the
surface of a TI [33]. In this work we attempt to shed light on this

issue by combining complementary analytical and numerical
analyses for the simplest realization of three-dimensional
TIs, supporting only one massless Dirac cone on the surface
(germane to systems like Bi2Se3) and cubic topological Kondo
insulators (TKIs) (supporting three copies of massless Dirac
cone on the surface). A schematic structure of the surface
Brillouin zone for these two classes are shown in Fig. 1.

We here focus on the dilute limit, when interimpurity
distance is larger than the lattice spacing so that we can
safely neglect the direct interaction (Heisenberg type) between
nearest-neighbor impurities. In this limit, the interaction
among magnetic impurities is mediated by itinerant surface
state, constituted by helical massless Dirac fermion, and is
described by the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction [34–36]. In general, RKKY interaction is a rapidly
oscillatory interaction at the scale of half of the Fermi
wavelength (π/kF ). However, when the chemical potential is
pinned at the apex of the surface Dirac cone (i.e., when kF =
0), the RKKY interaction does not display any oscillation
and the magnetic impurities naturally arrange themselves in
a ferromagnetic pattern [28]. Although such behavior of the
RKKY interaction is singular, the resulting ferromagnetism is
expected to be stable against infinitesimal perturbation (such as
change in chemical potential) for the following reason. When
magnetic impurities arrange themselves in a ferromagnetic
fashion, they in turn can produce a ferromagnetic order
parameter for an itinerant fermion, which then gaps out the
Dirac point. Such effect has recently been demonstrated by
a self consistent calculation [31]. Thus, unless the chemical
potential is placed within the valence/conduction band, such
ferromagnetic ordering should remain robust and here we
seek to understand the evolution of magnetic ordering among
the impurities as the chemical potential is gradually tuned
away from the Dirac point. However, weak fluctuations in the
chemical potential on the scale of the gap caused by charge
impurities are likely to destabilize this self-consistent effect
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FIG. 1. Schematic representation of surface Brillouin zone (blue
shaded two dimensional object) and its connection to the high
symmetry points in the bulk, where band inversion takes place. Often
when bulk band inversion takes place at the � point (green dot), such
as in Bi2Se3, the surface Dirac cone is centered around �̄ point. On
the other hand, when bulk band inversion takes place at X, Y , and
Z points (blue dots), such as in SmB6, three Dirac cones on (001)
surface are located at �̄, X̄, and Ȳ points. For brevity in the text of
the paper, we will drop the bar notation.

which relies on the chemical potential being in the magnetic
gap. In the following work we will assume that chemical
potentials are sufficient to destroy strong self-consistency
effects. Our central results are the following.

(1) When chemical potential is tuned away from the surface
Dirac point, the ground state of a collection of magnetic
impurities sustains a spin-density-wave (SDW) pattern in weak
coupling (among itinerant fermion and impurities) and dilute
limit, with periodicity approximately π/kF , if the magnetic
moment of adatoms is isotropic [37].

(2) While such SDW pattern is quite generic on the
surface of any TIs, the magnetic ordering on the surface of
cubic TKIs display additional interesting features, when there
exists a chemical potential imbalance between different Dirac
cones [38]. The SDW pattern on the surface of cubic TKIs
displays two characteristic length scales or periodicities of
oscillation, giving rise to beat. The average chemical potential
gives rise to periodicity of the overall modulation of SDW
order, while the difference in the chemical potentials between
Dirac cones located at � and X/Y points sets the periodicity
inside each envelope of the SDW order (see Fig. 1).

(3) Typically the magnetic moment of higher spin impurity
adatoms (such as Fe, Mn, and Gd) possess strong Ising-like
anisotropy. We show that such strong anisotropy in magnetic
moment in turn gives rise to ferromagnetic ordering among
magnetic impurities, at least when the chemical doping is not
far away from the Dirac point. Through numerical analysis,
we show that for small doping though, the system breaks into
multiple ferromagnetic islands. Ferromagnetic moment in each
such island points in the same direction (although of different
magnitudes) and the system continues to sustain an overall net
finite magnetization. This outcome is valid for the surface of
TI as well as cubic TKI.

(4) By contrast, when chemical potential is tuned far away
from the Dirac point, magnetization (an Ising variable) in these
islands is randomly distributed. The system then possesses net

zero magnetization, giving rise to glassiness on the surface of
TIs or TKIs. More interestingly, the ferromagnetic and glassy
phases are separated by a discontinuous or first order phase
transition, which takes place when the characteristic length
scale of the oscillation in the RKKY interaction is smaller
than the average interimpurity distance.

The appearance of the ferromagnetic ordering (glassiness)
among magnetic impurities for low (high) chemical doping
can qualitatively be anticipated in the following way. By itself
the RKKY interaction gives rise to ferromagnetic islands
of spatial size ∼k−1

F . When the chemical doping is small,
the spatial extent of each such island is sufficiently big to
accommodate a large number of magnetic atoms and conse-
quently they possess a finite ferromagnetic moment. Given
that the RKKY interaction falls off rapidly as ∼1/r3, such
oscillatory interaction cannot destroy the overall ferromagnetic
arrangement among dopant magnetic ions and the system finds
itself in the ferromagnetic phase. By contrast, for sufficiently
large chemical doping the RKKY interaction oscillates at the
scale of interatom separation, thus preventing formation of
ferromagentic island of considerable spatial extension. As a
result magnetic atoms lack the propensity towards developing a
net ferromagnetism and the system discovers itself in the glassy
phase. We here substantiate such an intuitive picture through
a thorough numerical analysis. A similar issue has also been
discussed in the context of dilute magnetic semiconductors
(see, for example, Ref. [39] and references therein) and
monolayer graphene, which also support linearly dispersing
two-dimensional chiral Dirac fermion [40,41].

Let us now promote the organization principle for rest of the
paper. In the next section (see Sec. II), we discuss the RKKY
interaction among the magnetic impurities, mediated by sur-
face Dirac fermions. In Sec. III, we analyze the arrangements
among the magnetic impurities when the magnetic moment
is isotropic as well as possesses strong Ising anisotropy. We
present the numerical analysis, geared towards demonstrating
the evolution of the magnetic order from low to high doping
(away from the Dirac point) regime in Sec. IV. We devote
Sec. V to generalize our analysis for the surface of cubic
TKIs. Our findings are summarized in Sec. VI. Details of
the ultraviolet regularization procedure in the derivation of
RKKY interaction is presented in Appendix A. We relegate
the derivation of the first and second moment of the RKKY
interaction to Appendix B.

II. SPIN SUSCEPTIBILITY AND RKKY INTERACTION

The spin susceptibility arising from itinerant fermions is
capable of providing valuable insights into the nature of
indirect exchange interaction among magnetic impurities, at
least when they are placed far apart (dilute limit) and the
interaction among them is only mediated by fermions. There-
fore, by computing spin susceptibility one may also identify
the nature of the magnetic ordering (such as paramagnetic or
ferromagnetic) among doped magnetic impurities, with our
focus here being on the surface of TIs. Since we restrict
ourselves to the dilute and weak coupling limit, the indirect
exchange interaction can be extracted by employing the RKKY
formalism [34–36].
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The effective low-energy Hamiltonian, describing a helical
metal on the surface of three dimensional TIs is given by [1,2]

H0 =
∑
αβ

∫
d2r �†

α(r)[vF (−i�∇ × σ αβ) · ẑ − μ]�β(r),

(1)

where σ = (σx,σy) are standard Pauli matrices, �α(r) is the
spinor wave function with spin projection α,β ∈ {↑,↓} along
the z direction, vF is the Fermi velocity of massless Dirac
fermions, and μ is the chemical potential, measured from the
band touching point. The integral over r is restricted within
the xy plane, representing a surface of a three dimensional TI,
and ẑ points normal to such surface (see Fig. 1). Due to the
underlying translational symmetry in the xy plane the above
Hamiltonian can also be represented as

H0 =
∑
αβ

∫ ′ d2k
(2π )2

�†
α(k)H0

αβ(k)�β(k), (2)

where the Hamiltonian operator reads as

H0(k) = �vF (k × σ )z − μ, (3)

where k = (kx,ky) and kj ’s are spatial components of momen-
tum. In what follows, we set � = 1 and vF = 1. Integral over
momentum is restricted up to an ultraviolet cutoff �D (consult
Appendix A for details).

The spin susceptibility for such helical metal is defined as

χab(r,τ ) = −〈Tτ Ŝ
a(r,τ )Ŝb(0,0)〉0 , (4)

where 〈. . .〉0 denotes the thermal average over the ensemble
of free Dirac fermions and a,b are the spin components. As
a function of external frequency and momentum, the spin
susceptibility becomes

χab(q,iqn) =
∫ β

0
dτ

∫
dr χab(r,τ ) eiqnτ−iq·r

=
∑
m,n

∑
ikn

∫
dkGm,k+q(ikn + iqn) Gn,k(ikn)

× 〈un,k|σa|um,k+q〉 〈um,k+q|σb|un,k〉 , (5)

where n,m are band indices, kn,qn are fermionic Matsubara
frequencies, β = 1

kBT
is the inverse temperature, and we here

set kB = 1. The fermionic Green’s function is Gm,k(ikn) =
(ikn − εm,k)−1. Now Eq. (5) can be written more compactly as

χab(q,iqn) = 1

β

∑
ikn

∫ ′ d2k
(2π )2

× Tr[σaG(k + q,ikn + iqn)σbG(k,ikn)], (6)

where Tr is operative over the spin indices and

G(k,ikn) = 1

ikn − H0(k)
= (ikn + μ) + (k × σ )z

(ikn + μ)2 − k2
. (7)

The integral over momentum is restricted by an ultraviolet
cutoff �D up to which the dispersion of surface states is linear
in momentum. We here focus only on the static part of the spin
susceptibility, denoted as χab(q) ≡ χab(q,iqn = 0).

As shown in Appendix A, the diagonal components of
χab(q) display linear divergence with the ultraviolet cutoff �D .

Thus to remove such explicit cutoff dependence, we define an
ultraviolet regularized spin susceptibility function according
to

χab
ren(q) = χab(q) − χab(0). (8)

A lengthy but straightforward calculation yields

χab
ren(q) =

⎛
⎝f1 cos2 φ

f1

2 sin 2φ −if2 cos φ
f1

2 sin 2φ f1 sin2 φ −if2 sin φ

if2 cos φ if2 sin φ f3

⎞
⎠, (9)

where

f1(x) = |kF |
4π

Re
√

1 − x2 + q

8π
Re[sin−1

√
1 − x2],

f2(x) = q

4π
(1 − Re

√
1 − x2), (10)

f3(x) = q

4π
Re(sin−1

√
1 − x2),

with q = q(cos φ, sin φ) and x = 2kF /q. Explicit dependence
of fj s are shown in Fig. 2. For brevity we drop the explicit
functional dependence of fj ’s on x = q/kF from Eq. (9). The
expression of these functions (namely fj ’s) are different from
the ones announced previously in the literature [25,30,31].
Such difference arises from appropriate ultraviolet regulariza-
tion of leading order polarization bubble (see Appendix A),
which displays linear ultraviolet divergence due to the Dirac
nature of underlying itinerant electrons.

To gain insight into the ground state configuration of
magnetic impurities, we seek to find the effective Hamiltonian
describing the exchange interaction among them. We here
assume that helical Dirac fermion mediates indirect exchange
coupling between two magnetic impurities. When magnetic
impurities are deposited on the surface of a TI, one can treat
each magnetic impurity as an external perturbation that couples
to the spin degree of freedom of Dirac fermion through a
pointlike interaction

Ûext = λ σ̂ · S(ri)δ(r − ri), (11)

0 2 4
0

2

4

q/kF

4π
f
/
k

F

f
1

f
2

f
3

FIG. 2. Scaling of f1, f2, and f3 [in units of kF /(4π )], appearing
in Eqs. (9) and (10), as a function of q/kF (= x). All of the three
functions display discontinuity at q = 2kF , corresponding to the scale
of Fermi wave vector.
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where λ denotes strength of such interaction (dimensionless).
We here assume that λ � 1 (placing the problem in the weak
coupling regime), justifying a perturbative analysis in powers
of λ. In addition, we here treat impurity spin as a classical
quantity, which is a good approximation at least when the
magnetic moment of dopant ions, such as the commonly used
ones Fe, Mn, and Gd, is large. The polarization of itinerant
fermions at a given point r can then be quantified as

sa
ind(r) = λ χab(r − Ri)S

b(Ri), (12)

where sa
ind(r) is the a component of polarized spin of Dirac

fermions, and χab(r) is the spin susceptibility for Dirac
fermion. Presence of another magnetic impurity at Rj , inter-
acting with Dirac fermion, also causes polarization of itinerant
spin at Rj . Therefore, the exchange interaction between two
magnetic impurities, located at Ri and Rj , is given by (after
integrating out massless Dirac fermion)

Heff = λ2Sa(Ri)χ
ab(Ri − Rj )Sb(Rj ). (13)

Such indirect exchange interaction among local magnetic
moments, mediated by itinerant fermions, is also known as
RKKY interaction, with the nonlinear constraint that the
magnitude of each spin is fixed. It is worth mentioning that we
here neglect classical and quantum fluctuations of spin since
we are mainly interested in the ground state configuration
of magnetic adatoms when they are deposited on the surface
of TIs. We also neglect direct exchange interaction among
magnetic ions, which can be a good approximation in the
dilute limit.

With the introduction of a constraint term the RKKY
Hamiltonian is given by

HRKKY = λ2
∑
i �=j

Sa(Ri)χ
ab(Ri − Rj )Sb(Rj )

+
∑

i

g([S(ri)]
2 − 1)2, (14)

where a,b = x,y,z represents the three components of spin
vector. The last term fixes the magnitude of each spin to be
unity, as g approaches infinity.

III. VARIATIONAL ANALYSIS OF A COARSE
GRAINED MODEL

In principle, one can search for the ground state config-
uration of magnetic impurities by minimizing the effective
Hamiltonian, shown in Eq. (13). However, it is a challenging
task due to the constraint of fixed magnitude, which leads
to multiple local minima. Nonetheless, valuable insights
into the actual ground state of the collection of magnetic
impurities/spins can be achieved by pursuing a variational
method and sacrificing the hard constraint over magnitude
of the impurity spins, as we will demonstrate [42]. The RKKY
interaction kernel χ (R − R′) favors a ferromagnetic alignment
of spins at distances shorter than the Fermi wavelength.
Because of this, we can assume that the spin orientation
varies slowly on the scale of the impurity spacing, which is
assumed in this section to be much shorter than the Fermi
wavelength. And thus we can define the coarse-grained spin

field corresponding to magnetic impurities to be

S(r) =
∑

i

S(Ri)e
−�2

χ (r−Ri )2
, (15)

where �χ is the ultraviolet cutoff for the coarse-grained spin
field, with �χ � �D . Furthermore, the coefficient χ (R − R′)
in Eq. (14) can be assumed to be slowly varying in space on
the scale of the impurity spacing for the same reason. Because
of this, one may replace the original discrete spins by a coarse-
grained spin field S(r). As a result of such coarse graining over
the impurity spins, the stringent constraint over the magnitude
of the spin field gets relaxed and the effective Hamiltonian in
terms of the coarse-grained spin field is

HS = λ2
∫ �χ dq

(2π )2
Sa

−qχ
ab(q)Sb

q + g

∫
dr[(Sz(r))2 − 1]2,

(16)

where g is now a finite positive number. Here we have
tacitly assumed that the above Hamiltonian is obtained after
performing disorder average, so that we can treat momentum
as a conserved quantity, yielding overall, but on average,
translational symmetry of the system [42,43].

Before delving into the actual nature of the ground
state configuration of magnetic impurities, we focus on the
quadratic piece of the above Hamiltonian. Diagonalization of
the quadratic Hamiltonian yields three energy eigenvalues,
given by

E± = 1

2

[
(f1 + f3) ±

√
(f1 − f3)2 + 4f 2

2

]
,

E0 = 0, (17)

where f1,2,3 are quoted in Eq. (10). The momentum de-
pendence of these three eigenenergies are shown in Fig. 3,
suggesting that there exists a global minimum at q = 2kF ,
indicating that at sufficiently low temperature the ground
state of the collection of magnetic impurities is expected

0 2 4
−2.5

1

4.5

q/kF

4π
E

E
+

E
−

E
0

FIG. 3. Three branches of eigenenergies for spin field obtained
from the quadratic part of the Hamiltonian in Eq. (16), assuming
that magnetic moment does not possess any easy-axis anisotropy.
Notably there is a global minimum at q = 2kF , which implies that in
the ground state, the magnetic adatoms arrange themselves in a SDW
pattern with wave vector q = 2kF .
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to display a SDW order with wave vector qSDW = 2kF , if
the magnetic moments are isotropic and thus can point in
an arbitrary direction. Such SDW ordering among magnetic
adatoms is expected to be stable as long as the chemical
potential is not too far from the Dirac point, i.e., kF � �.
When chemical doping gets too far from the Dirac point
kF ∼ �, we cannot rely on the Dirac theory to address the
nature of the arrangement among magnetic impurities. We
then have to rely on sophisticated numerical analysis, which
is left as a subject for future investigation.

If, on the other hand, magnetic moments are Ising-like
variables and point along the z direction, there is only one
branch of eigenenergy with E = f3. As shown in Fig. 2, f3

displays a plateau between 0 � q � 2kF and the ground state
configuration of magnetic impurities cannot be determined
uniquely. Hence we need to account for the quartic term (soft
constraint term after coarse graining the spin field) to break
such artificial degeneracy and pin the actual ground state. Thus
with strong easy-axis anisotropy of the magnetic moment
along the z direction, we arrive at the phenomenological
Landau free energy for the coarse-grained impurity spin field

FGL =
∫

drdr′Sz(r)χzz
ren(r − r′)Sz(r′)

−m

∫
dr[Sz(r)]2 + g

∫
dr[Sz(r)]4

=
∫

q
Sz

−q

[
χzz

ren(q) − m
]
Sz

q + g

∫
p,q,k

Sz
pS

z
qS

z
kS

z
−p−q−k,

(18)

where χzz
ren is the zz component of the renormalized static spin

susceptibility function (see Appendix A). The ultraviolet cutoff
dependence has been absorbed in the positive renormalized
effective mass m = 2g − χzz

� (0), with χzz
� (0) < 0. An unim-

portant constant has been dropped while arriving at the final
expression in Eq. (18). Next we compare the free energies with
various trial ground states for magnetic impurities. Hence the
following analysis can be considered as a variational approach
to search for the best trial ground state.

Let us first consider a ferromagnetic order with

Sz(r) = S0. (19)

Plugging the above ansatz into Eq. (18), we obtain the
following free energy density:

fFM = FFM

A
= gS4

0 + [
χzz

ren(0) − m
]
S2

0 , (20)

where A denotes the area of the two-dimensional surface of a
TI. Notice that χzz

ren(0) = 0 < m. Hence the free energy with
ferromagnetic background has lower free energy in compari-
son to that with an underlying disordered paramagnetic state,
for which S0 = 0 and the free energy is fPM = 0. Minimizing
the free energy with respect to the ferromagnetic order we
obtain

S2
0 = m − χzz

ren(0)

2g
, (21)

and the corresponding free energy is given by

f min
FM = −

[
χzz

ren(0) − m
]2

4g
, (22)

which is also a minima.
Next we consider a spin-density-wave ordering with unique

wave vector q �= 0

S(r) = S0 cos(q · r). (23)

Upon substituting the above ansatz into Eq. (18), we find

fSDW = FSDW

A
= 3g

8
S4

0 +
[
χren(q)

2
− m

2

]
S2

0 . (24)

For χren(q) > 2g > 0, the paramagnetic phase with S0 = 0
minimizes the free energy density (with fPM = 0). By contrast,
for 0 � χ (q) < 2g, a SDW ordering with

S2
0 = 2[m − χren(q)]

3g
(25)

minimizes the free energy, and the minima of the free energy
is given by

f min
SDW = − [χren(q) − m]2

6g
. (26)

Comparing Eq. (22) and Eq. (26), we find that f min
FM < f min

SDW.
Therefore, a ferromagnetic ordering is energetically superior
over the paramagnetic as well as SDW states in the strong
(Ising-like) anisotropic limit and low-doping regime.

Finally, we consider a SDW ordering with multiple wave
vectors

S(r) =
N∑

n=1

Sn cos(nq · r), (27)

for which the free energy density is given by

f̃SDW = 1

2

∑
n

[χ (nq) − m]S2
n + g

16

∑
m,n,l,p

SnSmSlSp

×
∑

in,im,il ,ip=0,1

δ[(−)inn+(−)imm+(−)il l+(−)ipp].

(28)

We then numerically search for the minimum of this free
energy by using “fminunc” function in Matlab. For specific
choices of various parameters, namely g = 1, m = 2, μ =
1, q = 1, N = 6, we search for the vector (S1, . . . ,S6)T ,
yielding a minima of the free energy. We obtain f̃ min

SDW =
−0.8609, while for the same values of these parameters,
f min

FM = −1, f min
SDW = −0.6667. We also compared the free

energy with various other choices of q, larger (smaller)
than kF /2(2kF ). However, we always find f̃ min

SDW > −1. Thus,
with strong easy-axis Ising anisotropic magnetic moment, the
ferromagnetic order appears to be the most stable ground state.
Next we examine the validity and robustness of ferromagnetic
arrangement among the magnetic impurities in numerical
simulation.
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IV. NUMERICAL RESULTS FOR SINGLE
DIRAC CONE CASE

The previous discussion on the nature of magnetic ordering
on the surface of TIs based on the continuum theory is justified
only in the low doping regime, where the Fermi wavelength
(λF ) is much longer than the average distance between adjacent
magnetic impurities (a), i.e., λF  a. However, in high doping
regime the notion of coarse-grained spin breaks down and we
need to numerically search for the magnetic ordering on the
surface of TIs, as demonstrated below.

To carry out the numerical analysis, we first construct a
system comprised of 800(= N ) Ising-like magnetic moments
that are randomly distributed onto a two dimensional R × R

square arena. Accordingly we choose R = 28, so that the aver-
age distance between the nearest neighbor magnetic impurities
is a = R√

N
� 1. Furthermore, we introduce a hard-core cutoff

for the diatance between two impurities by setting rmin � 0.5,
ensuring that there is no clustering among magnetic impurities,
in qualitative agreement with recent experiments [8]. Finally,
we introduce a quartic term to constrain the magnitude of
magnetic moments around the same value, leading to the free
energy for the system composed of a collection of magnetic
impurities

FS =
∑
i �=j

Sz(ri)χ
zz(ri − rj )Sz(rj ) + g[(Sz(ri))

2 − 1]2, (29)

where

χzz(r) = − 1

β

∑
ikn

η2
[
K2

0 (ηr) + K2
1 (ηr)

]
, (30)

with η =
√

(kn − iμ)2, kn = (2n+1)π
β

[31]. The component
of susceptibility along z direction χzz(r) is assumed to be
isotropic and its dependence on r = |r| is shown in Fig. 4
for various values of chemical doping μ [measured in units of

1 3.5 5

0

0.25

0.5

r/r0

χ
z
z

µ=0.5
µ=1.1
µ=1.3
µ=1.5

FIG. 4. Behavior of χzz(r) for different values of the chemical
doping (μ) in the zero temperature limit (β  μ). The chemical
potential μ is measured in units of a−1, where a is the average
distance between adjacent magnetic impurities. Here, r0 � 1.3μ−1,
representing the length scale associated with the first zero of χzz(r).
The “wavelength” of the Bessel-like function χzz(r) is approximately
λ = 2π/(1.3r−1

0 ) � 2.5r0 � λF /2, the characteristic length for the
RKKY interaction.

a−1, the inverse of average distance between adjacent magnetic
impurities].

Upon rescaling the distance r by r0 � 1.3μ−1, the zeros of
χzz(r) for all μ cross at particular points, where r0 represents
the value of r where χzz(r) first undergoes a change in
sign; see Fig. 4. The “wavelength” of the RKKY interaction
is approximately given by λ = 2π/(1.3r−1

0 ) � 2.5r0 � λF /2.
As we will present in a moment, the relative strength of
two length scales, namely r0 and a, plays a crucial role in
determining the actual nature of the magnetic ordering on
the surface of TI. To demonstrate this competition we choose
three particular values of chemical doping μ = 0.5,1.1,1.5,
for which r0 � 2.6,1.2,0.87, respectively, allowing us to scan
the magnetic ordering from low to high doping regime. Here
the unit of chemical potential is the inverse of average shortest
distance between magnetic impurities a−1. We use the built-in
function “fminunc” in Matlab to search for the minimum
of the free energy from Eq. (29). For all simulations we
choose g = 5, so that soft constraint condition is satisfied, i.e.,
δ|S|/ 〈|S|〉 � 0.05. The spin configuration, corresponding to
the minima of the free energy, is shown in Fig. 5, for various
values of μ. Typically we average over 20 independent and
random realizations of magnetic impurities.

Note that in the low doping regime (such as when μ = 0.5
for which r0 = 2.6  〈a〉), the magnetic moments, despite
showing a spatial variation of average magnetic moment (still
magnetization is >0 everywhere in the system), support net
finite magnetization, as shown in Fig. 5(a). Thus, in the
low doping regime, the magnetic ordering is ferromagnet,
in agreement with our previous analytical calculation. For
moderately high doping (such as for μ = 1.1 for which
r0 = 1.2 > 〈a〉) the system breaks into several small islands,
each of which supports net magnetization in the same direction,
however of different magnitude, as shown in Fig. 5(b) and
the ground state is still ferromagnet. By contrast, for high
enough doping (such as for μ = 1.5 for which r0 = 0.87 <

〈a〉), the ground state configuration is composed of multiple
ferromagnetic islands. However, the relative orientation of
magnetization in these islands are completely arbitrary and the
system possesses net zero magnetization, as shown in Fig. 5(b).
Such magnetic ordering qualitatively mimics the structure of
spin glass and we coin such a phase as ferromagnetic spin
glass [47]. Next we delve into the nature of the transition
between the ferromagnet and ferromagnetic spin glass phases,
across which the chemical potential (μ) serves as a nonthermal
tuning parameter.

The nature of the magnetic phase transition, for example,
can be pinned by studying the disorder averaged magnetization
in the system. As shown in Fig. 6, for low electron doping
the surface of TIs possesses a net magnetization, which
however smoothly decreases with increasing chemical doping.
However, across a critical doping μcrit ≈ 1.3 the magnetization
drops abruptly and the system enters into a phase where net
magnetization is zero, the ferromagnetic spin glass (see Fig. 6).
Therefore, the zero temperature phase transition between these
two phases is discontinuous or first order in nature. Finally,
we come to the conclusion that, when

λF = 2π

1.3r−1
0

> 5 〈a〉 , (31)
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FIG. 5. Disorder averaged (over 20 independent realization) plot for the ground state of impurity spin configuration on the surface of three
dimensional topological insulators for (a) μ = 0.5 or r0 = 2.6, (b) μ = 1.1 or r0 = 1.2, and (c) μ = 1.5 or r0 = 0.87. Here the unit of chemical
potential is the inverse of average shortest distance between magnetic impurities a−1 Hence, for low [see (a)] and moderate [see (b)] doping
although the system breaks into multiple ferromagnetic islands, the magnetization in each such island points in the same direction, but they
differ in magnitude. Consequently, the system orders ferromagnetically in this parameter regime. On the other hand, for very high doping [see
(c)] the magnetic moments in various islands are randomly oriented and the system possesses net zero magnetization. In such a phase the
system acquires glassiness. Even though the real configuration is spins located on discrete pointlike positions, we smear them by a Gaussian
function with width W = 0.4.

the ground state for anisotropic impurity spins is ferromagnet,
while for λF < 5 〈a〉 the ground state acquires glassiness
and λF ≈ 5 〈a〉 represents the transition point between these
two phases. Therefore, one can conclude that when the
characteristic scale of oscillation for the RKKY interaction
is bigger (smaller) than the average interimpurity distance, the
ground state is ferromagnet (ferromagnetic spin glass).

The numerical finding of the glassy phase can also be
anticipated if we compare various moments of the RKKY
interaction [44]. The details of the calculation are presented in
Appendix B. While the first moment of the RKKY interaction
is proportional to the average strength of the RKKY interaction
and thus the mean-field temperature, its second moment
captures the fluctuation of the coupling constant. For small
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FIG. 6. Disorder averaged net magnetization (normalized) as a
function of chemical doping. Notice that across a critical chemical
doping μcrit ≈ 1.3 there is the first order phase transition between
the pure ferromagnet and ferromagnetic spin glass phases. The
normalized magnetization for low doping being slightly bigger than
unity is a consequence of softening the constraint due to the coarse
graining of the spin field.

chemical doping the average dominates over its fluctuation,
indicating a stable ferromagnetic phase. On the other hand, for
large chemical doping away from the Dirac point these two
quantities are comparable, as shown in Fig. 7. Thus we can
anticipate the appearance of a glassy phase beyond a critical
chemical doping, as found in the numerical analysis. Next we

0 2 4 6 8 10
-2

0

2

4

6

FIG. 7. First (〈J 〉dis) and second (〈J 2〉dis) moments of zz-
component RKKY coupling as a function of electron chemical
potential μ under uniform distribution of magnetic adatoms [44], ob-
tained within the framework of the effective Sherrington-Kirkpatrick
model [45,46]. Here μ is measured in the unit of a−1, since
� = vF = 1. We see that in the low electron doping regime, first
moment is positive and much larger than the second moment. Thus
under, the magnetic adatoms collectively form a ferromagnetic phase
below critical temperature TFM ∼ 〈J 〉dis. In the high electron doping
regime, the fluctuation of the coupling destroys the long range order,
and a spin glass phase is stable below TSG ∼ √〈J 2〉dis. Details of the
calculation are shown in Appendix B.
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will generalize this observation for the surface states of cubic
TKIs.

V. TOPOLOGICAL KONDO INSULATORS

So far we focused on the surface of topological insulators
that support only one two-component massless Dirac cone.
Such systems belong to class AII in a tenfold way of
classification. However, nontrivial AII invariant allows the
existence of an odd number of such flavor on the surface.
In fact, the recently discovered topological Kondo insulator
material, SmB6 [9–14], supports three massless Dirac cones
on the surface. In the space group classification such TIs
belong to a distinct class T − p3(4)X [48]. Recently, there
have been few experiments trying to explore the effects of
depositing magnetic impurities of the surface of SmB6 [49].
Here we explore possible magnetic ordering by accounting
for an effective low energy model for the surface of cubic
TKIs [14,50–55].

To account for three Dirac cones located at the �, X, and Y

points of the surface Brillouin zone, we introduce the notion
of valley indices and define a supervector as

Ck = (c�k↑,c�k↓,cXk↑,cXk↓,cYk↑,cYk↓)T . (32)

The Hamiltonian in this basis reads as

H =
∑

i=�,X,Y

∫
k∈�

dK H (k − ki) =
∑

i

∫
dk Hi(k), (33)

where

Hi(k) = k × �σ − μi, (34)

for i = �, X, and Y . Fermionic Green’s function in this basis
is block-diagonal and given by

G(k) = diag(G�(k),GX(k),GY (k)), (35)

whereas the general form of the spin operator is given by

�� =
⎛
⎝ �σ b�σ b�σ

b�σ �σ a�σ
b�σ a�σ �σ

⎞
⎠. (36)

Two parameters a and b respectively denote the strength of
intervalley scattering processes between � and X/Y points,
and between X and Y points (see Fig. 1).

The total spin susceptibility for the surface states of cubic
TKIs reads as

χab(q) = 1

β

∑
ikn

∫
d2k

(2π )2
Tr[�G(k + q)�G(k)]

=
∑

i

χab
i (q) +

∑
i �=j

Aijχ
ab
i,j (q), (37)

where

χab
i (q) = 1

β

∑
ikn

∫
d2k

(2π )2
Tr[σaGi(k + q,ikn)σbGi(k,ikn)],

χab
i,j (q) = 1

β

∑
ikn

∫
d2k

(2π )2
Tr[σaGi(k + q,ikn)σbGj (k,ikn)],

(38)

and Aij = b2 or a2. Therefore, indirect exchange (mediated
by an itinerant fermion) between two magnetic impurities is
composed of two parts interaction mediated by (i) intravalley
scattering and (ii) intervalley scattering (its strength is deter-
mined by coefficients a and b). Thus understanding the nature
of magnetic ordering is an interesting question, which can be
of importance to recent and ongoing experiments on TKIs,
such as SmB6 [49].

Let us first focus on a simpler situation by turning
off the intervalley scatterings (set a = b = 0). Under this
circumstance, the net spin susceptibility is a superposition for
spin susceptibilities arising due to exchange interaction with
fermions residing near �, X, and Y valleys. Individually, the
spin susceptibility functions have minima at wave vector q =
2k�

F , 2kX
F , and 2kY

F , if the magnetic moment is isotropic (see
Fig. 3). As a consequence, the magnetic impurities organizes
in a spin density wave pattern that in addition displays beat;
with the larger wavelength (for the envelope) being inversely
proportional to the difference of two Fermi wave vectors and
the smaller wavelength (determine the variation inside each
such envelope) is set by the inverse of the algebraic mean of
two Fermi wave vectors.

When the magnetic moment possesses strong Ising or easy-
axis anisotropy along the z direction, our previous discussion
in the presence of a single Dirac cone can be generalized to gain
insight into the nature of magnetic ordering. Therefore, when
the Fermi wavelengths of the three Dirac cones are all much
larger than the interimpurity distance, spin field can be coarse
grained and the ground state is expected to be ferromagnetic.
On the other hand, when any of the three Fermi wavelengths
is smaller than the interimpurity distance, such analogy can
no longer be established and we have to pursue a numerical
approach.

The zz component of the spin susceptibility for cubic TKIs
reads as

χzz(r) = χzz
� (r) + χzz

X (r) + χzz
Y (r) + b2

(
χzz

X�(r)e−iKX ·r

+χzz
X�(−r)eiKX ·r + χzz

Y�(r)e−iKY ·r + χzz
Y�(−r)eiKY ·r)

+ a2(χzz
XY (r)e−i(KX−KY )·r + χzz

XY (−r)ei(KX−KY )·r),
(39)

where

χzz
i (r) = − 1

β

∑
ikn

η2
i

[
K2

0 (ηir) + K2
1 (ηir)

]
,

χzz
ij (r) = − 1

β

∑
ikn

ηiηj [K0(ηir)K0(ηj r)

+ K1(�ir)K1(�jr)], (40)

and ηi =
√

(kn − iμi)2, kn = (2n+1)π
β

. Once again we generate
800 magnetic impurities on the two dimensional R × R

system, where R = 28, so that the average distance between
neighbor impurities 〈a〉 � 1. Notice that due to underlying
cubic symmetry the chemical potential for the surface Dirac
cones at X and Y points are the same. For now we turn off
all intervalley scattering (by setting a = b = 0). Results are
displayed in Fig. 8.
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FIG. 8. Disorder averaged (over 20 independent realization) plot for the ground state spin configuration for (a) μ� = 0.5,μX = μY = 1, so
that reff0 � 1.56 > 〈a〉 (low doping regime), (b) μ� = 1.5,μX = μY = 2, so that reff0 = 0.71 < 〈a〉 (high doping regime), (c) μ� = 0.3,μX =
μY = 1.5 with reff0 = 1.2 > 〈a〉 (one in low doping regime while the other two are in high doping regime), and (d) μ� = 0.5,μX = μY = 2,
but with reff0 = 0.87 < 〈a〉 (still one in low doping regime while the other two are in high doping regime). The ground state for (a) and (c) are
clearly ferromagnetic, while that in (b) and (d) displays glassiness.

As we will demonstrate shortly, the nature of the magnetic
ordering on the surface of TKIs can be anticipated by
comparing an effective length scale for the RKKY interaction,
given by reff0 � 1.3μ−1

eff , where

μeff = μ� + μX + μY

3
, (41)

with 〈a〉, the average distance between two nearest magnetic
impurities. For example, when all three Dirac cones are in
the low doping regime (with μ� = 0.5, μX,Y = 1 < μcrit =
1.3 and the corresponding r0 > 〈a〉 individually), such that
reff0 > 〈a〉 our numerical simulation suggests that the ground
state is ferromagnet, with net nonzero magnetization, as
shown in Fig. 8(a). By contrast, when all three Dirac cones
are at high doping regime (with μ� = 1.5,μX,Y = 2), so
that reff0 = 0.71 < 〈a〉, the spin configuration in the ground
state fragments into mutiple islands, with random orientation
of magnetization, such that the system possesses net zero
magnetization, representing the ferromagnetic spin-glass-like
phase, as shown in Fig. 8(b). These two situations can be
considered as a generalization of the situation with single Dirac
cone. However, a more interesting situation arises when the
doping concentration for different Dirac cones are different.
Such a situation is conceivable and can also be realized in
experiments due to the generic offset among the energy of
the Dirac points located at � and X/Y points [14,53,54].
The underlying cubic symmetry pins the Dirac cone at X and
Y points at the same energy, which are generically different
from the one at the � point. Let us consider a situation when
μ� = 0.3, μX,Y = 1.5, i.e., Dirac cone at � point is at low
electron-doping regime, while those at X,Y points are at high
electron-doping regime. With such choices of the parameters
reff0 = 1.2 > 〈a〉 and our numerical analysis suggests that
the ground state is in ferromagnet; see Fig. 8(c). Finally,
we set μ� = 0.5, μX,Y = 2, i.e., Dirac cone at � point is at
low electron-doping regime, while those at X,Y points are
at high electron-doping regime, for which reff0 = 0.87 < 〈a〉.
Numerical analysis suggests that the ground state with these
choices of the parameter is ferromagnetic spin glass, as shown
in Fig. 8(d). Thus our numerical analysis strongly suggests that
when the effective zero point for χzz(r), namely reff0, is greater
(smaller) than the average nearest neighbor distance, the
ground state for impurity spins is ferromagnet (ferromagnetic
spin glass).

By computing the disorder averaged net magnetization in
the system, we can track the nature of the transition between
a ferromagnet and the ferromagnetic spin glass phases. As
shown in Fig. 9, for small μeff the system is ferromagnet, which
at larger μeff system displays glassiness. Around a critical
strength of effective chemical potential defined in Eq. (41),
namely μeff � 1.3, the system undergoes a first order phase
transition.

Finally, we take into account intervalley scattering and in
particular seek to investigate the stability of ferromagnetic
arrangement of magnetic impurities against the onslaught of
intervalley scattering. We choose the following parametriza-
tion for intervalley scattering a2 = 1

3 (representing the strength
of scattering between � and X/Y valleys) and b2 = 1

5
(capturing the strength of scattering between X and Y valleys),
while other parameters are kept the same as those in Fig. 8(a)
and Fig. 8(c). The relative strength of a and b is roughly
proportional to the ratio of the separation between � and X/Y

valleys, and X and Y valleys. For these choices of parameters,
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FIG. 9. Disorder averaged net magnetization (normalized) as a
function of effective chemical doping (μeff ) [see Eq. (41)]. Notice
that across a critical chemical doping μcrit ≈ 1.3 a first order
phase transition takes place between the ferromagnetic phase and
ferromagnetic spin glass phase on the surface of cubic TKIs. The
normalized magnetization for low doping being slightly bigger than
unity is a consequence of softening the constraint due to the coarse
graining of the spin field.
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FIG. 10. Disorder averaged impurity spin configurations, when
intervalley scattering are included, where we phenomenologically
choose intervalley scattering amplitude a2 = 1/3, b2 = 1/5. In
Fig. 10(a), μ� = 0.5, μX = μY = 1, while in Fig. 10(b), μ� =
0.3, μX = μY = 1.5, which is the same as parameters set in Fig. 8(a)
and Fig. 8(c). We can see that ferromagnetism is stable against
moderate intervalley scatterings. Each configuration is averaged over
20 independent disorder realizations.

the spin configuration in the ground state is displayed in
Fig. 10, and we find that the ferromagnetic arrangement among
the magnetic impurities can be robust against the intervalley
scattering.

It should be noted that we here completely neglect the
effects of residual electron-electron interaction on the surface
of cubic TKIs. Since the bulk band inversion in these systems
takes place through the hybridization among d and f electrons,
the surface state is also composed of linear superposition of
these two orbitals and can constitute a strongly correlated Dirac
liquid. Strong interaction among the surface states can lead to
various exotic phases among which spin liquid [56,57], broken
symmetry phases [53,54], and chiral liquid [58] have been
proposed theoretically. However, at this stage it is not clear
how strong is the residual electronic interaction on the surface.
At least, for sufficiently weak interaction our proposed phases
(pure ferromagnet and ferromagentic spin glass) should be
robust. Nevertheless, effects of electronic interaction should
now be systematically incorporated to test the regime of
validity of our analysis (see Ref. [59] for similar discussion
relevant to magnetically doped graphene), which, however,
goes beyond the scope of the present discussion.

VI. SUMMARY AND DISCUSSION

To summarize, pursuing complementary analytical and
numerical analyses, we here investigate the nature of magnetic
ordering on the surface of simple topological insulators
(containing only one flavor of two component Dirac fermion)
and cubic topological Kondo insulators (supporting three
copies of the two component Dirac fermion), when magnetic
impurities are randomly deposited. We here work in the dilute
magnetic impurity limit so that direct exchange interaction can
be neglected and interaction among two impurities is mediated
by surface itinerant fermions (but the coupling between these
two degrees of freedom is small). Such indirect interaction
among magnetic impurities assumes the form of a RKKY
interaction. We show that when magnetic moment of impurity
adatom is isotropic and the chemical potential is pinned away
from the Dirac point, the ground on the surface of conventional
topological insulators is a spin-density wave with wavelength
approximately π/kF . On the other hand, due to a generic

offset among the energy of three Dirac points on the surface
of cubic topological insulators, a similar spin-density-wave
arrangement assumes the profile of a beat, with two distinct
wavelengths determining the short and large length scale
behaviors.

The situation gets quite involved when magnetic moment
possesses strong Ising-like or easy-axis anisotropy. For low
chemical doping, performing coarse graining over the impurity
spin field, we find ferromagnetic arrangement among the
impurity spins to be energetically favored over both param-
agnetic and spin-density-wave ones. Such analysis based on
Landau free energy is valid only in the low doping regime, and
also applies for magnetic ordering on the surface of cubic
topological Kondo insulators, when the effective chemical
potential, defined in Eq. (41), is small. However, such analysis
cannot be extended to high doping regime and we have to
rely on numerical analysis to gain insight into the magnetic
ordering over a wide range of chemical doping.

Our central achievements from numerical analysis are
displayed in Figs. 5 and 8, respectively for simple topological
insulators and cubic topological Kondo insulators. Irrespective
of the doping level, the system always breaks into multiple
small islands, each of which is ferromagnetically ordered. The
size of such ferromagnetic grains � ∼ μ−1 on the surface of
topological insulator and � ∼ μ−1

eff on the surface of topological
Kondo insulator. When the chemical doping is low the
magnetization points in the same direction in these islands
(but of different magnitude) and the system possesses net
finite magnetization. Such ground state is referred to as a
ferromagnet. By contrast, for high doping the direction of
magnetization in those islands are randomly distributed and
the system possesses net zero magnetization. The ground
state takes the form of glass, and we refer to this phase as
ferromagnetic spin glass. A similar conclusion also holds
for the surface of a cubic topological Kondo insulator, for
which the effective chemical potential, defined in Eq. (41),
plays the role of chemical potential. The spatial variation of
magnetic moment on the surface of topological insulators can,
for example, be detected by a spin resolved scanning tunneling
microscope (STM).

By numerically computing the net magnetization one can
also track the transition between pure and glassy ferromagnetic
phases. As shown in Figs. 6 and 9, when the chemical doping
for the surface state is gradually increased there is a first order
phase transition between these two phases around a critical
chemical doping, for which the characteristic length scale for
RKKY oscillation is an approximately average interimpurity
distance. Therefore, our proposed phases and the first order
phase transition between distinct phases can be found on
the surface of magnetically doped topological insulators by
systematically tuning the surface chemical potential, which,
for example, can be achieved by ionic liquid gating [60] or by
injecting nonmagnetic ions.

Our analysis can also be consequential for the measurement
of anomalous Hall effect on the surface of topological insula-
tors. Recently, it has been demonstrated through self-consistent
calculation that magnetic adatoms arranged in a ferromagnetic
pattern lead to a mass or gap for a surface Dirac fermion,
by globally breaking the time-reversal symmetry [31]. Such
two component massive Dirac fermion naturally gives rise

235421-10



FERROMAGNETISM AND GLASSINESS ON THE SURFACE . . . PHYSICAL REVIEW B 94, 235421 (2016)

FIG. 11. Feynman diagram for spin susceptibility, where solid
lines represent Dirac fermions and vertex is accompanied by Pauli
matrix and wavy lines are external spin field.

to anomalous Hall conductivity [61], which, however, is not
quantized unless the chemical potential resides within the
mass gap. Although in the high doping regime the system
breaks into multiple islands and each such configuration
produces massive Dirac fermion. In the low doping regime
when magnetic moment in each such islands point in the same
direction, the surface Dirac fermion can still remain massive.
Presence of such ferromagnetism can lead to hysteresis that
has recently been observed in SmB6 [62]. Even inside the
glassy phase, when magnetic moment of the ferromagnetic
island is randomly oriented, the Dirac fermion acquires a
spatially modulated mass. In particular, when two neighboring
islands possess magnetic moments of opposite sign, the Dirac
mass assumes the profile of a domain wall, which supports a
one-dimensional chiral edge state [63,64]. Such chiral edge
state can ultimately constitute a network which may also give
rise to finite anomalous Hall conductivity that has recently
been observed on the surface of Bi2Se3 [16], a detailed analysis
of which, however, goes beyond the scope of the present work,
and remains as an interesting and challenging open problem
(for discussion on a similar issue, see Ref. [65]).
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APPENDIX A: STATIC SPIN SUSCEPTIBILITY FOR
MASSLESS DIRAC FERMION

In this appendix, we derive the analytical expression for the
static spin susceptibility after proper ultraviolet regularization,
defined as χab

ren(q) = χab(q) − χab(0). Its Feynman diagram is
shown in Fig. 11. From Eq. (6) we obtain

χab(q,iqn) = 1

β

∑
ikn

∫ ′ d2k
(2π )2

Tr

× [σaG(k + q,ikn + iqn)σbG(k,ikn)]. (A1)

The Green’s function (G) has already been defined in
Eq. (7). In terms of Feynman parameter (x) we can rewrite

1

[(ikn + μ)2 − (k + q)2][(ikn + μ)2 − k2]

=
∫ 1

0
dx

1

(k + xq)2 + (kn − iμ)2 + �2]2
, (A2)

where �2 = x(1 − x)q2 [66]. Upon shifting the integral
variable k + xq → k the static spin susceptibility at zero
temperature becomes

χab(q) =
∫ 1

0
dx

∫
dk0

2π

∫
d2k

(2π )2

1

[k2 + (k0 − iμ)2 + �2]2

× Tr[σa(ik0 + μ + [k + (1 − x)q] × σ )

× σb(ik0 + μ + (k − xq) × σ )]. (A3)

Let us first set a = b = z in Eq. (A3). We then obtain

χzz(q,0) = −2
∫ 1

0
dx

∫
dk0

2π

∫
dk

(2π )2

k2
E − �2(

k2
E + �2

)2 , (A4)

where k2
E = k2 + (k0 − iμ)2. Notice that, for kE  �,

χzz �
∫ �D

d3kE

1

k2
E

� �D, (A5)

where �D is the ultraviolet cutoff and χzz display linear-�D

divergence term. Such linear ultraviolet divergence in two
spatial dimensions is a generic feature for low dimensional
Dirac systems, dependence on which must be removed from
any physical observable. By subtracting the q = 0 piece of
χzz, we finally arrive at the following renormalized quantity

χzz
ren(q) ≡ χzz(q) − χzz(0) (A6)

that is devoid of any �D dependence (for different types
of regularization in two dimensional relativistic systems; see
Refs. [67,68]) and given by

χzz
ren(q) = χzz(q) − χzz(0)

= −2
∫ 1

0
dx

∫
dk0

2π

∫
dk

(2π )2

[
k2
E − �2(

k2
E + �2

)2 − 1

k2
E

]

= 2
∫ 1

0
dx �2

∫
dk0

2π

∫
dk

(2π )2

3k2
E + �2(

k2
E + �2

)2
k2
E

=
∫ 1

0

dx

2π

∫
dk0

2π

[
2�2

(k0 − iμ)2 + �2

+ log

(
1 + �2

(k0 − iμ)2

)]

=
∫ 1

0

dx

2π
�(� − μ)[� + (� − μ)]

=
∫ 1

0

dx

2π
�(� − μ)(2� − μ), (A7)

where �(x) is the step function. If the maximum of � is less
than μ, i.e.,

�max =
√

x0(1 − x0)q = q

2
< kF , (A8)

then χzz
ren(q < 2kF ) = 0. On the other hand, for q > 2kF , we

find

χzz
ren(q) = q

4π
sin−1

[
1 − 4k2

F

q2

]1/2

, (A9)
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where x1,2 = 1
2 ∓ 1

2

√
1 − 4k2

F

q2 . When we combine the piece-
wise results together, we obtain the zz component of the
renormalized static spin susceptibility

χzz
ren(q) = q

4π
Re sin−1

[
1 − 4k2

F

q2

]1/2

. (A10)

On the other hand, for a = b = x in Eq. (A3) we find

χxx(q)

= −2
∫ 1

0
dx

∫
dk0

2π

∫
d2k

(2π )2

(k0 − iμ)2 − �2 cos 2φ

[k2 + (k0 − iμ)2 + �2]2

= −
∫ 1

0

dx

2π

∫
dk0

2π

(k0 − iμ)2 − �2 cos 2φ

(k0 − iμ)2 + �2
, (A11)

which also displays linear-� divergence. Hence we define the
renormalized spin susceptibility as

χxx
ren(q) = χxx(q) − χxx(0)

= −
∫ 1

0

dx

2π

∫
dk0

2π

−�2 − �2 cos 2φ

(k0 − iμ)2 + �2

=
∫ 1

0

dx

2π
�(� − μ)� cos2 φ = f1 cos2 φ, (A12)

where

f1 = |kF |
4π

Re

√
1 − 4k2

F

q2
+ q

8π
Re sin−1

√
1 − 4k2

F

q2
. (A13)

Due to in plane rotational symmetry we find χ
yy
ren(q) =

f1 sin2 φ.
Next we compute the off diagonal elements of χab. For

a = x and b = y in Eq. (A3), we find

χxy(q) =
∫ 1

0
dx

∫
dk0

2π

∫
d2k

(2π )2

2�2 sin 2φ

[k2 + (k0 − iμ)2 + �2]2

=
∫ 1

0

dx

2π

∫
dk0

2π

�2 sin 2φ

(k0 − iμ)2 + �2

= 1

2

∫ 1

0

dx

2π
�(� − μ)� sin 2φ = f1

2
sin 2φ. (A14)

It is worth pointing out that χxy(q) is an ultraviolet finite
quantity and χyx(q) = χxy(q).

Upon setting a = x and b = z in Eq. (A3) we obtain

χxz(q) = −χzx(q) =
∫ 1

0
dx

∫
dk0

2π

∫
d2k

(2π )2

× −2(k0 − iμ)q cos φ

[k2 + (k0 − iμ)2 + �2]2

= −
∫ 1

0

dx

2π

∫
dk0

2π

(k0 − iμ)q cos φ

(k0 − iμ)2 + �2
. (A15)

Here, we need to construct a rectangular loop in the complex
k0 plane; one long side of the rectangle is −∞ → ∞ and
the other −∞ + iμ → ∞ + iμ. Depending on whether the
rectangle encloses the singular point k0 = iμ − i�, we find∫

dk0

2π

(k0 − iμ)

(k0 − iμ)2 + �2
= 0, when � > μ, (A16)

and ∫
dk0

2π

(k0 − iμ)

(k0 − iμ)2 + �2
= i

2
, when � < μ. (A17)

Then we obtain

χxz(q) = −χzx(q) = −if2 cos φ, (A18)

where

f2 = q

4π

⎛
⎝1 − Re

√
1 − 4k2

F

q2

⎞
⎠. (A19)

Similarly, χyz(q) = −χzy(q) = −if2 sin φ. These
off-diagonal entries do not depend on the ultraviolet
cutoff.

APPENDIX B: MOMENTS OF RKKY INTERACTION AND
MAGNETIC ORDERING

Here, we provide the deatils of the computation of first
and second moment of the RKKY interaction that offers an
alternative perspective to understand the two phases, namely
the ferromagnet and the glassy one, on the magnetically doped
surface of TI [44]. In addition, this analysis will also allow us
to gain insight into the location of the phase transition between
them in terms of chemical doping. Consider only an isolated
pair of Ising-type magnetic adatoms. The interaction between
them is captured by the Hamiltonian

HRKKY = −JijS
z
i S

z
j , (B1)

which is qualitatively similar to the Sherrington-Kirkpatrick
model [45,46], where the coupling Jij = −χzz

ij follows a
certain statistical distribution. Here we simply assume a
uniform distribution of magnetic impurities on the surface of
a topological insulator. Under this assumption, the first and
second moments of the RKKY coupling are

〈J 〉dis = −〈χzz〉dis = −
∫

a

drχzz(r), (B2)

〈J 2〉dis = 〈(χzz)
2〉dis =

∫
a

dr(χzz(r))2, (B3)

where a is the shortest distance between two magnetic
adatoms. The value of first moment would predict the nature of
the ordered phase and its corresponding mean-field transition
temperature. By contrast, the second moment denotes the
fluctuation of the coupling. These two quantities have been
computed numerically as a function of chemical doping μ

away from the Dirac point. The results are shown in Fig. 7.
In the calculation the Matsubara frequency is cut off at
n = ±60 and spatial integral is cut at r = 100a, where first
and second moments show convergence. We find that in the
low electron doping regime, the first moment is positive
and much larger than the second moment. Thus in the low
doping regime the magnetic adatoms collectively form a
FM phase below critical temperature TFM ∼ 〈J 〉dis. In the
high electron doping regime, the fluctuation of the RKKY
coupling destroys such long-range ferromagnetic order, and a

235421-12
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ferromagnetic spin glass phase stabilizes below the transition
temperature TSG ∼ √〈J 2〉dis. This analysis is consistent with

our previously reported numerical results in the main part of
the paper.
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