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Hanle precession in the presence of energy-dependent coupling between localized
states and an epitaxial graphene spin channel
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Hanle spin precession measurements are a common method to extract the spin transport properties of graphene.
In epitaxial graphene on silicon carbide, these measurements show unexpected behavior, due to presumed
localized states in the carbon buffer layer that is present between the channel and the substrate. As a consequence,
the Hanle curve narrows in its magnetic field dependence and can show an unconventional shape, which has
been experimentally observed and modeled in previous studies. Here, we extend the previously developed model
by assuming that the localized states are charge traps, that have a power-law distribution of trapping times. Our
simulations show that the energy dependence of these trapping times can be extracted from the temperature
evolution of the Hanle curve, which was previously observed in experiments. Our extended model gives better
insight into what processes play a role when a spin channel is coupled to localized states and their relation to the
experimental observations.
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I. INTRODUCTION

Epitaxial graphene on the silicon (0001) face of silicon
carbide (SiC) [1–3] has been studied recently for its suitability
as a spintronic material using Hanle spin precession exper-
iments [4,5], which is a method to measure spin dynamics
in a nonlocal spin valve geometry in the presence of an
external, out-of-plane B field. It was observed that the spin
transport properties are influenced by the presence of localized
states in the buffer layer, an insulating carbon layer that is a
characteristic feature of this material, resulting in a dramatic
narrowing of the Hanle curve in the presence of the buffer
layer [4,6]. More recently, even a change in the general shape
of the Hanle curve was observed at low temperatures [7].

A previously developed model [6] explains both effects by
assuming, coupled to the spin channel, localized states that
briefly trap the itinerant spins. Simulations using the localized
states model resemble the typical change in the Hanle curve
that is seen in the experiments to some extent, but have some
features that are different. So far, the localized states model
succeeded in explaining the narrowing of the curve at high
coupling strength (observed at room temperature) [6] and the
development of an anomalous shape of the curve at interme-
diate coupling strength (observed at low temperatures) [7].
The exact shape of this anomalous Hanle curve, however,
could not be properly simulated, indicating that the previously
developed localized states model in the intermediate coupling
regime is perhaps somewhat oversimplified. Also, a physical
interpretation of the temperature dependence of the coupling
rate has so far not been offered.

Here, we investigate further the shape of the Hanle curve
within the scope of the previously developed model. To
extend this model, we assume a coupling rate between the
localized states and the channel that is not one specific value,
but is distributed over a range of values, described by a
distribution function F(�). We use for F(�) an inverse power-
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law distribution, derived from the heavy-tailed distribution
of trapping times commonly found to describe dispersive
transport [8,9]. We arrive at this distribution function by
assuming an exponential dependence of the coupling rate on
the energy E of the localized states away from the Fermi level.
In this way, we can naturally explain the previously observed
temperature dependence of the change in the shape of the
Hanle curve.

With this analysis, we show that Hanle experiments are a
means of obtaining insights about the nature of the localized
states and the process that mediates the coupling with the
channel. Furthermore, this generalized model can be used
to describe any spin channel with localized or trapped states
influencing the transport, and could therefore be of interest for
the understanding of spintronics in organic semiconductors.

II. LOCALIZED STATES MODEL

We start with a brief summary of the previously developed
model of localized states that are coupled to the spin chan-
nel [6], which we will later on refer to as the “reference model.”
The itinerant spins in the channel have a probability to hop into
such a localized state and be trapped there for some trapping
time tt. While being immobilized, the spins can still relax and,
in the presence of an applied magnetic field, precess. When
there is a sufficiently large amount of these localized states,
or groups of localized states, the spin dynamics in the system
can be described using a spin accumulation in the channel,
�μS, and in the localized states, �μ∗

S. The latter is a continuous
variable if there are enough states available, a fact that can be
justified if we consider that the buffer layer is a nonconducting
but graphene-like layer.

Now, the situation can be expressed using two coupled
Bloch equations, given by

0 = D∇2 �μS − �μS

τS
+ �ωL × �μS − η�( �μS − �μ∗

S),
(1)

0 = −
�μ∗
S

τ ∗
S

+ �ω∗
L × �μ∗

S − �( �μ∗
S − �μS).

2469-9950/2016/94(23)/235417(5) 235417-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevB.94.235417


J. J. VAN DEN BERG, A. KAVERZIN, AND B. J. VAN WEES PHYSICAL REVIEW B 94, 235417 (2016)

Here, D is the diffusion coefficient, τS the spin relaxation time,
and ωL the Larmor precession frequency. The ∗ denotes the
properties of the localized states. The constant η = νLS/ν is
the ratio between the density of states (DOS) of the localized
states and the DOS in the channel, and � = 1/tt is the coupling
rate.

The effect of the localized states on �μS can be described by
rewriting the two coupled Bloch equation into one, effective
Bloch equation [6]:

0 = D∇2 �μS − �μS

τ eff
S

+ �ωeff
L × �μS, (2)

with

1

τ eff
S

= 1

τS
+ η�

1 + τ ∗
S � + (τ ∗

S ω∗
L)2

(1 + τ ∗
S �)2 + (τ ∗

S ω∗
L)2

, (3)

ωeff
L = ωL + η�2 (τ ∗

S )2ω∗
L

(1 + τ ∗
S �)2 + (τ ∗

S ω∗
L)2

. (4)

As described in Ref. [6], the expression of Eq. (3) and
Eq. (4) can be simplified by considering different coupling
regimes. This is done by comparing the coupling rate � with
the other characteristic rates in the system, 1/τS and ωL. When
these rates are much larger than �, spins that hop into the
localized states will be lost due to relaxation or dephasing,
respectively. However, the regime of strong coupling (� �
1/τ ∗

S ) and low precession frequency (� � ω∗
L) is typically the

regime of interest for our system, at least at room temperature.
In this regime, Eq. (3) and Eq. (4) can be simplified into
1/τ eff

S = 1/τS + η/τ ∗
S and ωeff

L = ωL + ηω∗
L. These effective

parameters τ eff
S and ωeff

L result in a Hanle curve that is very
narrow compared to the conventional case of a channel without
localized states, but the curve maintains its shape.

In Ref. [7], the regime of intermediate coupling was
considered, where η� ∼ 1/τS. In this regime, the complex
interdependence of τ eff

S and ωeff
L results in a nontrivial change

of the shape of the Hanle curve, which in that work was
experimentally shown at low temperatures down to 4 K.

Extension of the model: Localized states
with varying coupling rate

Now, we investigate what happens if � changes as a function
of the position x in the channel. In this approach, which we
will call the “extended model,” the system can be described as
a channel where the localized states have a changing coupling
rate �i depending on the specific location in the channel,
as shown in Fig. 1. We make the assumption that the spin
dynamics in the systems can be described in terms of the spin
accumulation �μS and a spin accumulation �μS,i , associated with
all localized states or groups of localized states with coupling
rate �i . The quantity ηi describes the ratio between the DOS
of the localized states with �i and the DOS in the channel.

Because we consider a large number of localized states and
a continuous variable �μS, the system behaves as a channel
which is coupled to different types of localized states that
couple at the same location simultaneously, where we maintain
the assumption that there is no hopping between the localized
states. Now, we can extend the reference model by simply
adding extra coupled Bloch equations describing the spin

Injector Detector

x

z

Г1 Г2 Гn
...

FIG. 1. Schematic representation of a diffusive spin channel
where spins can be trapped in localized states coupled to the channel.
In the model presented here, the coupling rate � can be different
from trap to trap. We model this by n distinctive states, which each
have a different coupling rate. The effective spin transport properties
can then be calculated by a summation over the contributions of all
localized states.

accumulation in the system. For n different types of localized
states we are now left with n + 1 coupled equations. In
this notation we have replaced the spin accumulation in the
localized states �μ∗

S that was used in the reference model with
�μS,i . For the corresponding properties we also replace the ∗

with the index i:

0 = D∇2 �μS − �μS

τS
+ �ωL × �μS − η1�1( �μS − �μS,1)

− η2�2( �μS − �μS,2) − · · · − ηn�n( �μS − �μS,n),

0 = − �μS,1

τS,1
+ �ωL,1 × �μS,1 − �1( �μS,1 − �μS), (5)

0 = − �μS,2

τS,2
+ �ωL,2 × �μS,2 − �2( �μS,2 − �μS),

. . .

0 = − �μS,n

τS,n

+ �ωL,n × �μS,n − �n( �μS,n − �μS).

We can rewrite 0 = − �μS,i/τS,i + �ωL,i × �μS,i − �i( �μS,i −
�μS) as �μS,i = ai �μS, following the same method as for the

reference model for one type of localized states [6]. Thus we
can rewrite the first line of Eq. (5), which describes the spin
accumulation in the channel, as

0 = D∇2 �μS − �μS

τ
eff,1
S

+ �
ω

eff,1
L × �μS − η2�2( �μS − �μS,2)

− · · · − ηn�n( �μS − �μS,n), (6)

using the same procedure as for Eq. (2). Iterating this step n

times yields an effective Bloch equation that takes into account
the contributions of all types of localized stated. This gives

0 = D∇2 �μS − �μS

τ
eff,n
S

+ �
ω

eff,n
L × �μS (7)

with

1

τ
eff,n
S

= 1

τS
+

n∑
i=1

ηif (�i), (8)

ω
eff,n
L = ωL +

n∑
i=1

ηig(�i), (9)

using for convenience the following newly introduced func-
tions:

f (x) ≡ x
1 + τ ∗

S x + (τ ∗
S ω∗

L)2

(1 + τ ∗
S x)2 + (τ ∗

S ω∗
L)2

(10)
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and

g(x) ≡ x2 (τ ∗
S )2ω∗

L

(1 + τ ∗
S x)2 + (τ ∗

S ω∗
L)2

. (11)

Not to complicate things further, we made here the assumption
that the spin relaxation time in all the localized states is
constant τS,i = τ ∗

S . We also used ωL,i = ω∗
L, because there

is no reason to believe a significant variation in the g factor.
We can interpret ηi as the weighing factor of the different

contributions, meaning that for each �i there is a corresponding
ηi = η(�i). In other words, the weighing factor is in fact a
�-dependent variable η(�). As a consequence, we have to
change notation and now define the constant η0 = νLS/ν as
the ratio between the DOS of all localized states and the DOS
in the channel (where we previously used η), in order to keep
the description consistent with the reference model. Hence, η0

is now defined as the ratio between the localized states DOS
and the DOS in the channel, summed over all types of localized
states:

n∑
i=1

ηi =
n∑

i=1

η(�i) = η0. (12)

For a large n, we can consider � to be a continuously
distributed parameter, described by some distribution function
F(�). This distribution function is closely related to the
weighing factor via the expression η(�i) = F(�i)��. This
allows us to rewrite the summation terms in Eq. (8) and Eq. (9)
as an integral, by taking the limit n → ∞, giving

1

τ eff
S

= 1

τS
+

∫
�

F(�)f (�) d�, (13)

ωeff
L = ωL +

∫
�

F(�)g(�) d�. (14)

The continuous version of Eq. (12) is given by

lim
n→∞

n∑
i=1

η(�i) =
∫
�

F(�) d� = η0. (15)

Thus, using this description we can investigate any distribution
function F(�) describing the spreading in the coupling rate �,
while keeping the ratio η0 constant. Note that the distribution
function given by FD(�) = η0δ(� − �0), where δ(�) is the
Dirac delta function, returns the original results described in
Eqs. (3) and (4), where we changed notation from � (which is
now a variable) to �0.

III. INVERSE POWER-LAW DISTRIBUTION FOR F (�)

To find out what type of distribution function F(�) would
correctly describe our system, we look in the literature
for other systems with similar transport characteristics. A
good candidate is offered by the well-studied disordered
semiconductors that exhibit dispersive transport, characterized
by free carriers that are immobilized in charge traps. These
traps have a range of trapping times that are described by a
power-law distribution [8,9]. The effect of this distribution of
trapping times on spin transport in organic semiconductors was
recently studied [10]. In this study the assumption was made

tt (s)

F P
 (t t)

1/Г0

Г0

F I
P
 (Γ

)

0

(a) (b)

Γ0

4/Г0

Γ (s-1)

α = 4
α = 2
α = 1
α = 0.5

0

α = 4
α = 2
α = 1
α = 0.5

FIG. 2. (a) Power-law distribution for the trapping time FP(tt) for
different tail indices α. (b) Inverse power-law distribution function
for the coupling rate FIP(�).

that electrons in traps do not undergo any spin relaxation,
resulting in a strong narrowing and shape change of the Hanle
curve.

The power-law distribution of trapping times is a direct
consequence of charge traps that are exponentially distributed
in energy E, where E is the activation energy that is required to
leave the traps. Following Ref. [9], the dependence on energy
of the DOS of the traps (to be more precise, its ratio with the
DOS in the channel) η(E) is then described by

η(E) = η0 exp

(
− E

kBTC

)
, (16)

with kB Boltzmann’s constant and TC a characteristic temper-
ature that gives the steepness of the energy distribution that
describes the decline of the number of traps as the energy
moves away from EF . The coupling rate is given by

�(E) = �0 exp

(
− E

kBT

)
, (17)

with T the temperature.
For the trapping time tt, this results in a distribution FP(tt)

that has a power-law decay [9], also known as the Pareto
distribution. Because we consider � = 1/tt, we deduce here
the inverse of that distribution, FIP(�) (see also Supplemental
Material [11]):

FIP(�) = dη

dE

dE

d�

= η0α�−α
0 �(α−1), for 0 � � � �0. (18)

Here, we introduce the parameter α = T/TC, which is an
index that gives the weight of the tail of FP(tt). �0 can be
physically related to the attempt-to-escape rate, which limits
the maximum possible rate irrespective of the consideration of
the particular energy barrier. It was estimated to be 1012 s−1

following Ref. [9]. In Fig. 2 we show both FP(tt) and FIP(�)
for different values for α. Thus, we have an energy-dependent
distribution describing the coupling rate solely determined by
the parameters TC, η0, and �0, where the latter two replace the
constant values for η and � that were used in the reference
model.

IV. SIMULATIONS

Using the software MATLAB it is possible to simulate
the effect of the distribution function in Eq. (18) on the Hanle
curve. To obtain the full expressions for the effective properties
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FIG. 3. (a) The effect on the Hanle curve of a different coupling
rate �0 in the extended model that includes the inverse power-law
distribution function for the coupling rate. Used parameters for this
plot: DC = 0.015 m2 s−1, τS = 150 ps, L = 1 μm, W = 1 μm, τ ∗

S =
1 ns, η0 = 50, T = 300 K, TC = 200 K. (b) The effect of a different
ratio η0 between the DOS of the localized states and the DOS in the
spin channel. The used coupling rate �0 = 1012 s−1; other parameters
used for this plot are the same as for (a).

τ eff
S and ωeff

L , we incorporate Eq. (18) into Eq. (13) and Eq. (14)
and integrate over the whole range 0 � � � �0.

We show here the effect of changing the typical parameters
TC, η0, and �0. The rest of the parameters used in the model are
based on the experimental results and analysis from previous
studies.

Figure 3(a) shows how �0 relates to the narrowing and/or
shape change of the Hanle curve. For high coupling, there is
a narrowing of the curve, while for intermediate coupling also
the shape changes, as is consistent with the reference model.
Also consistent with previous description, η0 relates to the
strength of the effect of narrowing and shape change of the
Hanle curve in the limit at �0. The effect is demonstrated in
Fig. 3(b).

In Fig. 4(a) we show the role of TC in the extended model.
When increasing the temperature from the cryogenic region
up to room temperature, the Hanle curve evolves from a
shape that has some features of a conventional Hanle curve
without the effect of localized states, into the final shape
defined by �0 and η0. TC relates to the typical temperature
where the Hanle curves stops evolving and reaches the high
coupling limit. Thus, for T > TC, the Hanle curve can be
described by the reference model in the high coupling limit.
This can be intuitively seen in Fig. 2, where for large α the
distribution functions become very selective and ultimately
approach a delta function. Hence, the temperature evolution
of the Hanle precession curve can show the steepness of
the localized states decay with energy, by simply looking
at the transition temperature between the intermediate and

B (T)
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FIG. 4. (a) T -dependent simulations of the Hanle curve shape
using the extended model. The tail index α = T/TC puts more
weight in the tail of the distribution function F(tt), resulting in a
bigger contribution of states with a low coupling rate. Thus at low
T , many localized states fall in the intermediate coupling regime,
changing the shape of the Hanle curve. TC relates to the temperature
above which the distribution function does not effect the shape.
Used parameters in this plot: DC = 0.015 m2 s−1, τS = 150 ps,
L = 1 μm, W = 1 μm, τ ∗

S = 1 ns, η0 = 50, �0 = 1012 s−1, TC =
200 K. (b) Comparison between the experiment (black solid lines,
from Ref. [7]) and the two models: the reference model (blue dashed
line, also Ref. [7]) and extended model (red dotted line) at different
temperatures. For clarity, only the RT and 4 K curves are shown.
The three narrow, overlapping curves are the RT measurements and
simulations. The other three, wider curves are at low temperature.
The used parameters in these simulations are for the reference
model: DC = 0.02 m2 s−1, τS = 150 ps, L = 1 μm, W = 1 μm,
τ ∗

S = 0.42 ns, η0 = 42, �0 = 109 / 1013 s−1. For the extended model,
we used DC = 0.015 m2 s−1, τS = 30 ps, L = 1 μm, W = 1 μm,
τ ∗

S = 1 ns, η0 = 31, �0 = 1012 s−1, and TC = 200 K.

high coupling regime, or similarly, the transition between an
anomalous shape and a narrowing of the curve.

In Fig. 4(b) we show a comparison between previously
obtained experimental data (from Ref. [7]) and the two
different models. The reference model (also from Ref. [7])
does not have an explicit dependence on T , but instead shows
the curve for two different values of �. The extended model
with the inverse power-law distribution FIP(�), as described
in this work, is shown for two different temperatures (RT and
at 4 K). The measurements are shown by the black solid line.
The three narrow Hanle curves show that both models have
a good match at RT, as can be seen from their overlap with
the experiment. The wider and larger curves are at cryogenic
temperature. Here, the Hanle curve has an anomalous shape,
and this is also where the models deviate from the experiment
and from each other. The number of free parameters in both
models, however, is too high for an unambiguous fit to the
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data. The extension of the model allows for reproducing certain
features of the measured curve, in a way that was not possible
with the reference model. However, the model is limited in
completely reproducing the experiment with a single set of
parameters.

V. DISCUSSION AND CONCLUSIONS

To have an idea how strongly the extended model relies
on the use of the proposed inverse power-law distribution,
we also investigated the effect of other distribution functions
F(�) on the spin transport properties and the Hanle curve. We
found that using a constant spreading or a normal distribution
did not have a significant effect on the Hanle curve shape,
compared to the reference model. Likewise, a slightly skewed
distribution such as the log-normal distribution did not effect
the shape significantly either. The only type of distribution
functions having a significant effect on the Hanle shape were
functions with a large contribution from states in the regime
of intermediate coupling, but with a significant weight of �

spreading out over several orders of magnitude. Thus, power-
law or inverse power-law distributions are suitable candidates
to imitate the effect seen in experiment.

The fact that the extended model still deviates from
the experimental data in Fig. 4(b) can have a number of
reasons. A first reason could be that both energy-dependent
functions η(E), �(E) are not purely exponential, but should
be approximated by some other function, increasing the com-
plexity of the distribution function F(�) and its temperature
dependence. Second, the fact that we assume a constant
(i.e., energy and temperature independent) relaxation time
in the localized states τ ∗

S might be an oversimplification of
the physical situation. Third, there could be a significant
spatial variation in the DOS of the localized states, as well
as in their properties, depending on the physical origin of
the localized states (e.g., strain, defects, dangling bonds, or
a combination). Lastly, we did not incorporate the effect
of tunneling between the localized states and the channel,
which could play a role additional to the thermal hopping.

Even though a number of features could be added to extend
the model further, it is important to note that already in our
simplified description the number of degrees of freedom is
too high to unambiguously determine all parameters with
the available experimental data. To further understand the
physical mechanisms that play a role, new experiments should
be designed. More information about the most important
variables could be obtained by employing different techniques,
for example optical spin injection in a time-of-flight setup,
electron spin resonance, or noise measurements.

To conclude, we introduced here an explanation for the
temperature evolution of the Hanle curve in epitaxial graphene
spin devices on SiC, by assuming hopping between the
spin channel and charge traps. For this, we assume that
the number of traps and their coupling rate exponentially
decay with their energy difference with the Fermi level. The
strength of this decay, defined by TC, can be extracted from
experiments by identifying the transition between narrowing
of the Hanle curve at room temperature to an anomalous
shape at lower temperatures. Our extended model thereby
describes the temperature evolution of the Hanle line shape
in a natural way. Comparing our simulations with previously
measured experimental result showed that neither the reference
localized states model nor the extended model can fully fit
the measured curve, but both can capture certain features
of the shape. Complementary experimental investigations are
necessary to study in more detail the seemingly complex
relationship between the anomalous Hanle line shape and
the energy distribution of the localized states in an epitaxial
graphene spin channel.
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