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We generalize the hierarchical equations of motion method to study electron transport through a quantum dot or
molecule coupled to one-dimensional interacting leads that can be described as Luttinger liquids. Such leads can
be realized, for example, by quantum wires or fractional quantum Hall edge states. In comparison to noninteracting
metallic leads, Luttinger liquid leads involve many-body correlations and the single-particle tunneling density of
states shows a power-law singularity at the chemical potential. Using the generalized hierarchical equations of
motion method, we assess the importance of the singularity and the next-to-leading order many-body correlations.
To this end, we compare numerically converged results with second- and first-order results of the hybridization
expansion that is inherent to our method. As a test case, we study transport through a single-level quantum
dot or molecule that can be described by an Anderson impurity model. Cotunneling effects turn out to be most
pronounced for attractive interactions in the leads or repulsive ones if an excitonic coupling between the dot and
the leads is realized. We also find that an interaction-induced negative differential conductance near the Coulomb
blockade thresholds is slightly suppressed as compared to a first-order and/or rate equation result. Moreover, we
find that the two-particle (n-particle) correlations enter as a second-order (n-order) effect and are, thus, not very
pronounced at the high temperatures and parameters that we consider.
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I. INTRODUCTION

Quantum dots and molecules offer unique opportunities
to design nanoelectronic devices and to understand funda-
mental properties of open quantum many-body systems such
as quantization, interference, exchange and nonequilibrium
effects [1–5]. Conventional studies focus on the coupling to
noninteracting leads, which is appropriate when the electrons
in the leads are Fermi liquids [6,7]. In contrast, interact-
ing electrons in a quasi-one-dimensional lead can organize
themselves into a Luttinger liquid giving rise to a unique set
of correlations and properties [8,9]. The importance of such
correlations on the corresponding transport properties can be
demonstrated by Kane-Fischer theory [10,11], which shows
that the conductance through a tunneling barrier vanishes if
it is attached to repulsive Luttinger liquid leads, yet becomes
perfect for attractive ones. Experimentally, it is challenging
to realize Luttinger liquid leads, while the interest in such
systems is growing due to possible realizations in quantum
wires [12–15], or by the edge states of a fractional quantum
Hall system [16–20]. Thus it is very interesting to study the
(nonequilibrium) properties of such transport setups.

Transport with Luttinger liquid leads has been investigated
before [9,21–23]. Two Luttinger liquids separated by a
tunneling barrier were first studied by Kane and Fisher [10,11],
and later by others [24–33]. Fabrizio et al. [34] and Maurey and
Giamarchi [35] extended these studies by long-range Coulomb
interactions in the leads. Noninteracting structures or quantum
dots with a single level that replaces the tunneling barrier
of the latter studies were also considered [36–42], including
the dual, side-coupled case [43,44]. Here, the position of the
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energy level is crucial; a level aligned with the chemical
potential yields perfect conductance while the conductance
is zero otherwise. Transport with a single-level quantum dot,
which can be described by an Anderson impurity model has
been investigated by Andergassen et al. [45], where the authors
find that screening of the dot spin (Kondo physics) occurs
even in the presence of the power-law singularity inherent to a
Luttinger liquid [8,46]. These considerations were extended to
Coulombic dot-lead interactions by Elste et al. [47], revealing
a mechanism for negative differential resistance (NDR) at the
Coulomb blockade edge (similar to the NDR mechanisms
reported by Matveev and Larkin [48] and Dubi [49]). In
this work, we study the same model; we consider transport
through an Anderson impurity coupled to two Luttinger liquid
leads where all interactions are local and short-ranged. Note
that transport through more complex, multiorbital systems
has also been considered [50–54], including the effect of
electron-phonon interactions [55–57].

The early studies on the low-energy transport properties
of a tunneling barrier connected to Luttinger liquid leads are
based on analytic results. They have been derived either by
employing Bethe ansatz solution [29] or by bosonic [10,24] or
fermionic renormalization group [25,26,31,32]. Approximate
solutions on the more complex setups with double barrier or
quantum dot structures have been derived using rate equa-
tions [47,50–52], functional renormalization group [40,45],
equation of motion techniques [57], full counting statis-
tics [55], or nonequilibrium Green’s functions [53,54,56].
Numerically converged or exact results have become available
only recently. This includes a study of the tunneling barrier
case by density matrix renormalization group (DMRG) [33]
and an imaginary-time quantum Monte Carlo (QMC) scheme
where a quantum dot is described that is coupled to a single
Luttinger liquid lead [58]. Thus the number of numerically
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exact schemes that can be used to describe this transport setup
is very limited. This is in contrast to the transport setups with
noninteracting leads, where density matrix renormalization
group, [59–64] numerical renormalization group, [65–68]
multilayer multiconfiguration time-dependent Hartree the-
ory, [69,70] iterative [71–75] and stochastic path-integral
schemes [76–83] or the hierarchical quantum master equation
(HQME) method [84–89] have been employed.

In this paper, we extend the HQME framework to describe
transport with Luttinger liquid leads. The method was orig-
inally developed to describe finite quantum systems coupled
to a bosonic environment [90–92] and was later extended to
fermionic reservoirs [84,86,87,93]. The method is based on a
hybridization expansion that, for noninteracting leads, can be
systematically converged if the temperature of the environment
is not too low (for a single-impurity Anderson model,
the numerical effort becomes prohibitive below the Kondo
temperature) [87]. Thus higher-order processes between the
dot and the leads, and also correlations in the dot and the leads,
can be accounted for systematically. In parallel, a perturbative
analysis to a fixed, given order is also possible. We present
a scheme that allows to obtain converged results with respect
to single-particle correlations in the Luttinger liquid leads,
including the effect of the power-law singularity. The effect of
two- and n-particle correlations, however, is included only in
leading order. Thus our method represents an important step
towards a numerically exact scheme and allows us to estimate,
at least, the role of multiparticle correlations. In contrast to
DMRG or imaginary-time QMC, it also allows us to account
for the full nonequilibrium character of this transport problem.
As a standard example, we study the transport properties of a
single-level quantum dot or molecule that can be described by
the Anderson impurity model. For this model, we corroborate
previous results on NDR at the Coulomb edge [47], assessing
the role of cotunneling and beyond-second-order processes
and the role of two-particle correlations in the leads. Processes
beyond second-order and two-particle correlations turn out to
be negligible in the range of temperatures that we consider
(T � TKondo).

The rest of the paper is organized as follows. In Sec. II,
the model that we study is introduced. In Sec. III, we
outline the derivation of the HQME with particular empha-
sis on the differences between the hierarchy construction
for noninteracting and interacting leads. We also compare
our new method with the rate equation scheme of Elste
et al. [47,94]. We present our results in Sec. IV, where
we discuss current-voltage characteristics in the steady
state for various interaction types and strengths in the leads.
The effects of two-particle correlations functions, which
become important when interactions in the leads are non-
negligible, are also discussed. We present our conclusions in
Sec. V. Technical details are outlined in the appendices.

II. MODEL

The model that we consider (see Fig. 1) is described by the
Hamiltonian

H = Hdot +
∑

α=L,R

(
Hα

lead + Hα
tun

)
. (1)

FIG. 1. Graphical scheme of the transport setup that we consider,
i.e., a quantum dot coupled to two, semi-infinite Luttinger liquid leads
with chemical potentials that differ by the applied bias voltage.

It includes a quantum dot (located at position x = 0) that can
be described by an Anderson impurity model with a spin-
degenerate level ε and an on-dot Coulomb repulsion U ,

Hdot = ε
∑

s=↑,↓
ns + Un↓n↑, (2)

where ns = d
†
s ds is the electron density with spin s, and d

(†)
s is

the dot annihilation (creation) operator with spin s.
The dot is coupled to two, semi-infinite Luttinger liquid

leads that terminate at xα=L,R . We model the coupling between
the dot and the leads by a single-particle tunneling Hamiltonian

Hα
tun =

∑
s

∫
α

dx[Tα(x)ψ†
αs(x)ds + H.c.], (3)

where Tα(x) is the tunneling amplitude and ψ
(†)
αs (x) is the

electron annihilation (creation) operator in the lead α.
The integral

∫
α

covers the range from −∞ to xL < 0 for
the left lead, and from xR > 0 to ∞ for the right lead. This
field-theoretical form of the tunneling Hamiltonian is often
used in the description of Luttinger liquid leads. It reduces to
a simpler form:

Hα
tun(t) =

∑
s

f +
αs(t)ds + H.c., (4)

where f σ
αs is a creation (σ = +) and annihilation (σ = −)

operator in the interaction picture defined as

f −(+)
αs (t) ≡ eiHα

leadt

(∫
α

dxTα(x)ψ (†)
αs (x)

)
e−iHα

leadt

� aT̄αψ̄ (†)
αs (t),

(5)

if one considers tunneling amplitudes that are nonzero only
within a small range a at the edge of each lead. T̄α and ψ̄

(†)
αs (t)

represent the average tunneling amplitude and field strength
over this small range, respectively.

The leads are, for example, Hubbard chains whose low-
energy properties can be described by an effective model of
a Luttinger liquid. We do not assume a specific form of a
microscopic Hamiltonian, because only the effective Luttinger
form is used in the following. We set the notation using the
bosonized Hamiltonian for an infinite lead [9]

Hα
lead =

∑
ν=c,s

1

2π

∫
dx

[
uα

ν Kα
ν

(∇θα
ν

)2 + uα
ν

Kα
ν

(∇φα
ν

)2
]
, (6)

where φs,c and θs,c are conjugate bosonic variables for spin
and charge sectors, uα

ν is the renormalized velocity of sound,
and Kα

ν are Luttinger parameters. For a Hubbard chain, for
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example, the Luttinger parameter Kα
c is given by the on-site

interaction Uα and the bare Fermi velocity vF,α as

(
Kα

c

)2 = 1

1 + Uα/πvF,α

. (7)

We assume a SU(2) invariant system about spins, i.e., we set
the effective Luttinger constant Kα

s = 1 and uα
s is equal to

vF,α . The transformation formula from fermions to bosons is

ψαs(x,t) =
∑
r=±

ψαrs(x,t)

=
∑
r=±

ηαrse
iμαt e

irkF,αx

√
2πa

e
− i√

2 [(rφα
c −θα

c )+s(rφα
s −θα

s )],

(8)

where r is the chirality of the fermion, and ηαrs is a Klein factor
taking care of the anticommutation relations among fermions.
μα denotes the chemical potential of lead α.

An essential ingredient for the HQME is the correlation
function of the lead electrons at the dot-lead boundary, which
is calculated over the equilibrium density matrix of the leads
ρL+R as 〈·〉L+R ≡ TrL+R[ρL+R · · · ]. Including the boundary
condition for the wave functions ψ

(†)
Ls (x > xL) = ψ

(†)
Rs (x <

xR) = 0, the correlation functions at the dot-lead boundary
can be calculated as [47,50,94] (from now on we drop the
spatial dependence in the field operators)

Cσ
α (t) ≡ 〈

f σ
αs(t)f

σ̄
αs(0)

〉
L+R

= �αeiσμαt

{
i�vF,αβα

πa
sinh

[
π (t − iδ)

βα�

]}−Yα

, (9)

where �α = a|T̄α|2/π is the system-lead coupling and σ̄ ≡
−σ . δ is a short-time cut-off, which we choose δ = 1/Wα

with the bandwidth Wα that determines the scale where the
fermionic dispersion can be considered linear, Wα � vF,α/a.
βα is the inverse temperature of lead α. The parameter
Yα = 1/(2Kα

c ) + 1/2 determines the character and strength
of the interactions in the Luttinger liquid in the charge sector.
Yα greater (smaller) than 1 represents repulsive (attractive)
interactions in the Luttinger liquid. Elste et al. [47,95]
showed that a short-range excitonic (density-density) coupling
between the dot and the leads effectively renormalizes Yα to

Yα =
(
1 − Kα

c

uα
c
Vα

)2

2Kα
c

+ Kα
c V 2

ᾱ

2u
α,2
c

+ 1

2
, (10)

where Vα is the excitonic coupling strength. This means that an
originally repulsive lead, which is usually the case for quantum
wires and carbon nanotubes, can be effectively attractive. Thus
in the following we consider both repulsive and attractive
cases. The excitonic coupling also renormalizes the energy
ε and the interaction strength U , but we assume that such
effects are already included in these parameters.

We note that the correlation function, Eq. (9), gives a power-
law singularity in the single-particle tunneling density of states

FIG. 2. Single-particle tunneling density of states, J (ω), at the
edge of a Luttinger liquid lead for attractive (Y = 0.8) and repulsive
interactions (Y = 1.2) with T = 200 K and W = 4 eV. � is the
system-lead coupling strength.

at low frequencies and low temperatures,

Jα(ω) ≡
∫ ∞

−∞

dt

2π
e−iωtC+

α (t) + H.c.

∝ |ω − μα|Y−1 as |ω − μα|  Wα,Tα. (11)

Numerical examples for the single-particle tunneling density
of states are depicted in Fig. 2. While attractive interactions
(Y = 0.8) induces a sharp peak at the chemical potential, ω =
0, repulsive interactions (Y = 1.2) lead to a sharp dip. This
dependence of the low energy single-particle tunneling density
of states on the interaction parameter Yα crucially affects the
transport properties, even at the single-particle level.

III. METHOD

A. Hierarchical equations of motion

In this section, we briefly outline the derivation of the
hierarchical equations of motion for transport with Luttinger
liquid leads. The derivation is quite general, and not neces-
sarily restricted to Luttinger liquids, while, to implement the
formalism in practice, we make use of the specific properties
of Luttinger liquids. Note that our derivation follows closely
Refs. [84,86].

We first trace out the lead variables from the total density
matrix ρT (t) of the system (the dot and leads) to obtain an
equation of motion for the reduced density matrix for the dot
degrees of freedom,

ρ(t) ≡ TrL+R[ρT (t)]. (12)

Formally, the time propagation of the reduced density matrix
can be written as ρ(t) = U(t,t0)ρ(t0), where U(t,t0) can be
written in terms of a path integral representation as

U(t,t0) =
∫ ξ

ξ0

Dξ̃

∫ ξ ′

ξ ′
0

Dξ̃ ′eiS[ξ̃ ]F[ξ̃ ,ξ̃ ′]e−iS[ξ̃ ′], (13)

where |ξ 〉 ≡ exp (
∑

s ξsd
†
s )|0〉 is a fermionic coherent state,

and S is the action of the dot Hamiltonian. F is the Feynman-
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Vernon influence functional

F =
〈
T exp

[
−i

∫ t

t0

dτ
∑
α,s

f +
αs(τ )ξ̃s(τ ) + H.c.

]

× T̄ exp

[
i

∫ t

t0

dτ
∑
α,s

f +
αs(τ )ξ̃s(τ ) + H.c.

]〉
L+R

, (14)

with time-ordering T and anti-time-ordering T̄ . Expanding
the exponentials in Eq. (14) and integrating the lead variables,
F contains a series of correlation functions of f

(†)
αs . Let us

schematically write this as

F ∼ 1 +
∫

C(1)ξ̃ 2 +
∫

C(2)ξ̃ 4 + . . . , (15)

where C(k) denotes a k-particle correlation function (including
disconnected diagrams). The formally exact series expansion
of F is given in Appendix A. We can reorganize the expansion
by using the influence exponent

� ≡ − lnF . (16)

The corresponding expansion of �, i.e., the cumulant expan-
sion of F is found to be a series of connected correlation
functions,

� ∼ −
∫

C(1)ξ̃ 2 −
∫

C(2)ξ̃ 4 +
∫

[C(1)]2ξ̃ 4 + . . .

∼ −
∫

C(1)ξ̃ 2 −
∫

Ĉ(2)ξ̃ 4 + . . . , (17)

where Ĉ(2) is the connected two particle correlation functions
in the leads. For noninteracting leads, only the first term
remains since all the higher-order correlation functions can
be written as products of C(1) by Wick’s theorem, and are
summed up to be zero. In Appendix B, we show an explicit
formula for � up to Ĉ(2) for interacting leads. Now using
Eq. (16), we can express F as the exponential of connected
correlation functions.

Neglecting (k > 2)-particle correlations, the equation of
motion of F can thus be written as

Ḟ � −i
∑
σαs

Aσ̄
s

(
Bσ

αs + B̂σ
1,αs + B̂σ

2,αs

)
F

(18)
≡ −i

∑
σαs

Aσ̄
s

(
Fσ

αs + F̂σ
1,αs + F̂σ

2,αs

)
,

with

Aσ
s ≡ ξσ

s + ξ ′σ
s ,

Bσ
αs ≡ −i

∫ t

t0

dτ
[
Cσ

α (t,τ )ξ̃ σ
s (τ ) − Cσ̄∗

α (t,τ )ξ̃ ′σ
s (τ )

]
,

Cσ
α (t − t ′) ≡ 〈

f σ
αs(t)f

σ̄
αs(t

′)
〉
L+R

. (19)

The first term is related to the C(1) correlator in Eq. (15). The
second and third terms are associated with the Ĉ(2) correlator.
Explicit expressions of the B̂σ

1,αs and B̂σ
2,αs operators are given

in Appendix B. They include the correlation function Ĉ(2)

and three ξ̃ (′) Grassmann numbers convoluted in three time
integrals. In the second line, we define the 1st tier auxiliary
influence functionals (AIF’s) such as Fσ

αs,F̂σ
1,αs , and F̂σ

2,αs .

They enter the equation of motion of the reduced density matrix
by the following set of auxiliary density operators (ADO’s):

ρσ
αs = Uσ

αs(t,t0)ρ(t0),

Uσ
αs(t,t0) =

∫ ξ

ξ0

Dξ̃

∫ ξ ′

ξ ′
0

Dξ̃ ′eiS[ξ̃ ]Fσ
αs[ξ̃ ,ξ̃ ′]e−iS[ξ̃ ′], (20)

with similar relations for ρ̂σ
1(2),αs and F̂σ

1(2),αs . The equation of
motion of the reduced density matrix in terms of ADO’s can
thus be written as

ρ̇(t) = −iLρ(t) − i
∑
αsσ

[dσ̄
s ,ρσ

αs(t) + ρ̂σ
1,αs(t) + ρ̂σ

2,αs(t)].

(21)

The Louiville term Lρ = [Hdot,ρ] arises from the time
derivative of the action S in Eq. (13).

Taking the time derivative of ADO’s opens an infinite
hierarchy of equations of motion, including higher-order
ADO’s. In particular, a new type of ADO’s emerges from
the time derivative of the correlation functions, for example,
Cσ

α as

B̃σ
αs = −i

∫ t

t0

dτ [Ċσ
α (t,τ )ξ̃ σ

s (τ ) − Ċσ̄∗
α (t,τ )ξ̃ ′σ

s (τ )] �= Bσ
αs .

(22)

In order to obtain a closed set of ADO’s, the correlation
functions Cσ

α (t) are translated to a sum of exponentials
(Meier-Tannor parametrization method),

Cσ
α (t) ≡

∞∑
l=0

hαle
−ωσ

αl t ,

hαl = |�α|2Yα
(Yα)l
l!

(
Wαβα

π

)−Yα

e−iYα
π
2 e

i(Yα+2l) π
βαWα , (23)

ωσ
αl = (Yα + 2l)

π

β
− iσμα,

where (x)n ≡ ∏n−1
k=0(x + k) is the Pochhammer symbol. Cor-

respondingly, Bσ
αs is also decomposed into a sum as Bσ

αs =∑∞
l=0 Bσ

αls , and

Bσ
αls = −ihαl

∫ t

t0

dτe−ωσ
αl (t−τ )

[
ξ̃ σ
s (τ ) − ξ̃ ′σ

s (τ )
]
. (24)

Now the zeroth tier equation becomes

ρ̇ = −iLρ − i
∑

j

[
dσ̄

s ,ρj + ρ̂1,j + ρ̂2,j

]
, (25)

where we introduced abbreviated notations j = {αlsσ }, and
j̄ = {αlsσ̄ }. Note that it is in general impossible to decompose
Ĉ(2) as in Eq. (23). Therefore we use a local time approximation
to reduce its complexity to an exponential series. This
approximation is motivated by the fact that the Ĉ(2)(t1,t2,t3,t4)
are exponentially small when any two of the four time variables
differ by |ti − tj | � 1/W (see Ref. [96] and Appendix C for
details); the approximation is thus better in the wide band limit.
We now discuss the equations of motion of the two classes of
ADO’s, ρj and ρ̂1(2),j , separately.

We start with the equation of motion of the ρj operators,
ignoring the contributions from (k > 1)-particle correlations

235411-4



HIERARCHICAL EQUATIONS OF MOTION APPROACH TO . . . PHYSICAL REVIEW B 94, 235411 (2016)

(which is an exact procedure for noninteracting leads). It leads
to a hiearchy of general nth tier ADOs, ρj, associated with
an AIF Bjn

Bjn−1 · · ·Bj1F , and obey the following equations of
motion:

ρ̇
(n)
j = −iLρ

(n)
j −

(
n∑

k=1

ωjk

)
ρ

(n)
j

−i

n∑
k=1

(−1)n−kC̃jk
ρ

(n−1)
jk − i

∑
j �∈j

Aj̄ ρ
(n+1)
jj , (26)

with superoperators C̃ and A as

C̃jρ
(n) =

∑
ν

[hαld
σ
s ρ(n) − (−1)nh∗

αlρ
(n)dσ

s ],

Aj̄ ρ
(n) = dσ̄

s ρ(n) + (−1)nρ(n)dσ̄
s . (27)

The second and third terms originate from the time derivative
of exponential time dependence and of the integral limit in
Bjk

, respectively. In the third term, ρ
(n−1)
jk is an ADO where

Bjk
is removed from ρ

(n)
j . The last term is associated with

the time derivative of F , which adds Bj on the left of
Bjn

Bjn−1 · · ·Bj1F . The constraint on the summation, j �∈ j, is
due to the anticommutation property of Grassmann numbers.
We note that the current is related to the first tier ADO as [84]

Iα = i
∑
l,s

Tr[(ρ†
αls + ρ̂

†
1,αls + ρ̂

†
2,αls)ds − H.c.]. (28)

The contributions from the operators ρ̂1(2),αls always conserve
the current, i.e., IL = −IR , which can be easily seen from the
corresponding equations of motion considered next.

The equations of motion for ρ̂ operators is given by

∂t ρ̂
σ
1,αls � −iLρ̂σ

1,αls − ωασlρ̂
σ
1,αls

− i�

′∑
s1s2s3
σ1σ2σ3

cα
jj1j2j3

[
ρdσ̄3

s3
dσ̄2

s2
dσ̄1

s1
h∗

αl − dσ̄1
s1

dσ̄2
s2

dσ̄3
s3

ρhαl

]
,

(29)

∂t ρ̂
σ
2,αls � −iLρ̂σ

2,αls − ωασlρ̂
σ
2,αls

− i�

′∑
s1s2s3
σ1σ2σ3

c′α
j1jj2j3

[
dσ̄2

s2
dσ̄3

s3
ρdσ̄1

s1
− dσ̄1

s1
ρdσ̄3

s3
dσ̄2

s2

]
ĥαl,

(30)

including the time-local approximation on Ĉ(2) that we
mentioned earlier and neglecting higher-order terms. The
summation is restricted to the combinations that conserve
charges and spins; σ + ∑3

i=1 σi = 0, and σs + ∑3
i=1 σisi =

0. This is because Ĉ(2) is only nonzero when these conditions
are satisfied, as is known from Luttinger liquid theory [97].
The coefficient c

(′),α
jj1j2j3

takes one of the values

0, 21−Yα − 1, 2Yα − 2, 2Yα−1 − 1, 2−Yα [1 − (−1)1−Yα ], (31)

depending on the indices (see the explicit form in Appendix C).
As expected, they vanish in the noninteracting limit Yα = 1.

Please note that, in the following, we ignore the effect of
higher orders of the ρ̂ operators by truncating the hierarchy
at this point, that is at the first tier of the ρ̂ operators.
This treatment is not, per se, systematic but allows us to
estimate the leading-order effect. As it turns out to be marginal
in the parameter regime that we consider, we assume that
higher-order ρ̂ contributions are even smaller and, therefore,
negligible. In that sense, our results that we present in Sec. IV
can be considered to be converged.

We are thus left with the infinite hierarchy of equations
of the standard ρ operators. We truncate it according to the
arguments in Ref. [86], where the importance of a n(�2)th tier
ADO, ρj, is estimated by assigning it the following amplitude:

n∏
k=1

( ∣∣hjk

∣∣
Re ωjk

∑k−1
p=1 Re ωjp

)
. (32)

In our calculations, we then consider only operators that
have amplitudes larger than a given threshold value Ath.
Convergence is achieved by reducing the threshold value
systematically. In addition to the Grassmann and hermite
natures of AIF’s, this preselection greatly reduces the number
of ADO’s. Thus we can obtain numerically converged, exact
results for the ADO’s of ρ type (as was shown, for example,
by a direct comparison to quantum Monte Carlo simulations
only recently) [87]. The ρ̂ hierarchy is truncated at the
first tier, ignoring higher-order terms, which correspond to
O(�4). Since n-particle connected correlation functions scale
as O(�n) and we typically obtain converged results already
at second or third order for high enough temperatures, the
truncation of the ρ̂ hierarchy goes well along the lines of our
convergence criterion. In the next section, we will show that the
contributions from Ĉ(2) have indeed only a very minor effect
on the current-voltage characteristics. Therefore we believe
that essential correlation effects in the leads are included in
our scheme. Yet, it is an important open problem how to go
beyond the limitations and approximations of our scheme in
order to get a systematic improvement of our results.

B. Rate equations

In the next section, we compare the HQME results with
rate equation results. The latter contains only the lowest order
of the hybridization expansion outlined above, ignoring, in
addition, non-Markovian memory effects. We will see how
these two assumptions affect the transport properties. The rate
equations are derived for the weak dot-lead tunneling with
Born-Markov-secular approximations:

ρ̇ = −
∫ ∞

0
dτ

∑
αs

{[ds(t)d
†
s (t − τ )ρ(t) − d†

s (t − τ )ρ(t)ds(t)]

×C+
α (τ ) + [d†

s (t)ds(t − τ )ρ(t) − ds(t − τ )ρ(t)d†
s (t)]

×C−
α (τ ) + H.c.}. (33)

Using the diagonal form of the density matrix,

ρ = P0 |0〉 〈0| + P1

2
(|↑〉 〈↑| + |↓〉 〈↓|) + P2 |↑↓〉 〈↑↓| , (34)
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we obtain the rate equations

Ṗ0 =
∑

α

[−2P0Rα
01 + P1Rα

10

]
,

Ṗ1 =
∑

α

[−P1
(
Rα

10 + Rα
12

) + 2P0Rα
01 + 2P2Rα

21

]
, (35)

Ṗ2 =
∑

α

[−2P2Rα
21 + P1Rα

12

]
.

The coefficients Rα
pq are given by Laplace transforms of the

correlation function Cα
0 (τ ) ≡ Cσ

α (τ )e−iσμτ as

Rα
pq = 2 Re

∫ ∞

0
dτe−iωpqτCα

0 (τ ), (36)

with ω01 = −ω10 = ε − μα and ω12 = −ω21 = ε + U − μα .
The current from lead α is

〈Iα(t)〉 = 2P0Rα
01 + P1Rα

12 − P1Rα
10 − 2P2Rα

21. (37)

For the steady state, we find

〈Iα(t)〉 = 2e

R

[
R21

(
Rα

01Rᾱ
10 − Rᾱ

01Rα
10

)
+R01

(
Rα

12Rᾱ
21 − Rᾱ

12Rα
21

)]
, (38)

where Rij = ∑
α Rα

ij , and

R = R10R21 + 2R01R21 + R01R12. (39)

IV. RESULTS

A. Weak coupling regimes

In this section, we show the current-voltage (I -V ) char-
acteristics of the model outlined in Sec. II. For simplicity,
we consider symmetric leads; W,β, and Y are independent
of α. The chemical potentials are taken in the standard form
μL = −μR = V/2, corresponding to the choice of symmetric
leads. We consider two scenarios where the quantum dot is
at the charge symmetric point, ε = −U/2, and where it is
unpopulated at zero bias, ε = U/2. Other parameters of the
model are given in Table I.

In Fig. 3, we plot the current-voltage characteristics of
a charge-symmetric quantum dot for three cases that are
relevant, for example, for carbon nanotubes [94]: attractive
leads (Y = 0.8, upper panels), noninteracting leads (Y = 1,
middle panels), and repulsive leads (Y = 1.2, lower panels)
for T = 100 K (left panels) and T = 200 K (right panels).
In the attractive cases (Y = 0.8), we observe a pronounced
NDR above the Coulomb-blockade threshold at V/2 = |ε| =
|ε + U |. This NDR is closely related to the peak in the
single-particle tunneling density of states (see Fig. 2) and
can also appear for noninteracting electrodes but attractive
electron-electron interactions at the terminal site [49], or

TABLE I. Parameters used in our simulations. Note that these
parameters are borrowed from molecular systems, but can be easily
scaled to describe, for example, semiconductor heterostructures, etc.

W � U lmax Ath

4.0 eV 0.001 eV 0.25 eV 2500 5.0 × 10−10

FIG. 3. Current-voltage characteristics for the quantum dot at
the charge-symmetric point (ε = −U/2), for various interaction
parameters of the Luttinger liquid leads (Y = 0.8/1/1.2 in the
upper/middle/lower panels) and temperatures (T = 100/200 K in
the left/right panels). Solid (dashed) lines are obtained by HQME
(rate equations).

slightly more general cases [48]. It appears quenched in the
HQME results as compared to the rate equation results due
to the effect of broadening or the hybridization with the
leads. We also find that higher order or cotunneling processes,
which are not included in the rate equation results enhance
the low bias conductance. The enhancement is strongest for
the attractive case. This behavior can also be understood in
terms of the peaked tunneling density of states (cf. Fig. 2),
which is larger around the chemical potential in the attractive
case as compared to the noninteracting or repulsive one. When
Y = 1, the lead is noninteracting, and thus our formalism is
numerically exact within the model. We find that due to the
finite band width, W = 4.0 eV, the current has a small negative
slope or NDR at high voltages V � 1. For repulsive leads
(Y = 1.2), the curves monotonically increase in the range of
voltages that we consider, and the deviation from the rate
equations is negligible. This is because the density of states
near the Fermi energy depends on the interaction parameter Y

with an explicit factor W−Y as seen in Eq. (9). Thus, effectively,
the tunneling density of states is suppressed for repulsive
interactions. This means that the perturbation parameter �/T

is also smaller and, thus, the differences between HQME and
rate equations are also smaller.

Figure 4 shows the current-voltage characteristics for a
quantum dot that is unpopulated at zero bias, ε = U/2, i.e., far
away from the charge symmetric point. A similar situation has
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FIG. 4. Current-voltage characteristics for the quantum dot far
away from the charge-symmetric point (ε = U/2), for various
interaction parameters of the Luttinger liquid leads (Y = 0.8/1/1.2
in the upper/middle/lower panels) and temperatures (T = 100/200 K
in the left/right panels). Solid (dashed) lines are obtained by HQME
(rate equations).

been considered, for example, in Ref. [94]. Here, in contrast to
the charge-symmetric case, we observe two steps at V/2 = |ε|
and V/2 = |ε + U |. In the charge-symmetric case, they appear
at the same voltages. Both steps are followed by a decrease of
the current level in the attractive case Y = 0.8, similar as in the
charge-symmetric case. The effect is again more pronounced
in the rate equation solutions due to broadening that is missing
in the rate equation results. Similar to the charge-symmetric
case, the effect of cotunneling processes at low bias voltages
is more pronounced at lower temperatures (see the upper left
and upper right panels). It is generally less pronounced in the
charge-non-symmetric case, because the single-particle levels
at ε + U are farther away from the chemical potentials, that
is, the associated probability for virtual excitations is lower as
compared to the charge-symmetric case.

Differences between the rate equation and HQME results
reveal the effect of higher-order processes, including second
and beyond-second-order processes. Some more insights can
be obtained by comparing other, approximate solutions. The
role of the Markov approximation, for example, can be
assessed by comparing rate equation results with a first-tier
truncation of the HQME. Such a comparison is depicted
by the blue and green lines in Fig. 5. The negligible
differences between the two curves shows that the Markov
approximation is well justified in the parameter regime that
we consider. Moreover, comparing a second-tier truncation of

FIG. 5. Comparison of current-voltage characteristics for the
quantum dot at the charge-symmetric point (ε = −U/2) for Y = 0.8
and T = 100 K obtained with rate equations (blue line), full first-order
(dashed green line), second-order (orange line), and the converged
HQME results (dashed purple line).

the HQME with the full converged result (yet, including the
approximations with respect to multiparticle correlations; see
Sec. III) allows us to reveal the effect of beyond-second-order
processes (cf. orange and purple lines in Fig. 5). They also turn
out to be negligible. Please note that a different behavior can be
expected at low temperatures, especially when, for example,
Kondo correlations emerge [87].

B. Strong-coupling regimes

So far, we looked at the cases where interactions of
the leads are relatively weak (|Y − 1| � 20%), since our
decomposition scheme, Eq. (23), converges well only for these
cases. However, in this regime, the effect of the two-particle
correlation functions Ĉ(2) is quite small since the order of the
corresponding ADO’s ρ̂ is

O(ρ̂) ∼
(

�

T

)2(
T

W

)Y

cj1j2j3j4 . (40)

This estimate is motivated by Eq. (30); in the steady state,
the amplitude of the ρ̂σ

1,αs and ρ̂σ
2,αs operators scale with �h

and �ĥ respectively and with 1/ωl , including an additional
factor that vanishes as the interaction strength decreases. Thus,
in the above weak-coupling regimes, we find the effect of
ρ̂ ignorable. The complete treatment of both ρ̂ and regular
ADO’s at higher tiers is desirable but not possible within our
current scheme. That being said, we would like to illustrate
the effects of two-particle correlation functions for relatively
strong couplings realized by very high temperatures (Y =
0.5, � = 0.02 eV, and T = 4000 K, other parameters are the
same as in the previous subsection), and stop the hierarchy of
the regular ADO’s at the first tier. This allows us to disentangle
the higher-order tunneling effect from regular ADO’s and from
two-particle correlations that enter via the ρ̂ operators.

Figure 6 shows the current-voltage characteristics and dot
populations with and without the ρ̂ contributions. For this
extreme case, we find that the effect of two-particle correlation
functions is still negligible for the current level (∼2%), while
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FIG. 6. The top panel shows the current-voltage characteristics
with and without contributions of two-particle correlations C(2), i.e.,
ρ̂ ADO’s. The bottom panel shows the dot populations, Eq. (34), with
and without contributions of two-particle correlations C(2).

the dot populations are slightly more affected (∼5%). The
current is slightly enhanced by two-particle correlations. The
probability of having a single particle on the dot is also
increased, while the ones of having no particle or two particles
are reduced.

V. CONCLUSIONS

We presented a generalized hierarchical quantum master
equation technique to describe transport through an interacting
quantum dot or molecule that is coupled to interacting,

semi-infinite, Luttinger liquid leads. Our method paves the
way towards a numerically exact description of this transport
problem. This, however, is not fully achieved yet. While
the results can be converged with respect to single-particle
correlations in the leads [where we included contributions
up to fifth order, O(�5), in order to obtain fully converged
results], multiparticle correlations can be included only in
leading order, i.e., O(�2). A systematic improvement of the
latter approximation represents the next step. Nevertheless,
we were able to present well based arguments and numerical
results, which show that these contributions are negligible
for the parameters that we considered, in particular, the
high-temperature regime. Thus, assuming that a hybridization
expansion converges, our method can give results that should
be very close to the exact result.

As a test case, we considered transport through a quantum
dot or molecule that can be described by a single-level
Anderson impurity model. We corroborated previous results
on a mechanism for negative differential resistance that can
be associated with the power-law singularity of an attractive
Luttinger liquid. In the repulsive case, the power-law singular-
ity has the opposite effect and even overrides the NDR effect
originating from a finite band width in the leads. Higher-order
effects smear the NDR effects slightly due to broadening. In the
low-bias regime, cotunneling effects enhance the conductivity
significantly. While this is well known, we were able to
show that beyond-second-order processes do not change these
effects significantly. This justifies, inter alia, a treatment
by second-order perturbation theory. Our statements and
findings are restricted to the high temperature regime and the
reduced complexity of our model. More complex quantum dot
structures, including, for example, also spin-orbit interactions
or the coupling to vibrational degrees of freedom, may show
a richer behavior.
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APPENDIX A: GENERAL FORMULA OF THE INFLUENCE FUNCTIONAL F

For the simple coupling Hamiltonian Hα
tun(t), the influence functional is a simple sum F = ∑

α=L,R Fα . Thus, in the following,
we focus on one of the terms Fα and omit the index α. The situations may be different for excitonic coupling, where the lead
operator is transformed into an operator that has bosonic fields from both leads,

f̃αs = fαse
− ∑

α′ 1
uc

√
Kc
2 Vα′φα′cR . (A1)

However, due to charge-neutrality, the decoupling of FL and FR still holds.
To calculate the influence exponent � = − lnF (see Appendix B), we expand the exponentials in Eq. (14) and take the

average over the leads degrees of freedom. The resulting terms include both disconnected and connected graphs in the replica
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sense, and we will subtract the disconnected graphs later. A 2N th-order contribution is (odd orders always vanish)

F (2N) = (−1)N
2N∑
k=0

(−1)k
∑

s · · · sk

s ′
1 · · · s ′

2N−k

∑
σ1 · · · σk

σ ′
1 · · · σ ′

2N−k

∫ t

t0

dτ1 · · ·
∫ τk−1

t0

dτk

∫ t

t0

dτ ′
1 · · ·

∫ τ ′
2N−k−1

t0

dτ ′
2N−k

×ξ̃ σ̄1
s1

(τ1) · · · ξ̃ σ̄k

sk
(τk)ξ̃

′,σ̄ ′
2N−k

s ′
2N−k

(τ ′
2N−k) · · · ξ̃ ′,σ̄ ′

1

s ′
1

(τ ′
1)

〈
f

σ ′
2N−k

s ′
2N−k

(τ ′
2N−k) · · · f σ ′

1

s ′
1

(τ ′
1)f σ1

s1
(τ1) · · · f σk

sk
(τk)

〉
L+R

, (A2)

where we have already used the fact that the average over the leads variables requires the charge and spin conservations as
follows. The lead correlation functions can be calculated via bosonization, noting f σ

s = aT̄ ψ̄σ
s ,

〈
f σ1

s1
(τ1) · · · f σ2N

s2N
(τ2N )

〉
L+R

= �Nδ

(∑
i

σi

)
δ

(∑
i

σisi

)(
2N∏
i

ηsi

)
× eiμ

∑
i σi τi e− ∑

i<j σiσj Dc(τi−τj )e− ∑
i<j σi siσj sj Ds (τi−τj ), (A3)

where η is the Klein factor, and Dc/s are asymptotically

Dc/s(t) ∼ − 1

2Kc/s

ln

{
iβvF

aπ
sinh

[
π (t − iδ)

β

]}
(A4)

with the Luttinger parameters Kc/s . We assume Ks = 1, and Kc can be either an originally repulsive value (Kc < 1) or an effective
attractive value through excitonic coupling as in Eq. (10). Equations (A2), (A3), and (A4) give a formally exact expression of
the influence functional for interacting Luttinger liquid leads.

APPENDIX B: INFLUENCE EXPONENT �

To derive the HQME, we need to calculate the influence exponent � ≡ − lnF . The cumulant expansion of � can be calculated
by using the replica trick

lnF = lim
n→0

dFn

dn
. (B1)

From the series expansion of F in Eq. (15), we find that Fn scales as

Fn ∼ 1 + n

∫
C(1)ξ̃ 2 + n

∫
C(2)ξ̃ 4 + n(n − 1)

2

[∫
C(1)ξ̃ 2

]2

. . . , (B2)

In the limit n → 0, only the terms proportional to n survive in lnF . We will show an explicit formula up to C(2) ∼ O(�2).
Higher-order contributions can be derived in the same manner.

1. Second order

There are six terms from F (2),

�0 ≡
∑
s,s ′

∫ t

t0

dτ

∫ τ

t0

dτ ′[ξ̃s(τ )ξ̃ ∗
s ′(τ ′)C+(τ − τ ′) + ξ̃ ∗

s (τ )ξ̃s ′(τ ′)C−(τ − τ ′)]

+
∑
ss ′

∫ t

t0

dτ

∫ τ

t0

dτ ′[ξ̃ ′
s ′(τ ′)ξ̃ ′∗

s (τ )C+∗(τ − τ ′) + ξ̃ ′∗
s ′ (τ ′)ξ̃ ′

s(τ )C−∗(τ − τ ′)]

−
∑
ss ′

∫ t

t0

dτ

∫ t

t0

dτ ′[ξ̃s(τ )ξ̃ ′∗
s ′ (τ ′)C−∗(τ − τ ′) + ξ̃ ∗

s (τ )ξ̃ ′
s ′(τ ′)C+∗(τ − τ ′)]. (B3)

Without interactions in the leads, this is the exact expression of the influence exponent [84], and all higher-order contributions
vanish.

2. Fourth order

The total fourth-order contributions are

�′ ≡ −
4∑

k=0

(−1)k
∑

j1,...,jk,j
′
4−k ,...,j

′
1

′ ∫ t

t0

dτ1 · · ·
∫ τk−1

t0

dτk

∫ t

t0

dτ ′
1 · · ·

∫ τ ′
3−k

t0

dτ ′
4−k

× ξ̃j̄1
(τ1) · · · ξ̃j̄k

(τk)ξ̃ ′̄
j ′

4−k
(τ ′

4−k) · · · ξ̃ ′̄
j ′

1
(τ ′

1)Ĉ(2)
j ′

4−k ···jk
(τ ′

4−k, · · · ,τk) (B4)
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where j = (σ,s),j̄ = (σ̄ ,s), and
∑′ indicates the summation with the charge and spin conservations. The connected correlation

functions are defined as

Ĉ
(2)
j1···j4

(τ1, · · · ,τ4) = 〈
f σ1

s1
(τ1)f σ2

s2
(τ2)f σ3

s3
(τ3)f σ4

s4
(τ4)

〉
L+R

− 〈
f σ1

s1
(τ1)f σ2

s2
(τ2)

〉
L+R

〈
f σ3

s3
(τ3)f σ4

s4
(τ4)

〉
L+R

+ 〈
f σ1

s1
(τ1)f σ3

s3
(τ3)

〉
L+R

〈
f σ2

s2
(τ2)f σ4

s4
(τ4)

〉
L+R

− 〈
f σ1

s1
(τ1)f σ4

s4
(τ4)

〉
L+R

〈
f σ2

s2
(τ2)f σ3

s3
(τ3)

〉
L+R

. (B5)

They obey the symmetry relations [
Ĉ

(2)
j1j2j3j4

(τ1,τ2,τ3,τ4)
]∗ = Ĉ

(2)
j̄4 j̄3 j̄2 j̄1

(τ4,τ3,τ2,τ1). (B6)

Using the following identity for sij ≡ sinh(ti − tj ),

s12s34 + s23s14 = s13s24, (B7)

one can prove that Ĉ(2) indeed vanishes in the noninteracting limit, Y = 1, for δ → 0.
The influence exponent �′ follows:

∂t�
′ = −iAj̄ (B̂1,j + B̂2,j ), (B8)

where

B̂1,j = −i

∫ t

t0

dτ1

∫ τ1

t0

dτ2

∫ τ2

t0

dτ3

′∑
j1j2j3

ξ̃ ′̄
j3

(τ3)ξ̃ ′̄
j2

(τ2)ξ̃ ′̄
j1

(τ1)C(4)
j3j2j1j

(τ3,τ2,τ1,t)

+ i

∫ t

t0

dτ1

∫ τ1

t0

dτ2

∫ τ2

t0

dτ3

′∑
j1j2j3

ξ̃j̄1
(τ1)ξ̃j̄2

(τ2)ξ̃j̄3
(τ3)C(4)

jj1j2j3
(t,τ1,τ2,τ3),

(B9)

B̂2,j = −i

∫ t

t0

dτ1

∫ τ1

t0

dτ2

∫ t

t0

dτ ′
1

′∑
j1j2j

′
1

ξ̃j̄1
(τ1)ξ̃j̄2

(τ2)ξ̃ ′̄
j ′

1
(τ ′

1)C(4)
j ′

1jj1j2
(τ ′

1,t,τ1,τ2)

+ i

∫ t

t0

dτ1

∫ τ1

t0

dτ2

∫ t

t0

dτ ′
1

′∑
j1j2j

′
1

ξ̃j̄ ′
1
(τ ′

1)ξ̃ ′̄
j2

(τ2)ξ̃ ′̄
j1

(τ1)C(4)
j2j1jj

′
1
(τ2,τ1,t,τ

′
1).

Aj̄ is a superoperator defined in Eq. (19). Using the symmetry of the correlation functions, Eq. (B6), we can prove that
B̂σ̄

1(2),s = [B̂σ
1(2),s]

†, thus the corresponding ADO is Hermitian.

APPENDIX C: APPROXIMATION OF Ĉ (2)

To derive a closed set of HQME, we approximate the
correlation functions Ĉ(2) noting that this function is locally
peaked in time when τ1 = τ2 = τ3 = τ4 [96]. To illustrate this,
we plot the absolute value of a two-particle correlation function
Ĉ(2)(0,0,t1,t2) for W = 4 and 20 eV in Fig. 7. We see that this
function rapidly decreases away from the origin. The decrease
is even more pronounced as the bandwidth W becomes
larger. This motivates to approximate the function by just
two time variables, e.g., Ĉ(2)(τ1,τ2,τ3,τ4) � Ĉ(2)(τ1,τ1,τ1,τ4).
More precisely, we approximate the connected two particle

FIG. 7. |Ĉ(2)(0,0,t1,t2)| at T = 200 K for Y = 1.2. (a) W = 4
and (b) 20 eV. The correlation function decays exponentially.

correlation functions in B̂ as

B̂1,j � −i

∫ t

t0

dτ

′∑
j1j2j3

[
ξ̃ ′̄
j3

(τ )ξ̃ ′̄
j2

(τ )ξ̃ ′̄
j1

(τ )C(4)
j3j2j1j

(τ,τ,τ,t)

− ξ̃j̄1
(τ )ξ̃j̄2

(τ )ξ̃j̄3
(τ )C(4)

jj1j2j3
(t,τ,τ,τ )

]
,

B̂2,j � −i

∫ t

t0

dτ

′∑
j1j2j

′
1

[
ξ̃j̄1

(τ )ξ̃j̄2
(τ )ξ̃ ′̄

j ′
1
(τ )C(4)

j ′
1jj1j2

(τ,t,τ,τ )

− ξ̃j̄ ′
1
(τ )ξ̃ ′̄

j2
(τ )ξ̃ ′̄

j1
(τ )C(4)

j2j1jj
′
1
(τ,τ,t,τ )

]
. (C1)

In the next step, we need to find a series expansion of the ap-
proximated two-particle correlation function by exponentials,
whose specific form depends on the superindices j . Using spin
and charge conservation, we can reduce Ĉ(2)(t,τ,τ,τ ) into Cσ

in Eq. (19) as

Ĉ
(2)
j1j2j3j4

(t,τ,τ,τ ) = cj1j2j3j4�Cσ1 (t − τ ). (C2)

The factors cj1j2j3j4 are listed in Table II. Ĉ(2)(τ,τ,τ,t)
is obtained from the symmetry, Eq. (B6), and cj1j2j3j4 =
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TABLE II. Coefficients for Eqs. (C2) and (C5). j = 1,2,3,4
corresponds to {σs} = {+ ↑ ,+ ↓ ,− ↑ ,− ↓}. c1 = 21−Yα − 1, c2 =
2Yα − 2, c3 = 2Yα−1 − 1, and c4 = 2−Yα [1 − (−1)1−Y ].

j1 j2 j3 j4 cj1j2j3j4 c′
j1j2j3j4

1 1 3 3 c1 c4

1 2 3 4 0 c4

1 2 4 3 c1 0
1 3 1 3 c2 0
1 3 2 4 c3 0
1 3 3 1 c1 c∗

4

1 3 4 2 c1 0
1 4 2 3 c3 0
1 4 3 2 0 c∗

4

2 1 3 4 c1 0
2 1 4 3 0 c4

2 2 4 4 c1 c4

2 3 1 4 c3 0
2 3 4 1 0 c∗

4

2 4 1 3 c3 0
2 4 2 4 c2 0
2 4 3 1 c1 0
2 4 4 2 c1 c∗

4

3 1 1 3 c1 c∗
4

3 1 2 4 c1 0
3 1 3 1 c2 0
3 1 4 2 c3 0
3 2 1 4 0 c∗

4

3 2 4 1 c3 0
3 3 1 1 c1 c4

3 4 1 2 0 c4

3 4 2 1 c1 0
4 1 2 3 0 c∗

4

4 1 3 2 c3 0
4 2 1 3 c1 0
4 2 2 4 c1 c∗

4

4 2 3 1 c3 0
4 2 4 2 c2 0
4 3 1 2 c1 0
4 3 2 1 0 c4

4 4 2 2 c1 c4

cj̄4 j̄3 j̄2 j̄1
= cj4j3j2j1 . This leads to

B̂1,j = −i�

∫ t

t0

dτ

′∑
j1j2j3

cjj1j2j3

∑
l

[
ξ̃ ′̄
j3

(τ )ξ̃ ′̄
j2

(τ )ξ̃ ′̄
j1

(τ )h∗
l

−ξ̃j̄1
(τ )ξ̃j̄2

(τ )ξ̃j̄3
(τ )hl

]
e−ωσ

l (t−τ ) ≡
∑

l

B̂1,j,l . (C3)

The equation of motion for each frequency component is found
to be

∂t B̂1,j,l = −ωσ
l B̂1,j,l

− i�

′∑
j1j2j3

cjj1j2j3 [ξ ′̄
j3
ξ ′̄
j2
ξ ′̄
j1
h∗

l − ξj̄1
ξj̄2

ξj̄3
hl].

(C4)

Similarly, we find in the wide-band limit

C
(2)
j1j2j3j4

(τ,t,τ,τ )

� �2eiμσ2(t−τ )c′
j1j2j3j4

×
[
βW

π
cosh

(
π (t − τ )

β

)
sin

(
π

βW

)]−Y

≡ �c′
j1j2j3j4

Ĉσ2 (t − τ ), (C5)

which can be decomposed into an exponential series as

Ĉσ (t) =
∞∑
l=0

ĥle
−ωσ

l t ,

ĥl = |�α|2Y (Y )l
l!

[
Wβ

π
sin

(
π

βW

)]−Y

. (C6)

ωσ
l is the same as in Eq. (23). Thus we find

B̂2,j = −i�

∫ t

t0

dτ

′∑
j1j2j

′
1

c′
j ′

1jj1j2
[ξ̃j̄1

(τ )ξ̃j̄2
(τ )ξ̃ ′̄

j ′
1
(τ )

− ξ̃j̄ ′
1
(τ )ξ̃ ′̄

j2
(τ )ξ̃ ′̄

j1
(τ )]ĥle

−ωσ
l (t−τ ) ≡

∑
l

B̂2,j,l .

(C7)

The equation of motion for each frequency component is

∂t B̂2,j,l = −ωσ
l B̂2,j,l

−i�

′∑
j1j2j

′
1

c′
j ′

1jj1j2
[ξj̄1

ξj̄2
ξ ′̄
j ′

1
− ξj̄ ′

1
ξ ′̄
j2
ξ ′̄
j1

]ĥl . (C8)

The resulting equations of motion for the ADO’s are given by
Eq. (30).
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[31] D. N. Aristov and P. Wölfle, Europhys. Lett. 82, 27001

(2008).
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