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Berry phase jumps and giant nonreciprocity in Dirac quantum dots
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We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the
Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large
field-induced splittings of quantum dot resonances which are degenerate at B = 0 due to time-reversal symmetry.
This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states,
is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong
for gapless Dirac particles and can overwhelm the B-induced orbital and Zeeman splittings. A finite Dirac mass
suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible
through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.
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I. INTRODUCTION

Quantum dots can be embedded in two-dimensional Dirac
systems using local gate potentials and point charges, as
recently demonstrated in graphene [1,2]. These Dirac quantum
dots are defined by nanoscale p-n-junction rings, with Klein
scattering at the p-n junctions [3,4] serving as a vehicle for
confinement of electronic states [5–10]. Carrier confinement in
these ring-shaped electron resonators arises due to constructive
interference of electronic waves scattered at the pn junction
and inward-reflected from the ring [1,2]. Confined states
are manifest through resonances appearing periodically in
scanning tunneling spectroscopy maps [1,2].

Here we show that this mechanism for electronic confine-
ment can be exploited for accessing exotic and potentially
useful behavior which is not available in conventional quantum
dots. In particular, we predict that the Berry phase, a signature
topological characteristic of Dirac materials [11–17], induces
strong nonreciprocity of quantum dot resonances in the
presence of a weak magnetic field B:

εn,m �= εn,−m. (1)

Here m and n denote the azimuthal and radial quan-
tum numbers, respectively (for optical nonreciprocity, see
Refs. [18,19]). As we will see, resonance splittings of the
±m states, which are degenerate at B = 0, grow rapidly with
magnetic field, approaching values as large as half the quantum
dot resonance period �ε. In particular, for the weak B of
interest, the effect dominates over the B-induced orbital and
Zeeman splittings.

II. SEMICLASSICAL DESCRIPTION

The Berry phase jumps can be understood from a simple
semiclassical picture describing confined electrons in a gapless
two-band system. For a confining potential with circular
symmetry, the resonance spectrum εn,m can be obtained from
the WKB condition for ϕorb = 1

�

∮
C d r · p, the usual orbital

phase accumulated along the classical path C:

ϕorb(ε,m) + ϕB(ε,m) = 2π (n + γ ), (2)

where ϕB is Berry phase and γ is a constant [12,16,20]. The
Dirac band structure, viewed as a Zeeman-type Hamiltonian

H = h( p) · σ , where σ = (σx,σy,σz) are Pauli matrices, gives
rise to a geometric gauge field that generates the Berry phase,

ϕB =
∮
C
d p · 〈h+|i∇ p|h+〉 = S(C)/2. (3)

In Eq. (3), S(C) denotes the solid angle subtended by the
vector h = (hx,hy,hz) along a closed path C, where |h±〉 are
eigenstates of the two-band Hamiltonian:

H|h±〉 = ±|h||h±〉. (4)

The Berry phase in a gapless system (hz = 0) can only take
the values ϕB = 0 or ±π [13,15,21,22].

An external magnetic field can alter the Berry phase of
the orbits, allowing them to switch between the ϕB = 0 and
±π types. As illustrated in Fig. 1, switching can take place
even in a weak magnetic field. In particular, for B = 0 we
find ϕB(ε, ± m) = 0, whereas for weak nonzero fields we
find ϕB(ε,m) = π and ϕB(ε, − m) = 0. As a result of the
π difference in the WKB condition in Eq. (2) for the ±m

FIG. 1. Controlling the Berry phase of confined Dirac elec-
trons using magnetic fields. Shown are semiclassical orbits of a
massless particle exhibiting topologically distinct orbital behavior
corresponding to (a) B < Bc and (b) B > Bc [see critical field Bc in
Eq. (7)]. The Berry phase, determined by the solid angle subtended by
h = (hx,hy,hz) in Eq. (3), jumps from ϕB = 0 to ϕB = π at B = Bc;
see insets [for gapless systems hx,y = v qx,y and hz = 0, with qx,y the
kinetic momentum (red vectors) and v the Fermi velocity]. Here we
used m = 1/2, energy ε = 1.35 �v/r∗, with r∗ defined in Eq. (11),
B/Bc = 0.8 for (a) and B/Bc = 1.6 for (b).
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states, the m > 0 and m < 0 families of resonances are shifted
by half a period, giving rise to a large resonance splitting
(Fig. 3):

εn,m − εn,−m ≈ �ε/2 (gapless). (5)

Here �ε ∼ 10–50 meV is the spacing of resonances in each
family. Equation (5) describes gapless Dirac band structures;
a generalization for gapped systems is discussed below.

To illustrate how B controls the Berry phase, we consider
a massless particle confined in a radial electrostatic potential
U (r). This corresponds to h(q) = v(qx,qy,0) in Eq. (4). In the
presence of a uniform magnetic field B, the kinetic momentum
q = p − eA is given by

qr = pr = ±
√

[ε − U (r)]2/v2 − (m�/r − eBr/2)2,
(6)

qθ = pθ − eAθ = m�/r − eBr/2.

Here v is the electron velocity, and we used the axial gauge
Ax = −By/2, Ay = Bx/2 to preserve rotational symmetry.
Because the system is integrable, with constants of motion
ε and m, we can map q to the surface of a torus. Figure 2
shows such mapping, with q plotted along two curves: Cθ in
the toroidal direction and Cr in the poloidal direction. At a
critical B = Bc we find that the winding number of q along Cr

jumps from 0 to 1, thus resulting in a π jump of ϕB.
The semiclassical quantization of quantum dot resonances

can now be obtained from Eq. (2) using q in Eq. (6)
evaluated on both C = Cθ and C = Cr [23]. This yields two
quantization conditions for m and ε. For C = Cθ , Eq. (2) yields
m = nθ + γθ − ϕB/2π , where ϕB = π independent of B [see
blue curves in panels (b) and (c) of Fig. 2]. Using γθ = 0,
we find the anticipated quantization of angular momentum
m = half-integer. For C = Cr , instead, we find 1

�

∫ r2

r1
dr pr =

2π (nr + γr ) − ϕB, where r1 and r2 are the classical return
points. The half period shift in the radial quantization condition
results from the π jump in ϕB at B = Bc.

While the same semiclassical picture applies to gapped
Dirac systems (hz �= 0), there are important differences with
respect to the gapless case. In particular, the solid angle
subtended by the vector h(q), which now points towards the
upper hemisphere, is strictly smaller than 2π ; nonreciprocity
induced by Berry phase is quenched at increasing band gaps,
as will be shown with a more detailed quantum model in Fig. 4.
In the limit |hz| 	 |hx,y |, orbital splitting dominates.

The jump in Berry phase corresponds to a transition from
convex orbits to skipping orbits (Fig. 1). This observation
allows one to define the critical field Bc that induces giant
nonreciprocity, i.e., the field necessary to reverse the electron
velocity at the outer classical return point. From Eq. (6) we
find qθ = m�/r2(ε) − eBcr2(ε)/2 = 0, with r2(ε) the outer
return point [i.e., qr (r2) = 0]. For a quadratic potential model
U (r) = κr2, this condition yields

Bc[T] = 2�mκ

eε
= 1.3

mκ[eV/μm2]

ε[meV]
. (7)

Using typical values corresponding to recent experiments [1],
κ ≈ 4 eV/μm2, ε ≈ 10 meV, and m = 1/2, we find Bc on the
order of 0.3 T.

Besides the splitting arising at B = Bc, another signature
of the nonreciprocal effect is the linear m dependence of Bc,

FIG. 2. Topologically distinct mappings of q [Eq. (6)] to the
surface of a torus (a), plotted for (b) B < Bc and (c) B > Bc. Indicated
with blue (red) arrows is q along the curves Cθ (Cr ) shown in panel
(a), where dotted lines/arrows indicate a curve/vector in the bottom
surface of the torus. At B = Bc, there is a transition between trivial
and nontrivial winding of q along Cr . This results in B-induced phase
jumps of the Berry phase. Here we define q∗ = ε∗/v and use the same
parameter values as in Fig. 1.

see Eq. (7). This dependence can be understood by noticing
that, for larger m, a larger B is necessary to induce skipping
orbits. As we will see, the m dependence of Bc gives rise to
a peculiar branching pattern of the quantum dot resonances
which can be probed in spectral measurements away from the
quantum dot center (see Sec. III).

Importantly, the giant nonreciprocal effect relies on the
splitting due to Berry phase being dominant over orbital and
Zeeman splittings. This is the case, in particular, for the value
Bc ∼ 0.3 T found in Eq. (7). Indeed, Bc is significantly lower
than the value BLL = (�ε)2/e�v2

F ∼ 1 T which is necessary
for the first Landau level to be larger than the resonance period
�ε ≈ 25 meV. The strength of the nonreciprocal effect is
illustrated in Fig. 3, which shows the semiclassical spectrum
obtained from Eq. (2) for n = 0 and m = ±1/2 including
both orbital and Berry phase splitting. For typical model
parameters, the splitting �εB ∼ �ε/2 induced by the Berry
phase jump dominates over the conventional orbital splitting
�εorb. The effect becomes more dramatic at larger n and
smaller m. Furthermore, the energy εZ for the electron Zeeman
splitting, εZ = μBBc ∼ 10−2 meV, is negligible compared
to the characteristic energy of quantum dots (here μB ≈
5.8 × 10−5 eV/T is the Bohr magneton).
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FIG. 3. Magnetic response of quantum dot resonances in a
gapless Dirac system. (a) The quantum dot is defined by the circular
pn ring (dashed lines) induced by a radial electrostatic potential U (r).
(b) The magnetic response is dominated by the Berry-phase splitting
�εB, which is approximately half the resonance period �ε. Also
indicated in the figure is the orbital splitting �εorb. Peak splitting is
calculated from Eq. (2) for n = 0,1,2, m = ±1/2, and γ = 0.6; Bc

is calculated from Eq. (7); ε∗ and B∗ are defined in Eq. (11).

III. MICROSCOPIC MODEL

To supplement the simple semiclassical picture above with a
microscopic quantum model, we consider the Dirac equation
describing confined electrons in the presence of a uniform
magnetic field:

[v σ · q + (�/2)σz + U (r)]
(r) = ε
(r). (8)

Here � is the band gap and q is the kinematic momentum
with components qx,y = −i�∂x,y − eAx,y and qz = 0. This
corresponds to h(q) = v(qx,qy,�/2v) in Eq. (4). Because we
are interested in eigenstates confined inside the pn ring, with
radius smaller than the characteristic length of the electrostatic
potential, it is legitimate to use a parabolic potential model
U (r) ≈ κ r2. By using the axial gauge Ax = −By/2, Ay =
Bx/2 to preserve rotational symmetry, the eigenstates of Eq.
(8) can be expressed using the polar decomposition ansatz,


m(r,θ ) = eimθ

√
r

(
u1(r)e−iθ/2

iu2(r)eiθ/2

)
, (9)

with m a half-integer number. This decomposition allows one
to rewrite Eq. (8) as(

r2 − ε + �/2 ∂r + m/r − Br/2
−∂r + m/r − Br/2 r2 − ε − �/2

)(
u1

u2

)
= 0. (10)

Here r and B are in units of r∗ and B∗, respectively, whereas
ε and � are in units of ε∗, with

r∗ = 3
√

�v/κ ∼ 60 nm, ε∗ = 3
√

(�v)2κ ∼ 10 meV,
(11)

B∗ = (�/e) · 3
√

(κ/�v)2 ∼ 0.2 T.

In these estimates, we considered (gapped) graphene v ≈
106 m/s as model system and used a typical value of κ =
4 eV/μm2; see estimates below.

A suitable diagnostics of nonreciprocity, allowing direct
access to the quantum dot resonances, is the local density of
states D(ε) inside the quantum dot. Naturally, D(ε) can be
obtained experimentally via the dI/dV in STS measurements
as in Refs. [1,2]. The quantity D(ε) at r = r0 can be
conveniently written as the sum of m-state contributions
D(ε) = ∑

m Dm(ε), with

Dm(ε) =
∑

α

〈|uα(r = r0)|2〉λd
δ(ε − εα). (12)

Here α labels the radial eigenstates of Eq. (10) for fixed m, and
〈|uα(r = r0)|2〉λd

= ∫ ∞
0 dr ′|uα(r ′)|2e−(r ′−r0)2/2λ2

d represents a
spatial average of the wave function centered at r = r0.
A Gaussian weight is included in the density of states to
account for the finite size of the tunneling region in real STS
measurements [1,2].

A. Splitting of quantum dot resonances

Figure 4(a) shows the resulting quantum dot spectrum
as a function of B for gapless Dirac systems, exhibiting
the B-induced splitting of quantum dot resonances. In our
calculations, we used r0 = 0, λd/r∗ = 0.1, and plotted ∂D/∂ε

in Eq. (12) in order to enhance spectral features (see the
Appendix for details). In agreement with our semiclassical
interpretation, a half-period splitting is observed in the gapless
spectral maps in Fig. 4(a). Because in Fig. 4(a) the wave
function is probed at the center of the quantum dot, only small
m states (m = ±1/2) contribute to the spectral maps. It is
important to stress that large m states, which can be probed in
off-centered STS measurement, are equally susceptible to the
Berry phase splitting. Figures 4(b) and 4(c) show such spectral
maps, in which the wave functions are probed at (b) r0 = r∗
and (c) r0 = 2r∗. In these cases, there is an overlap of peak
splitting at different values of B, highlighted with fans of Bc

in Eq. (7) for varying m (dotted lines). At a larger value of r0,
states with larger m and ε can be probed. This is indicated by
a larger contrast in the local density of states induced by such
states in Figs. 4(b) and 4(c).

As shown in Fig. 5, the splitting of the resonances for
gapped systems is less prominent; in particular, splitting is
dominated by the orbital contribution. Indeed, the peak split-
ting for the low-energy resonances in gapped Dirac systems
(ε � �) can be quantified using a simple nonrelativistic model
that is valid in the limit � 	 ε∗. In this case, expansion of
the Dirac equation in powers of � gives a nonrelativistic
Schrödinger equation for the first spinor component 
1(r):

[q2/2� + U (r) + � − eB/2�]
1 = εn,m
1,

εn,m = �ω(2n + |m−| + 1) − μ∗m+B. (13)

Here εn,m are the quantized eigenvalues, ω =√
2κ/� + e2B2/4�2, and m± = m ± 1/2. Here we

introduced the orbital magnetic moment μ∗ = e�v2/2�,
which can be viewed as an effective Bohr magneton of a free

235406-3



JOAQUIN F. RODRIGUEZ-NIEVA AND LEONID S. LEVITOV PHYSICAL REVIEW B 94, 235406 (2016)

FIG. 4. Maps of the local density of states as a function of position
r0 for a gapless Dirac quantum dot displaying splitting of resonances
in weak magnetic fields: (a) r0 = 0, (b) r0 = r∗, and (c) r0 = 2r∗.
Indicated with dotted lines is Eq. (7) for half-integer m. The off-
centered spectral maps (b),(c) are qualitatively different from the
centered case (a) which is sensitive primarily to m = ±1/2 states.
Characteristic units for magnetic field, B∗, are defined in Eq. (11).
Plotted with dotted lines is Eq. (7) for half-integer m. To enhance
spectral features, we plot in both panels the derivative of the local
density of states in Eq. (12).

Dirc particle of mass �/v2. This term is responsible for the
shift of the resonances with B seen in Fig. 5(b).

B. Self-consistent calculation of the potential profile

Estimates for κ used in Eq. (8) can be obtained from a simple
electrostatic model which involves a metallic sphere proximal
to the graphene plane [Fig. 6(a)]. This model accounts for
the fields and charges induced by a metallic STM tip on top
of graphene, as discussed in Ref. [1]. We denote with R the
sphere radius, and with d the sphere-graphene separation. A
potential bias δVb between the sphere and graphene [see Figs.
6(b) and 6(c)] results in a spatially varying charge density

FIG. 5. Partial-m contribution to the on-center density of states
for quantum dots in (a) gapless and (b) gapped Dirac systems. The
strong nonreciprocal effect induced by Berry phase disappears when
a large gap � is opened. As a result, resonance splitting is dominated
by (a) the Berry phase jump in gapless systems, and (b) orbital effects
in gapped systems. The distinct behavior between (a) and (b) is shown
in the partial m = 1/2 maps of the density of states [indicated with a
dotted line is Eq. (7) with m = 1/2; �/ε∗ = 5 was used in (b)].

profile

δn(r) ≈ − eδVb + μ(r)

4πe2(d + r2/2R)
. (14)

Here δn(r) = sgn[μ(r)]μ(r)2/π (�v)2 − n∞ is the STM tip-
induced charge density variation on graphene, with μ(r) the
Fermi energy and n∞ the gate-induced carrier density far
from the tip. Equation (14) is obtained from a parallel-plate
capacitor model with a slowly varying plate separation dc(r) ≈
d + r2/2R. Higher-order terms arising due to the curvature of
the electric field lines are neglected.

A straightforward calculation yields a value of κ =
−μ′′(0)/2 given by

κ = − eδVb + μ0

2Rd
√

1 + |β| . (15)

Here μ0 is the Fermi energy directly under the sphere, and β

is a dimensionless number defined as

μ0 = (�v)2

8e2d

1 − √
1 + |β|

sgn(β)
,

β = 16e2d

(�v)2
[eδVb − 4πe2dn∞]. (16)

For typical values of R ∼ 1 μm, d ∼ 5 nm, δVb ∼ 0.1 V,
and n∞ ∼ 1011 cm−2, we obtain the value of κ ∼ 4 ×
10−6 eV/nm2 used above.

IV. DISCUSSION

We point out that the nonreciprocity mechanism considered
above is inherent to Dirac materials. In contrast, Faraday
and Kerr rotation, two notable examples of nonreciprocity
which can be sizable in two dimensional materials such as
graphene [24,25], are also present in general semiconductor
materials. The same applies to magnetoplasmonic effects, e.g.,
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FIG. 6. (a) Schematics of the electrostatic model, showing a
metallic sphere of radius R separated a distance d from the graphene
plane. A potential bias Vb applied on the sphere induces a local
variation of the carrier density, different from the carrier concentration
density n∞ far from the sphere. (b), (c) Band structure schematics
showing band alignment between the metallic sphere and graphene
for (b) large separation and (c) close proximity. Here Vcpd is the
contact potential difference between graphene and the metallic
sphere, δVb = Vb − Vcpd, and μ0 is the Fermi energy under the sphere.

unidirectional low frequency edge modes [26–30], which are
also present in generic two-dimensional structures [26].

The large magnitude and tunability of our nonreciprocal
effect may help design optical devices, such as nanoscale
isolators and circulators, which are driven by Berry phase.
Of special interest are photonic effects in Dirac quantum
dots. Indeed, electrostatic doping can, via the Pauli blocking
mechanism, induce a strong and tunable electron-photon
coupling. This, combined with the in situ tunability of the
resonance dispersion [1], can make Dirac quantum dots useful
in miniaturizing nanophotonic systems.

It is instructive to compare our nonreciprocal effect with
other exotic manifestations of Berry phase predicted to occur
in Dirac systems, such as Berry phase modification to exciton
spectra [31,32], optical gyrotropy induced by Berry’s phase
[33], and chiral plasmon in gapped Dirac systems [34,35].
In realistic electronic systems electron decoherence usually
hinders observation of such subtle effects. We therefore expect
that the quantum dot states readily available in Dirac materials
provide an optimal setting for locally probing Berry phase
physics.

Since our predictions, such as the strong dependence
of resonance splitting on �, only rely on the Dirac na-
ture of charge carriers, they can be tested in a wide

range of materials. Graphene is the prototypical material to
explore the case � = 0; graphene on top of axis-aligned hBN
substrate allows one to explore the case � ∼ 50 meV [36,37];
monolayers of transition metal dichalcogenides such as MoS2

allow one to explore � of an eV scale [38–40]. Furthermore,
the value of ε∗ can also be tuned with electrostatic potential,
as demonstrated in Ref. [1].

V. SUMMARY

To summarize, quantum dots embedded in Dirac materials
grant access to a nonreciprocity mechanism originating from
the Berry phase. This mechanism, which is unique to Dirac
materials, leads to stronger nonreciprocity than that for
other known mechanisms. The anomalous strength of the
effect and its in situ tunability makes Dirac quantum dots
an appealing platform for nonreciprocal nanophotonics. The
recent introduction of Dirac quantum dots in graphene makes
these predictions easily testable in ongoing experiments.
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APPENDIX: COMPUTATIONAL DETAILS

To solve Eq. (10) above, we use the finite difference method
in the interval 0 < r < L. The azimuthal quantum numbers are
chosen in a finite range, −M � m � M , with M large enough
to represent accurately the states in the energy range of interest.
In our calculations, we used a system of size L/r∗ = 10
discretized in N = 600 lattice sites, with maximum azimuthal
quantum number M = 31/2. To calculate the density of
states, Eq. (12), we approximate the delta function δ(ε) by
a Lorentzian δ(ε) ≈ �/π (ε2 + �2). We used a broadening
parameter �/ε∗ = 0.25, and set a Gaussian weight in the
spatial average 〈. . .〉λd

of the wave function to λd/r∗ = 0.1.
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