
PHYSICAL REVIEW B 94, 235403 (2016)

Mechanical actuation of graphene sheets via optically induced forces
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In this paper, we theoretically demonstrate the strong mechanical response of graphene sheets actuated by
near-field optical forces. We study single-layer graphene and a two-layer graphene stack with large separation
and show that tunable attractive and repulsive forces can be generated. A large nonlinear mechanical response
can be obtained by driving the sheets through external radiation and guided modes. We report formation of
graphene bubbles of several nanometers in height. Our study points towards new routes for mechanical actuation
of graphene, providing new platforms for straintronics and flexible optoelectronics.
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I. INTRODUCTION

Graphene sheets offer a unique platform for mechanics due
to their very low mass density (1.5–2 g/cm3), high elastic
strength (∼130 GPa) [1], exceptionally stiff in-plane Young’s
modulus (∼1 TPa) [2], strong adhesion, and flexibility [3–5].
These properties have motivated the adoption of graphene in
the next generation of nanomechanical devices. Mechanical
actuation of graphene has been demonstrated by applying
pressure using gas cavities [6,7], electric potential [8,9],
thermal expansion [10,11], acoustic waves [12], electrostatic
interactions [13], and electron pumping [14,15]. Considerable
progress has been made to exploit the mechanical properties
of graphene for high-sensitivity force/mass detectors [16] and
tunable mechanical oscillators [17,18]. In addition, several
interesting physical phenomena induced by strain have been
demonstrated [19–23]. It has been shown that the electronic
properties of graphene can be engineered by inducing mechan-
ical deformations, which has led to the advent of the field of
“straintronics” [24–26].

Recently, optical forces have gained in popularity due
to their noncontact nature and ability to manipulate and
trap microscopic objects [27–29]. Using optical forces to
mechanically actuate graphene holds promise for novel ap-
plications in optomechanics [30], such as all-optical tunable
filters, switches, and modulators. However, optical forces
are notoriously weak, and hence it is necessary to explore
possible routes for enhancing these forces for practical
applications.

Although a graphene sheet is optically quasitransparent
over the infrared (IR) and visible ranges, it interacts strongly
with transverse magnetic (TM) light at terahertz and mid-IR
frequencies [31]. This interaction is dominated by interband
and intraband transitions of the free carriers in graphene and
is highly dispersive [32,33]. The collective oscillations of the
free carriers can produce surface plasmon polaritons (SPPs),
enabling significant confinement [34] and minimal out-of-pane
scattering [35] of light. This offers a route for generating strong
optical forces on graphene sheets.
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The use of SPP-enhanced optical forces in graphene
systems can lead to better performance in terms of attraction
and repulsion compared to conventional metal and dielectric
systems [36–41] due to higher confinement of SPPs to the
surface and lower loss [33]. Further, moving from a three-
dimensional (3D) structure to a two-dimensional (2D) sheet
is expected to magnify the effect of the force in terms of
the resulting deformation and accelerations. These differences
and the unique feature of graphene in terms of electrochemical
tunability make it a promising candidate for optomechanical
applications. In this paper, we provide a detailed analysis of
the forces generated by SPPs in single-layer graphene and
a two-layer stack of graphene sheets. The calculation of the
optical fields is carried out by a general analytic formalism
based on the scattering matrix approach for stacked layers
of graphene [34]. Once the fields are obtained, we calculate
the time-averaged optical force per unit area of the sheets by
evaluating the flux of the Maxwell stress tensor (MST) [42].
We show that tunable attraction and repulsion can be achieved
for graphene sheets. The nonlinear mechanical signatures are
obtained by driving the sheets through external radiation and
guided modes. The deformation of the sheets was studied using
nonlinear von Kármán plate theory using both an axisymmetric
solution [43] and a subdivision finite element method within
a quasicontinuum framework [44,45]. The paper is organized
as follows. In section II, we establish the formulation and
introduce the methods used in this work. We investigate the
optically induced forces and the mechanical response of a
free-standing graphene sheet through external excitation in
section III. Section IV illustrates the optically induced forces
between two layers of graphene sheets excited by external
radiation, as well as by injection of guided modes. Finally, the
conclusion is drawn in section V.

II. METHODS

A. Scattering matrix approach

Consider stacked layers of graphene sheets with surface
conductivity of σl separated by dielectric layers with relative
permittivities of εl illuminated by TM plane waves as shown
in Fig. 1(a). The total electric and magnetic field components
associated with each layer, represented as

−→
E l and

−→
H l , can be
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FIG. 1. (a) Schematic representation of stacked layers of
graphene sheets separated by dielectric layers. (b) The integration
path chosen to calculate force per unit area on a graphene sheet using
Maxwell stress tensor method.

formulated as integrals of the plane wave modal components
propagating in the forward (+z) and backward (−z) directions
[34]:

−→
E l =

∫ ∞

−∞

∫ ∞

−∞
[a(l)+−→

E (l)+�(l)+ + a(l)−−→
E (l)−�(l)−]dkxdky

(1)

−→
H l =

∫ ∞

−∞

∫ ∞

−∞
[a(l)+−→

H (l)+�(l)+ + a(l)−−→
E (l)−�(l)−]dkxdky

(2)

Each plane wave component is characterized by transverse
wave vector components, {kx,ky}, which are conserved in
each layer. The quantities a(l)± are the unknowns to calculate,
representing amplitudes of the plane waves propagating in the

lth layer;
−→
E (l)± and

−→
H (l)± represent the electric and magnetic

field modal profiles, respectively, of each plane wave in the
lth layer; and �(l)± = exp(ikxx + ikyy ± ik(l)

z z) represent the
phase factors of plane waves in the lth layer. In all these
quantities, the (+) sign represents the waves travelling in
the forward direction, and the (–) sign represents the waves
travelling in the backward direction. The modal field profiles
of each layer can be expressed analytically as:

−→
E (l)±

p =
{

∓k(l)
z kx

ε(l)
, ∓ k(l)

z ky

ε(l)
,
k2
ρ

ε(l)

}/
k0kρ (3)

−→
H (l)±

p = {ky, − kx,0}/kρ (4)

where k0 = ω/c, kρ =
√

k2
x + k2

y, and k(l)
z =√

k2
0ε(l) − (k2

x + k2
y).

Applying the boundary conditions, the scattering matrix
equation of the lth interface can be written as:[

a(l)−

a(l+1)+

]
=

[
�(l)+ 0

0 �(l+1)−

][
r (l)+ t (l)−

t (l)+ r (l)−

]

×
[
�(l)+ 0

0 �(l+1)−

][
a(l)+

a(l+1)−

]
(5)

where �(l)± are calculated at z = zl , and each term in the
matrix can be calculated as:

r (l)+ = k(l)
z ε(l+1) − k(l+1)

z ε(l) + k(l)
z k(l+1)

z σ(l)η0

D
(6)

r (l)− = k(l+1)
z ε(l) − k(l)

z ε(l+1) + k(l)
z k(l+1)

z σ(l)η0

D
(7)

t (l)+ = 2k(l)
z ε(l+1)

D
(8)

t (l)− = 2k(l+1)
z ε(l)

D
(9)

where η0 is the wave impedance of free space and

D = k(l)
z ε(l+1) + k(l+1)

z ε(l) + k(l)
z k(l+1)

z σ(l)η0 (10)

The eigenmodes (or guided modes) of the system of layers,
characterized by the tangential wavevector component kρ for
each polarization, can be identified as the poles of the total
reflection coefficient matrix. For a simple system with a 2D
sheet separating two semi-infinite uniaxial media, the poles
can be directly identified as the zeros of the denominator D
given in Eq. (10). In case of a three-layer system with two 2D
sheets separated by a finite layer, according to the recursive
reflection formulae, the condition for guiding a wave is [34]:

1 − �(l)−r (l−1)−�(l)−�(l)+r (l)+�(l)+ = 0 (11)

B. Maxwell stress tensor method

Once the fields are obtained, the time-averaged optical force
at each interface is calculated by evaluating the flux of the
Maxwell stress tensor (MST) as [42]:

−→
Fl = −1

2
Re

{∮
Sl

dS[n̂.T (−→r )]

}
(12)

where Sl is the integration path enclosing the surface of the
lth graphene sheet. The complex MST is defined in terms of
electromagnetic fields as:

T (−→r ) = 1
2 (D.E∗ + B∗.H )I − D E∗ − B∗H (13)

where I is the 3 × 3 identity matrix, and an asterisk (�)
denotes the complex conjugate. By choosing the integration
path around the infinitesimal segments of the graphene sheet
as shown in Fig. 1(b), we are able to calculate the force per
unit area in terms of the fields above and below the sheet as:

−→
F l = 1

2 Re{ẑ.T (z = zl
−) − ẑ.T (z = zl

+)} (14)
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where:

ẑ.T (z = zl
+) = ẑ

[
εl+1

2
(|Ex(z = zl

+)|2 + |Ey(z = zl
+)|2 − |Ez(z = zl

+)|2)

− μl+1

2
(|Hx(z = zl

+)|2 + |Hy(z = zl
+)|2 − |Hz(z = zl

+)|2)

]

+ x̂[−εl+1Ez(z = zl
+)E∗

x (z = zl
+) − μl+1Hz(z = zl

+)H ∗
x (z = zl

+)]

+ ŷ[−εl+1Ez(z = zl
+)E∗

y (z = zl
+) − μl+1Hz(z = zl

+)H ∗
y (z = zl

+)] (15)

and

ẑ.T (z = zl
−) = ẑ

[
εl

2
(|Ex(z = zl

−)|2 + |Ey(z = zl
−)|2 − |Ez(z = zl

−)|2)

− μl

2
(|Hx(z = zl

−)|2 + |Hy(z = zl
−)|2 − |Hz(z = zl

−)|2)

]

+ x̂[−εlEz(z = zl
−)E∗

x (z = zl
−) − μlHz(z = zl

−)H ∗
x (z = zl

−)]

+ ŷ[−εlEz(z = zl
−)E∗

y (z = zl
−) − μlHz(z = zl

−)H ∗
y (z = zl

−)] (16)

Evidently, the transverse component of the optical force on the
infinitesimal segment of the sheet is zero. With knowledge of
the fields above and below the sheet, we arrive at the closed-
form force per unit area on the sheet.

C. Nonlinear von Kármán plate theory

In the continuum mechanics framework, the mechanical
behavior of a graphene sheet can be described by mapping a 2D
plane to 3D space. In this case, in-plane stretch is quantified by
a 2D Green-Lagrange strain tensor, and bending is described
by a curvature tensor, both of which are defined with respect to
the ground state of a flat graphene sheet. Under the assumption
of relatively small deformation but with moderately large
deflection, a set of nonlinear equations can be used to describe
the mechanical behavior of the graphene sheet that closely
resembles the von Kármán equations for an isotropic elastic
thin plate [43].

In the case of a circular graphene sheet subjected to
axisymmetric loading q(r), the in-plane displacements and the
lateral deflection expressed in polar coordinates are ur = u(r),
uθ = 0, and w = w(r), respectively, where r =

√
x2 + y2.

The equilibrium equations in terms of displacements can be
written as [43]

d2u

dr2
+ 1

r

du

dr
− u

r2
= −1 − v

2r

(
dw

dr

)2

− dw

dr

d2w

dr2
(17)

D

(
d3w

dr3
+ 1

r

d2w

dr2
− 1

r2

dw

dr

)

− E2D

1 − v2

dw

dr

(
du

dr
+ v

u

r
+ 1

2

(
dw

dr

)2
)

= 1

r

∫ r

0
qrdr (18)

where E2D, v, and D are the 2D Young’s modulus, Poisson’s
ratio, and bending moduli, respectively. A finite difference
approach is used to solve Eq. (17) and Eq. (18), subject
to axisymmetric pressure distribution obtained from the

electromagnetic solution with zero displacements imposed at
the sheet edge at r = a.

As a more general solution methodology, there is also
a nonlinear subdivision finite element method implemented
within a quasicontinuum framework [44,45]. In this approach,
the internal energy is calculated using a hyperelastic potential
that depends on the in-plane right Cauchy-Green deformation
tensor C, and the curvature tensor K. For these calculations,
we adopt a linearized model about the planar ground state
of graphene. The problem is solved quasistatically using
subdivision finite elements [45], which provide a smooth
parametrization with square integrable curvature. At each
strain increment, we obtain stable equilibrium configurations
by numerical minimization using a conjugate gradient method.

An approximate solution for graphene bubbles can also be
obtained to estimate the center deflection [46]. Due to the
nonuniform distribution of the pressure arising from external
excitations, the deflection profile is relatively localized towards
the center. We assume a deflection profile in the form of

w = h

(
1 − r2

a2

) ∑
n

Cn

(
1 − ρ2

a2

)n

(19)

The in-plane strain energy and the bending energy are modeled
using von Kármán plate theory [45]. A variational approach
is adopted whereby the approximate equilibrium solution is
obtained by minimizing the total energy with respect to the
unknown coefficients in Eq. (19).

In all the models, the graphene sheet is taken to be
transversely isotropic with linear elastic properties E2D =
336 N/m, v = 0.165, and D = 0.238 nN · nm, consistent with
experimental and ab initio calculations [43].

It should be remarked that for the investigation of the
optomechanical response of a graphene sheet, coupled analysis
of the fields and deformation kinematics should be carried
out, since the optical forces change as the graphene sheet
bends. The study requires a multiscale approach as the locally
induced strains can change the electronic structure of graphene
and affect the conductivity. However, for small deformations,
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the change in the conductivity is negligible. Moreover, the
coupling between electromagnetic and mechanical equations
is weak, and they can be decoupled to give an approximate
solution. Throughout this work, we restrict ourselves to this
weak-coupling regime to show the proof of concept. The
implications of this approximation are studied and provided in
the Supplemental Material [47].

III. OPTICAL FORCES ON A FREE-STANDING
GRAPHENE SHEET

We start by considering a free-standing graphene layer. To
highlight the similarities and differences between graphene
and metallic films, a free-standing gold thin film with a
thickness of 10 nm is considered for comparison. The near-
field excitation accesses surface plasmons, which leads to
ultrahigh optical forces. The key feature in this process is the
strong enhancement of evanescent waves. To demonstrate this
effect, a graphene sheet and a gold thin film are excited by a TM
polarized light from above with a wavelength λ as depicted in
the insets of Fig. 2. Referring to the coordinate system of Fig. 2,
we express the electric field as �E = E0exp(iki .r − iωt) k̂i ,
where

−→
ki = kρρ̂ + kzẑ is the wavevector, and k2

ρ + k2
z = k2

0

with k0 = 2π/λ and kρ =
√

k2
x + k2

y . In the following, the gold

thin film is studied in the visible spectrum with experimentally
determined values for permittivity [48], and the graphene is
considered in the terahertz and mid-IR frequencies with ex-
perimentally determined conductivity fitted to a Drude model
[49] for a surface carrier density of ns = 7.37 × 1016m−2 and
scattering time of τ = 500 fs.

Figures 2(a) and 2(b) represent the wavevector-resolved
reflection coefficients of a graphene sheet and thin metal
layer, respectively, demonstrating SPP resonance (at the
poles as R → ∞). In the case of a free-standing graphene
sheet, the wavevector corresponding to SPP resonance can be

FIG. 2. (a, b) Reflection of graphene and gold as a function of the
transverse component of wave vector kρ . The insets show sketches
of a graphene sheet and gold thin film excited by a TM evanescent
light. (c, d) Optical pressure on the graphene sheet and the gold thin
film versus kρ at different wavelengths.

analytically derived as [32]

kSPP
ρ = k0

√
ε
(
1 − 4ε/σ 2η2

0

)
(20)

where ε is the relative permittivity of the medium, and σ is
the surface conductivity of the sheet. The metal layer due to
its finite thickness normally supports two SPP modes with
symmetric and antisymmetric field profiles. However, due
to the extremely small thickness considered in this example,
the resonance condition for the asymmetric mode approaches
infinity and is no longer accessible [50].

The compressive optical force per unit area (pressure) is
linearly proportional to the incident optical power density P =
|E0|2/η, where η is the free space impedance, and E0 is the
amplitude of the incident field. Figures 2(c) and 2(d) show
the optical pressure on the graphene sheet and gold thin film,
respectively, for an optical power density of 1 kW/cm2. As
can be observed, the pressure is dominated by two opposite
peaks close to the SPP resonance. The switching of the force
from positive to negative is a result of the rapid variation of
the scattering phase shift across the resonance. Crossing the
resonance, the reflection and transmission pick up a phase shift
equal to π .

Our results show that the SPP-induced force on a free-
standing graphene sheet is significantly larger than that on a
gold thin film (by three orders of magnitude). We attribute
this to the higher confinement of SPPs to the surface [33].
Moreover, the lower loss of graphene compared to gold
provides propagation over a larger distance, which translates
into larger deflections for similarly sized structures. It is
also noteworthy to mention that in practice, creating a very
thin homogeneous metal layer faces fabrication difficulties,
while free-standing graphene monolayers can be prepared by
mechanical exfoliation of graphite.

In order to demonstrate the mechanical interaction of the
graphene sheet with light, we use an external point source
to excite SPPs on the graphene surface. This can be done
in practice by near-field coupling with a sharpened metallic
tip or tapering metal aperture above the sheet, which can be
modeled as a dipole source with moment �p = pxx̂ + pyŷ +
pzẑ. Here, we consider a vertically oriented dipole with dipole
moment �p = pzẑ placed 50 nm above the graphene surface
for excitation of surface plasmons. The field profile of the
dipole can be expressed as a spectrum of TM plane waves
with the amplitudes at the graphene surface given by a =
(pzkρ/kz)exp(ikzh), where h is the height of the dipole above
the sheet [34,51].

The part of the spectrum with kρ > k0 is associated with
the dipole’s evanescent field. Evidently, at smaller values of
kρ , more field survives across the distance h to significantly
couple to the graphene sheet. As kρ increases, the field reaching
the surface no longer couples to the sheet above a critical
cutoff wavevector [52]. The excitation of evanescent fields by
the dipole source at the graphene surface and the subsequent
stimulation of wavevector-resolved forces result in a nonzero
net pressure on the sheet. Moreover, as implied by the results in
Fig. 2 and shown further below, the wavelength of the optical
excitation can be controlled to yield tunable optomechanical
effects, even switching the sign of the force from attractive
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FIG. 3. (a, b) Pressure distribution and deflection of a graphene
sheet resulting from excitation by a vertically oriented dipole source
of λ = 8 μm with a radiated power of 1.5 mW placed 50 nm above
the sheet. The SPP wavelength is λSPP = 238.2 nm. The inset shows a
schematic of a circular graphene sheet with a radius of 1 μm excited
by scattering from an atomic force microscope (AFM) tip modeled
with a vertical dipole depicted as the red arrow. (c, d) Results at lower
wavelength of λ = 5 μm, which leads to repulsion phenomena. The
SPP wavelength is λSPP = 93.1 nm. (e) Comparison of the deflection
predicted by the axisymmetric, quasicontinuum, and approximate
solutions for the nonlinear von Kármán plate theory.

to repulsive by shifting the SPP resonance with respect to the
cutoff wavevector.

As an explicit example, we study a circular graphene sheet
with a radius of R = 1 μm. The optical pressure is obtained
by using the MST method and is linearly proportional to the
optical power of the source, Prad = (c0k

4
0/12πε0)|p|2, with c0

being the speed of light in a vacuum. Here, the results are
calculated for a source with a radiated power of 1.5 mW.
Figure 3(a) shows the distributed transverse optical pressure
across the sheet for λ = 8 μm, corresponding to the SPP
wavelength of λSPP = 238.2 nm. The pressure is dominated
by a negative peak, which translates to attraction towards the
dipole source. The resulting deformation profile across the
graphene sheet is calculated using nonlinear plate theory and
is shown in Fig. 3(b). As can be seen, a blister with radius
of 1 μm and height of 2 nm is formed. The magnitude of the
deflection depends on the pressure and blister radius. One can
expect larger deflections for higher input power and larger
radius of the sheet. According to Fig. 3(c), as the wavelength
decreases, the SPP resonance shifts to larger kρ , shifting the
attractive forces above the cutoff in the dipole excitation
spectrum and leading to the domination of repulsive forces. To
demonstrate this effect, the results for the pressure distribution
and the induced deformation at λ = 5 μm are presented in

Figs. 3(c) and 2(d), respectively. The corresponding SPP
wavelength in this case is λSPP = 93.1 nm. The pressure dip in
the center is a result of attraction toward the source, while the
overall interaction is dominated by repulsive forces forming
a graphene bubble with a height of about 1 nm. Figure 3(e)
compares the results of the axisymmetric, quasicontinuum,
and the approximate solutions, which are found to be in
good agreement. (The main differences between the methods
are the mesh resolution and imposed boundary conditions.)
Such nanoscale mechanical responses can be captured in
practice through direct imaging of the spatial shape using
scanning force microscopy (SFM) [53], transmission electron
microscopy (TEM) [2], or Raman spectroscopy with optical
probes [54].

As implied by the results, if the SPP resonance is moved
beyond the cutoff wavevector and becomes inaccessible by
the dipole excitation spectrum, we will observe repulsion
phenomena. However, it should be remarked that suppressing
the plasmon resonance will drastically diminish the optically
induced forces and lead to no appreciable deformation. This
can be clearly seen from the smaller forces and deformations
at λ = 5 μm compared to those at λ = 8 μm.

IV. OPTICALLY INDUCED FORCES BETWEEN TWO
LAYERS OF GRAPHENE SHEETS

Next, we consider a stack of two graphene layers separated
by a distance d. (Note that d is much larger than the equilibrium
separation distance between graphene layers, so this is not
a graphene bilayer.) In this case, the mutual interaction of
degenerate resonances or guided modes induces a splitting into
symmetric and asymmetric modes. This is analogous to the
well-known states formed in insulator-metal-insulator (IMI)
or metal-insulator-metal (MIM) structures [38,39]. Using the
convention used in metallic systems, symmetric modes refer
to modes of even vector parity (Ex is even, Ez and Hy are odd
functions of z), and the asymmetric modes refer to modes of
odd vector parity (Ex is odd, Ez and Hy are even functions of
z). In this coupled system, we demonstrate that these modes
are characterized by attractive and repulsive optical forces
between the sheets.

There are two ways to excite coupled resonances on the
graphene sheets depending on whether the incident power
comes in the form of external radiation or a guided mode.
First, we consider the case of external radiation. For a single
source of radiation above the two layers, the force on the sheets
will not be equal. In order to characterize the guided modes
of the system, we plot the wavevector-resolved reflection of
TM excitation in Fig. 4(a) for a two-layer graphene stack
with a separation distance of d = 100 nm at λ = 10 μm. Two
resonances are observed, corresponding to the symmetric and
asymmetric modes, with the field profiles of the transverse
electric field Ex shown in the inset of the figure. The optical
pressure on the top sheet as a function of kρ obtained for a
normalized power density of 1 kW/cm2 is plotted in Fig. 4(b).
The pressure is dominated by two large peaks of opposite
sign at the two resonances. Referring to the coordinates in the
inset of Fig. 4(b), a positive pressure for the asymmetric mode
indicates an attractive force between the sheets, and a negative
pressure for the symmetric mode corresponds to a repulsive
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FIG. 4. (a) Reflection versus kρ from a two-layer graphene stack
with a separation distance d = 100 nm for λ = 10 μm. The field
profiles of the transverse electric field are plotted in the inset. (b)
Optical pressure on the top graphene sheet. (c) Pressure versus kρ and
normalized separation distance for λ = 10 m. (d) Pressure versus kx

and incident wavelength for d = λ/100. (e, f) Pressure distribution
and deformation of the graphene sheets for d = 10 nm excited by a
vertical dipole source with radiated power of 1.5 mW at λ = 5 μm.
(g, h) Same as above for a separation distance of d = 40 nm.

force between the sheets. The pressure on the bottom sheet has
the opposite sign and is not plotted.

In order to show the dependence of the optical pressure on
the distance between the layers, in Fig. 4(c) we plot the pressure
as a function of kρ and separation distance d at λ = 10 μm.
As the distance between the sheets increases, the pressure
decreases exponentially, and the two guided modes approach
degeneracy. In this limit, the modes are decoupled and merge,
so that the pressure behavior is similar to that of a single
graphene layer with the force flipping from negative to positive
across resonance. The effect of the incident wavelength in the
wavevector spectra of pressure is also presented in Fig. 4(d) for
a separation distance of d = λ/100 between the sheets. As can
be seen, both the repulsive and attractive pressures decrease in
magnitude as the wavelength increases.

Next, we consider a vertical dipole source with a radiated
power of 1.5 mW placed 50 nm above the top sheet. At small
separations, the sheets are well coupled, and the attractive
force between the sheets is the dominant force, as it occurs
further from the cutoff wavevector compared to the repulsive
force and is more strongly excited by the dipole source. The
results for the pressure distribution across both sheets and their
deformation profiles are shown in Figs. 4(e) and 3(f), respec-
tively, for λ = 5 μm and d = 10 nm. At large separations, the
sheets get decoupled and will have degenerate resonances. As
a result, both sheets will be attracted (or repulsed) by the source
similar to a single graphene layer. To demonstrate this effect,
the pressure distributions and deflections for λ = 5 μm and
d = 40 nm are shown in Figs. 4(g) and 4(h), respectively.

The second technique for excitation is to inject light from
the side, activating guided modes that propagate along the
sheets and interact evanescently. In this case, the force on
both sheets will be equal, and as the separation between the
layers increases, the force tends to zero. The evanescent mode
can be excited by diffraction from a grating, coupling to a
prism, or another waveguide. This excitation scheme offers
the opportunity to selectively couple to one of the asymmetric
or symmetric modes to obtain a repulsive or attractive force,
making it possible to tune the deflection from positive to
negative. This property is of particular interest for realizing
optically controlled nanoactuators. In order to excite the guided
modes in the coupled system of two graphene layers, we
used a mode-matching technique in combination with the
scattering matrix approach [35,55,56]. These fields have a
TM profile. Referring to the coordinate system in Fig. 5, one
can express the fields as �E = Exx̂ + Ezẑ and �H = Hyŷ. The
optical pressure is linearly proportional to the power flowing

FIG. 5. (a, b) Dependence of the magnitude of the attractive and
repulsive pressures between the sheets on the separation distance and
incident wavelength, respectively. (c, d) Deformation of the sheets
for the attractive and repulsive modes for a separation distance of
100 nm for λ = 10 μm. The deflection profiles across the top sheets
are shown in the inset to clarify the asymmetry. The inset in (c) depicts
a schematic of two graphene sheets excited by a guided mode injected
from the side.

235403-6



MECHANICAL ACTUATION OF GRAPHENE SHEETS VIA . . . PHYSICAL REVIEW B 94, 235403 (2016)

along the propagation direction, which can be obtained per
unit width of the sheets as:

P = Pz

W
= 1

2
Re

{∫ +∞

−∞
�E × �H ∗dz

}

= Re

{
kz

ωε0

} ∫ +∞

0

∣∣Hy

∣∣2
dz (21)

The optical power per unit width distributed along the sheets
is assumed to be 1 mW/μm. The dependence of the attractive
and repulsive pressure on the excitation wavelength and the
distance between the sheets is shown in Figs. 5(a) and 5(b),
respectively. Two coupling regimes are observed in Figs. 5(a)
and 5(b). For large separation distances, the optical pressures
in the antisymmetric and symmetric modes have nearly
equivalent magnitudes; at small separations, the asymmetric
mode produces a significantly enhanced pressure compared to
the symmetric counterpart. In the latter regime, the magnitude
of the attractive pressure for the asymmetric mode shows an
exponential dependence on separation distance, whereas the
repulsive pressure for the symmetric mode is only weakly
related to separation. The physical explanation for this differ-
ence can be obtained by observing that the asymmetric mode is
strongly confined between the two sheets. A similar behavior
has been reported [38] for the attractive and repulsive optical
pressures between two metallic films. However, the magnitude
of optical pressures in the coupled graphene system is more
than two orders of magnitude larger than for the metallic
structures.

Figures 5(c) and 5(d) show the deformation resulting from
symmetric and asymmetric modes for two graphene sheets
of length 2 μm and an infinitely long width with open ends
for λ = 10 μm and d = 200 nm. The asymmetry in the shape
profile of deformation is a result of loss on SPP propagation.

V. CONCLUSION

In conclusion, we have shown that near-field optical exci-
tations can generate large forces on graphene sheets. The use
of evanescently coupled guided resonances strongly enhances
the optical forces, which lead to the formation of localized
blisters in the graphene sheets. Guided modes in graphene
structures enable a rich set of phenomena and can add new
dimensions to straintronics and flexible optoelectronics. There
are many degrees of freedom and possibilities to explore due to
the presence of both attractive and repulsive resonances. The
ability to tailor guided resonances offers exciting opportunities
for tailoring complex force patterns that could be used for
applications such as compensation for Casimir forces to
avoid stiction in nanoelectromechanical devices, flattening
wrinkles in the deposition process of graphene, and the
generation of engineered deformation patterns in graphene.
Guided resonances can also be exploited to design integrated,
all-optical tunable optomechanical devices.
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and J. Ahn, ACS Nano 7, 3130 (2013).

[13] J. Bunch, A. van der Zande, S. Verbridge, I. Frank, D.
Tanenbaum, J. Parpia, H. Craighead, and P. McEuen, Science
315, 490 (2007).

[14] N. Klimov, S. Jung, S. Zhu, T. Li, C. Wright, S. Solares, D.
Newell, N. Zhitenev, and J. Stroscio, Science 336, 1557 (2012).

[15] S. Zhu, Y. Huang, N. N. Klimov, D. B. Newell, N. B. Zhitenev,
J. A. Stroscio, S. D. Solares, and T. Li, Phys. Rev. B 90, 075426
(2014).

[16] C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis,
H. Stormer, T. Heinz, and J. Hone, Nature Nanotech 4, 861
(2009).

[17] C. Chen, S. Lee, V. Deshpande, G. Lee, M. Lekas, K. Shepard,
and J. Hone, Nature Nanotech 8, 923 (2013).

[18] R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R.
Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M.
Parpia, and H. G. Craighead, Nano Lett. 12, 4681 (2012).

[19] V. M. Pereira, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev.
B 80, 045401 (2009).

[20] D. Yoon, Y. W. Son, and H. Cheong, Phys. Rev. Lett. 106,
155502 (2011).

[21] C. Si, Z. Liu, W. Duan, and F. Liu, Phys. Rev. Lett. 111, 196802
(2013).

[22] N. Levy, S. Burke, K. Meaker, M. Panlasigui, A. Zettl, F. Guinea,
A. Neto, and M. Crommie, Science 329, 544 (2010).

[23] F. Guinea, M. Katsnelson, and A. Geim, Nat. Phys. 6, 30 (2009).

235403-7

https://doi.org/10.1063/1.367257
https://doi.org/10.1063/1.367257
https://doi.org/10.1063/1.367257
https://doi.org/10.1063/1.367257
https://doi.org/10.1126/science.1157996
https://doi.org/10.1126/science.1157996
https://doi.org/10.1126/science.1157996
https://doi.org/10.1126/science.1157996
https://doi.org/10.1002/smll.200900802
https://doi.org/10.1002/smll.200900802
https://doi.org/10.1002/smll.200900802
https://doi.org/10.1002/smll.200900802
https://doi.org/10.1103/PhysRevB.80.113405
https://doi.org/10.1103/PhysRevB.80.113405
https://doi.org/10.1103/PhysRevB.80.113405
https://doi.org/10.1103/PhysRevB.80.113405
https://doi.org/10.1038/nnano.2011.123
https://doi.org/10.1038/nnano.2011.123
https://doi.org/10.1038/nnano.2011.123
https://doi.org/10.1038/nnano.2011.123
https://doi.org/10.1016/j.ssc.2012.04.029
https://doi.org/10.1016/j.ssc.2012.04.029
https://doi.org/10.1016/j.ssc.2012.04.029
https://doi.org/10.1016/j.ssc.2012.04.029
https://doi.org/10.1021/nl4036324
https://doi.org/10.1021/nl4036324
https://doi.org/10.1021/nl4036324
https://doi.org/10.1021/nl4036324
https://doi.org/10.1021/nl500568d
https://doi.org/10.1021/nl500568d
https://doi.org/10.1021/nl500568d
https://doi.org/10.1021/nl500568d
https://doi.org/10.1021/nn101563x
https://doi.org/10.1021/nn101563x
https://doi.org/10.1021/nn101563x
https://doi.org/10.1021/nn101563x
https://doi.org/10.1002/adfm.201101072
https://doi.org/10.1002/adfm.201101072
https://doi.org/10.1002/adfm.201101072
https://doi.org/10.1002/adfm.201101072
https://doi.org/10.1021/nl202562u
https://doi.org/10.1021/nl202562u
https://doi.org/10.1021/nl202562u
https://doi.org/10.1021/nl202562u
https://doi.org/10.1021/nl103618e
https://doi.org/10.1021/nl103618e
https://doi.org/10.1021/nl103618e
https://doi.org/10.1021/nl103618e
https://doi.org/10.1021/nn400848j
https://doi.org/10.1021/nn400848j
https://doi.org/10.1021/nn400848j
https://doi.org/10.1021/nn400848j
https://doi.org/10.1126/science.1136836
https://doi.org/10.1126/science.1136836
https://doi.org/10.1126/science.1136836
https://doi.org/10.1126/science.1136836
https://doi.org/10.1126/science.1220335
https://doi.org/10.1126/science.1220335
https://doi.org/10.1126/science.1220335
https://doi.org/10.1126/science.1220335
https://doi.org/10.1103/PhysRevB.90.075426
https://doi.org/10.1103/PhysRevB.90.075426
https://doi.org/10.1103/PhysRevB.90.075426
https://doi.org/10.1103/PhysRevB.90.075426
https://doi.org/10.1038/nnano.2009.267
https://doi.org/10.1038/nnano.2009.267
https://doi.org/10.1038/nnano.2009.267
https://doi.org/10.1038/nnano.2009.267
https://doi.org/10.1038/nnano.2013.232
https://doi.org/10.1038/nnano.2013.232
https://doi.org/10.1038/nnano.2013.232
https://doi.org/10.1038/nnano.2013.232
https://doi.org/10.1021/nl302036x
https://doi.org/10.1021/nl302036x
https://doi.org/10.1021/nl302036x
https://doi.org/10.1021/nl302036x
https://doi.org/10.1103/PhysRevB.80.045401
https://doi.org/10.1103/PhysRevB.80.045401
https://doi.org/10.1103/PhysRevB.80.045401
https://doi.org/10.1103/PhysRevB.80.045401
https://doi.org/10.1103/PhysRevLett.106.155502
https://doi.org/10.1103/PhysRevLett.106.155502
https://doi.org/10.1103/PhysRevLett.106.155502
https://doi.org/10.1103/PhysRevLett.106.155502
https://doi.org/10.1103/PhysRevLett.111.196802
https://doi.org/10.1103/PhysRevLett.111.196802
https://doi.org/10.1103/PhysRevLett.111.196802
https://doi.org/10.1103/PhysRevLett.111.196802
https://doi.org/10.1126/science.1191700
https://doi.org/10.1126/science.1191700
https://doi.org/10.1126/science.1191700
https://doi.org/10.1126/science.1191700
https://doi.org/10.1038/nphys1420
https://doi.org/10.1038/nphys1420
https://doi.org/10.1038/nphys1420
https://doi.org/10.1038/nphys1420


SALARY, INAMPUDI, ZHANG, TADMOR, AND MOSALLAEI PHYSICAL REVIEW B 94, 235403 (2016)

[24] V. M. Pereira and A. H. Castro Neto, Phys. Rev. Lett. 103,
046801 (2009).

[25] G. G. Naumis and P. Roman-Taboada, Phys. Rev. B 89,
241404(R) (2014).

[26] C. Si, Z. Sun, and F. Liu, Nanoscale 8, 3207 (2016).
[27] A. Ashkin and J. Dziedzic, Science 235, 1517 (1987).
[28] H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe,

Phys. Rev. Lett. 76, 4500 (1996).
[29] M. M. Salary and H. Mosallaei, Phys. Rev. B 94, 035410

(2016).
[30] S. Mousavi, P. Rakich, and Z. Wang, ACS Photonics 1, 1107

(2014).
[31] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and

T. F. Heinz, Phys. Rev. Lett. 101, 196405 (2008).
[32] G. Hanson, J. Appl. Phys. 103, 064302 (2008).
[33] M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80, 245435
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