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Effects of electron-impurity scattering on density of states in silicene:
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Considering the interband correlation, we present a generalized multiple-scattering approach of Green’s
function to investigate the effects of electron-impurity scattering on the density of states in silicene at zero
temperature. The reduction of energy gaps in the case of relatively high chemical potential and the transformation
of split-off impurity bands into band tails for low chemical potential are found. The dependency of optical
conductivity on the impurity concentration is also discussed for frequency within the terahertz regime.
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I. INTRODUCTION

Recently, silicene, a single layer of silicon atoms, has
attracted a great deal of experimental and theoretical inter-
est [1–39]. This two-dimensional system has a hexagonal
honeycomb structure, similar to the graphene, but with a
periodically buckled topology. Due to the strong intrinsic
spin-orbit coupling (SOC), the energy gaps of silicene near
Dirac cones are relatively larger than those in graphene.
The magnitude of the energy gap due to intrinsic SOC may
reach a value of about 2�SO = 1.55 ∼ 7.9 meV (�SO is
the characteristic energy of this SOC) [7,8]. Besides, the
specific buckled structure enables us to control the energy
gap of silicene by applying an external perpendicular electric
field [11,12,15,24]. These properties make the silicene a
promising candidate for future electronic and spintronic
applications. In experiment, silicene has been successfully
fabricated via epitaxial growth on the Ag(111) [5,9,16,19,20],
ZrB2(0001) [10], ZrC(111) [27], Ir(111) [25], and MoS2

surfaces [28] and the silicene field effect transistor (FET)
operating at room temperature has also been realized very
recently [32]. In theory, many interesting phenomena in
silicene, such as the phase transition from a quantum spin-
Hall state to a trivial insulating state [7,13,14,21–23,26], the
intrinsic spin-Hall and valley-Hall effects induced by ac and
dc electric fields [23,26,31], etc., have been predicted.

The magnitudes of energy gaps in a material play the key
role in electronic device designing and development. They
are also essential for the observation of many fundamental
effects in condensed matter physics, such as quantum spin-Hall
effect, quantum anomalous Hall effect, etc. However, previous
studies in bulk semiconductors indicated that impurities may
strongly affect the energy gaps in the material [40]. When
the concentration of impurities is relatively dilute, electron-
impurity scattering may introduce discrete energy levels within
energy gaps. However, as the impurity density increases,
additional bands may form inside or/and outside of the energy
gaps. These impurity bands (IBs) are further transformed into
the band tails in highly doped semiconductors, leading to the
reduction of energy gaps. Similar phenomena were also shown
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in conventional two-dimensional electron gases [41–43]: when
the density of impurities increases, the width of split-off
impurity band increases and the IB is finally transformed
into the band tail. The dependency of band tailing on the
dopant concentration in heavily n-type doped superlattices
and single wells was also studied [44,45]. However, it remains
unclear how the electron-impurity scattering affects the energy
gaps in new-type two-dimensional (2D) systems such as
graphene, silicene, and germanene, etc., where the band gaps
are relatively small and the scattering may lead to strong
interband correlation, which plays a substantial role in the
study of electronic states.

To investigate the impurity problems in conventional
bulk and low-dimensional semiconductors, many theoretical
approaches have been proposed, including coherent-potential
approximation [46], path-integral approach [42–44,47–
49], semiclassical models [50–52], instanton method [53],
multiple-scattering approach (MSA) [41,45,54,55], etc.
Among these, MSA, a Green’s function (GF) method within
multiple-scattering approximation, enables to correctly de-
scribe the evolution of electronic band structure with the
doping concentration. In present paper, we generalize the
MSA in the presence of the interband coherence and present a
theoretical study of the effects of electron-impurity scattering
on the density of states (DOS) and optical conductivity in
silicene. The dependencies of DOS on the impurity density
at various chemical potentials are carried out. The optical
conductivities versus frequency within terahertz regime for
various impurity densities are discussed.

The paper is organized as follows. In Sec. II, we present
the Green’s function approach within the multiple-scattering
approximation in the presence of interband correlation. The
numerical results are shown in Sec. III. Finally, we conclude
our results in Sec. IV and append the derivation of the multiple-
band Kubo formula in Appendix.

II. THEORETICAL FORMULATION

A two-dimensional massive Dirac fermion with momentum
k ≡ (kx,ky) and electric charge −e near the K or K ′ Dirac node
in buckled silicene is described by a Hamiltonian of the form
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[λησ = �z − ησ�SO]

ȟησ (k) = vF (ηkxτ̂x + kyτ̂y) + λησ τ̂z, (1)

where η = ±1 is the valley index for K and K ′, σ = ±1 is the
spin index for spin up and down, τ̂i (i = x,y,z) represent
the Pauli matrices, and vF ≈ 5.0 × 105 m/s is the Fermi
velocity of Dirac fermions in silicene. There exist two types of
SOC in silicene: the intrinsic SOC with characteristic energy
about �SO ≈ 3.9 meV [8,15] and the SOC induced by the
hybridization of pz orbitals with σ orbitals of silicon atoms.
The last one, which is described by an energy �z, can be tuned
by applying an external electric field along z direction [11].

Hamiltonian (1) in pseudo-spin basis can be diagonized:
it reduces to a diagonal pseudo-helicity-basis Hamiltonian
of the form ĥησ (k) = diag[εησ,+(k),εησ,−(k)] with εησμ(k) =
μgησ ;k , gησ ;k ≡

√
v2

F k2 + λ2
ησ , and μ = ± as the helicity

index. Correspondingly, the left- and right-helicity wave
functions, �ησμk(r), take the forms �ησμk(r) = ψησμ(k)eik·r
with ψησμ(k) given by

ψησμ(k) = 1√
2gησ ;k(gησ ;k − μλησ )

(
ημvF ke−iηϕk

gησ ;k − μλησ

)
. (2)

Here, k and ϕk are the magnitude and angle of momentum k,
respectively.

The sketches of εησμ(k) and of the DOSs of electrons in the
pure system are given in Fig. 1. It is clear that for Hamiltonian
(1) there are four bands near each Dirac node, corresponding to
the cases σ = ±1 and η = ±1. The values of energy gaps are
2|�z − �SO| and 2(�z + �SO) for spin-up (spin-down) and
spin-down (spin-up) bands near the K (K ′) node, respectively.
The carriers near one Dirac node are spin polarized, but the
system remains paramagnetic since spins of electrons near K

and K ′ are polarized in opposite directions. From Fig. 1(b), we

FIG. 1. Sketches of (a) the dispersion relations and (b) densities
of states of spin-up and spin-down electrons near Dirac nodes in pure
silicene for �z = 2.35 meV. The arrows in (a) and (b) indicate the
directions of electron spins.

also see that, in the pure silicene system, the DOSs of electrons
linearly depend on E when E lies outside the energy gaps.

In realistic systems, the DOSs near the minima or maxima
of bands strongly depend on the electron-impurity scattering,
which is usually described by a potential V (q) in the pseudo-
spin basis. In pseudo-helicity basis, the scattering potential
takes the form, V̂ησ ;μν(k,k′) = ψ+

ησμ(k)V (k − k′)ψησν(k′),
corresponding to scattering of an electron in the valley η with
spin σ from state (ν,k′) to state (μ,k) by impurities.

Further, we employ a Green’s function approach to carry
out the effects of electron-impurity interaction on the density
of states and optical conductivity in silicene. The previous
studies of impurity problems in one-band models indicated
that [41,45,54,55] to correctly describe the split-off impu-
rity bands and the band tails, GF should be considered
within the multiple-scatting approximation, first proposed by
Klauder [56]. On the other hand, in silicene, the interband
correlation induced by electron-impurity scattering is quite
important: it leads to residual conductivity when the density of
carriers in silicene essentially vanishes [31]. Hence, to evaluate
the Green’s function, generalizing the one-band multiple-
scattering method to the two-band case with consideration
of interband correlation is required.

In pseudohelicity basis, the noninteracting retarded Green’s
function of an electron in valley η with spin σ , ĝr

ησ ;μν(k,E),
takes a diagonal form (δ is an infinitesimal parameter)

ĝr
ησ ;μν(k,E) = δμν

E − εησ ;μ(k) + iδ
, (3)

while the perturbative Green’s function, Ĝr
ησ ;μν(k,E), relates

to the self-energy, ̂r
ησ ;μμ1

(k,E), via the Dyson’s equation of
the form

Ĝr
ησ ;μν(k,E) = ĝr

ησ ;μμ(k,E)δμν + ĝr
ησ ;μμ(k,E)

×
∑
μ1

̂r
ησ ;μμ1

(k,E)Ĝr
ησ ;μ1ν

(k,E). (4)

= +

=

+

+

+ …

(a) (b) (c)

(d)

(e)

FIG. 2. Feynman diagrams for evaluation of retarded Green’s
function within multiple-scattering approximation. (a), (b), and (c)
show the noninteracting retarded GF, perturbative retarded GF, and
the vertex of electron-impurity scattering, respectively. (d) The
Dyson’s equation and (e) the Feynman diagram of self-energy within
multiple-scattering approximation. Here, the indices η and σ are
dropped for brevity.
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In the multiple-scattering approach, ̂r
ησ ;μμ1

(k,E) is deter-
mined by the Feynman diagrams presented in Fig. 2. It can be
written as

̂r
ησ ;μν(k,E) = ni

∑
q′,μ1μ2

V̂ησ ;μμ1 (k,q′)Ĝr
ησ ;μ1μ2

(q′,E)

× V̂ησ ;μ2ν(q′,k)

+ni

∑
q′,q′′

μ1μ2μ3μ4

V̂ησ ;μμ1 (k,q′)Ĝr
ησ ;μ1μ2

(q′,E)

× V̂ησ ;μ2μ3 (q′,q′′)Ĝr
ησ ;μ3μ4

(q′′,E)

× V̂ησ ;μ4ν(q′′,k) + ... (5)

with ni as the impurity density. Further, we introduce a vertex
function, K̂ησ ;μν(k,q; E), which satisfies the equation

K̂ησ ;μν(k,q; E) =
∑

q′,μ1μ2

V̂ησ ;μμ1 (q,q′)Ĝr
ησ ;μ1μ2

(q′,E)

× [
niV̂ησ ;μ2ν(q′,k) + K̂ησ ;μ2ν(k,q′; E)

]
.

(6)

Thus we have ̂r
ησ ;μν(k,E) = K̂ησ ;μν(k,q = k; E).

To solve Eqs. (4) and (6) in a self-consistent manner,
we express the perturbative retarded Green’s function in

terms of Fourier series, Ĝr
ησ (k,ω) = ∑∞

n=0 Ĝc;nk
ησ (ω) cos nϕk +∑∞

n=0 Ĝs;nk
ησ (ω) sin nϕk, and apply the iteration scheme pro-

posed by Ng [57]. Whence Ĝr
ησ (k,ω) is carried out, the

density of states of electrons with spin σ near node η, defined
as Dησ (ω) = ∑

k,μ Ĝr
ησ ;μμ(k,ω), can be obtained directly

from the zeroth term of cosine Fourier series: Dησ (ω) =∑
k,μ Ĝc;0k

ησ ;μμ(ω).
In experiment, the frequency-dependent optical conductiv-

ity is a powerful probe to measure the electronic states in
materials. Ignoring the influence of electronic states induced
by electron-impurity scattering, the ac conductivity in silicene
has been investigated by Vargiamidis et al. [26]. In Ref. [58],
the optical properties beyond the usual Dirac-cone approxi-
mation in clean silicene were also studied by first-principles
calculations. Considering the change of band structure due to
defects, the optical conductivity in silicene has been studied
recently [59]. In these studies, the Kubo formula based on the
single-particle assumption was employed and the interband
coherence was completely ignored. In the present paper, we
generalize the Kubo formula in the presence of the interband
correlation to investigate the optical conductivity in silicene
(the detailed procedure of deriving the Kubo formula is
presented in Appendix). Ignoring the vertex correction, the
real part of zero-temperature longitudinal conductivity for
electrons with spin σ near Dirac node η, Reσησ ;xx(ω0), takes
the form

Reσησ,xx(ω0) = 1

ω0

∑
μ,ν

μ1,ν1,k

∫ μ0

μ0−ω0

dω1

2π

{
Re

[
ĵ x
ησ ;ν1μ

(k)ĵ x
ησ ;μ1ν

(k) + ĵ x
ησ ;νμ(k)ĵ x

ησ ;μ1ν1
(k)

][
ImĜc;0k

ησ ;μμ1
ImGc;0k

ησ ;ν1ν

]
ω1+ω0,ω1

Re
[
ĵ x
ησ ;ν1μ

(k)ĵ x
ησ ;μ1ν

(k) − ĵ x
ησ ;νμ(k)ĵ x

ησ ;μ1ν1
(k)

][
ReĜc;0k

ησ ;μμ1
ReGc;0k

ησ ;ν1ν

]
ω1+ω0,ω1

}
. (7)

Here, μ0 is the chemical potential. ĵ i
ησ ;μν(k) are the elements

of the ith (i = x, y) component of the single-particle current
in the pseudohelicity basis, which take the forms ĵ i

ησ ;μν(k) =
−evF ψ+

ησμ(k)( ∂ȟησ (k)
∂ki

)
μν

ψησν(k). To derive Eq. (7), we as-

sume that the dominant contribution to the current comes
from the zeroth-order term of the Fourier series of Ĝr

and the contribution associated with higher-order terms is
ignored.

Note that in the present paper, we concentrate on the optical
conductivity at zero temperature. Thus the Fermi function
nF (ω) reduces to the Heaviside step function θ (μ0 − ω) and
thus the ω integration in Eq. (7) runs from μ0 − ω0 to μ0. If
one has to evaluate the real part of optical conductivity at finite
temperature, Eq. (A5) should be used and the ω integration
running from −∞ to +∞ should be taken.

III. NUMERICAL RESULTS

Further, we present a numerical calculation to investigate
the effects of electron-impurity interaction on the density
of states and on the optical conductivity in silicene at zero
temperature. In the calculation, the characteristic energy of SO
coupling due to external electric field is chosen as �z = 2.35

meV. We assume that the main contribution to the self-energy
of electrons comes from a screened scattering potential due
to charged impurities: V (q) = e2/[2κε0qε(q)]. Here, κ is the
dielectric constant of the substrate. In numerical calculations,
κ = 1 is used for simplicity. If the effect of the substrate
on electron-impurity scattering is considered, the values of
ni , presented in this paper, essentially correspond to the
values of ni/κ

2. ε(q) = 1 − v(q)�(q) is the static dielectric
function and �(q) is the static polarization function. At zero
temperature, it takes the form [60–67]

�(q)= − μ0

2πv2
F

∑
σ,η

[F (q)θ (|λησ |−μ0)+G(q)θ (μ0−|λησ |)],

F (q) and G(q), respectively, take the forms [kησ

F =√
μ2

0 − λ2
ησ ]

F (q) = |λησ |
2μ0

+ v2
F q2 − 4λ2

ησ

4vF qμ0
arcsin

(√
v2

F q2

v2
F q2 + 4λ2

ησ

)

(8)
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FIG. 3. (a) Densities of states of spin-down electrons in silicene
for various impurity densities near the Dirac point K . The chemical
potential is μ0 = 20 meV and the energy due to the SO coupling
induced by the external electric field is �z = 2.35 meV. (b) Fitting
of DOSs near the top of the lower band in (a) by the power-law
formula D± = A|E − Ec|γ . The data from (a) are shown by open
circles and the solid lines are the best fit lines of these data. From
bottom to top, the impurity densities are ni = 1, 2, 3, 4, 5, 6, 7,
and 8 × 1014 m−2. The dependencies of the fitting parameters γ and
Ec on impurity densities are shown by filled circles in (c) and (d),
respectively. The solid line in (d) is the best fit line of data: Ec

meV =
−5.95 + 1.4( ni

1014m−2 )0.75.

and

G(q) = 1 − θ
(
q − 2k

ησ

F

)⎡⎣
√

q2 − 4
(
k

ησ

F

)2

2q

− v2
F q2 − 4λ2

ησ

4vF qμ0
arctan

⎛
⎝

√
v2

F q2 − 4
(
k

ησ

F

)2
v2

F

2μ0

⎞
⎠

⎤
⎦.

A. Split-off impurity bands and band-gap narrowing

We first analyze the effects of electron-impurity scattering
on the density of states in silicene. It is well known that
in conventional semiconductors, introduction of impurities
produces local energy levels lying within the energy gap. These
levels broaden into impurity bands when the concentration of
impurities increases. Further, in heavily doped semiconduc-

FIG. 4. (a) Densities of states of spin-up electrons in silicene
for various impurity densities near the K node. For a guide to the
eyes, each curve moves towards the upper side by �D++ = 2 × 1012

m−2meV−1 in sequence and the positions of D++ = 0 are indicated
by horizontal dashed lines. (b) The same Dxx vs E as in (a) but
without �D++ shift.

tors, the impurity bands may be combined with a conduction
or a valence band, forming a band tail and leading to band-gap
narrowing. In conventional two-dimensional electron gases,
the transition from the split-off impurity band at low impurity
concentration to a band tail at high impurity concentration has
also been demonstrated theoretically [41–43]. Hence similar
phenomena are expected to be observed in silicene.

In Fig. 3(a), we plot the densities of states of electrons
with spin down near the K node (i.e., σ = −1 and η = 1)
for various impurity densities. The chemical potential is μ0 =
20 meV. It is clear that, when the impurity density increases,
the energy gaps become narrower. In our study, a repulsive
potential of electron-impurity scattering is considered and the
impurities essentially play the role of acceptors. Hence band-
gap narrowing mainly comes from the movement of the top of
the lower energy band towards the high-energy side. However,
remarkable shifts of the upper energy band bottom towards
the low-energy side can also be observed due to strong band
correlations in silicene.

Note that when ni = 0, there are two discontinuities in D±
versus E at E = ±|�SO − �z|. In the presence of electron-
impurity scattering, they are smeared out and D± continuously
changes with E. Such D± versus E can be described by
a power-law formula, D± ∼ A|E − Ec|γ . In Fig. 3(b), we
show the fitting of D± near the top of the lower energy band
for various impurity densities. The parameters γ and Ec are
assumed to be ni dependent: γ and Ec versus ni are given by
Figs. 3(c) and 3(d), respectively. We find that the values of γ

are in the range 0.5 ∼ 0.65 and the Ec versus ni can be further
fitted by Ec

meV = −5.95 + 1.4( ni

1014m−2 )0.75.
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FIG. 5. Energy dependencies of (a) total DOSs, DK = D++ +
D+− and of (b) spin-polarized DOSs, SK = D++ − D+− of electrons
near the K node for various impurity densities. The other parameters
are the same as in Fig. 3.

In Fig. 3, the spins of carriers near K node are assumed
to be polarized in the down direction. Correspondingly, the
energy gap is 2(�z + �SO) = 10.5 meV, which is relatively
large. Hence, in the case ni � 8 × 1014 m−2, the complete
disappearance of energy gaps does not show up. However, for
the spin-up electrons near K node, the energy gap becomes
small: 2|�z − �SO| = 3.1 meV and the vanishing of the
energy gap is relatively easy to be seen. In Fig. 4, we plot
the energy dependencies of the densities of states of electrons
with spin up near the K node (i.e., η = + and σ = +). It
is clear that when the density of impurities increases from
ni = 0 but still remains relatively low, band-gap narrowing
can be observed. However, when ni further ascends, so that
ni � 5 × 1014 m−2, the energy gap disappears completely.

Further, in Fig. 5(a), we plot the energy dependencies of
the total DOSs of electrons near the K node, DK = D++ +
D+−, for various impurity densities. In the absence of electron-
impurity scattering, four discontinuities in DK versus E can be
observed at E = ±|�SO ± �z|. In the presence of impurities,
they are smeared out but “dog-leg” shaped connections still can
be seen. When energy increases, DK first decreases and then
it may reach the zero value for ni � 5 × 1014 m−2, forming
an energy gap. When E further increases, DK also increases.

For relatively high impurity density (ni � 5 × 1014 m−2), DK

is always nonzero and the energy gap disappears completely.
One of the interesting properties in silicene is that the

electrons near each Dirac node are spin polarized, although
the net spin polarization of electrons vanishes. In Fig. 3(b), we
show the energy dependencies of spin-polarized DOSs, defined
as Sη = Dη+ − Dη−, for various densities of impurities. We
see that in pure silicene, SK is nonzero only within the
energy ranges −|�SO + �z| < E < −|�SO − �z| (denoted
as range I) and |�SO − �z| < E < |�SO + �z| (denoted as
range II). When E increases, SK linearly decreases in range
I while it linearly increases in range II. In the presence of
electron-impurity scattering, the range of nonvanishing SK

becomes broader. In particular, when ni increases, the range
of vanishing SK between −|�SO − �z| < E < |�SO − �z|
becomes narrower and finally disappears when ni � 5 × 1014

m−2. Besides, SK is also nonzero for |E| > |�SO + �z| in the
presence of impurities.

In Figs. 3–5, we do not observe the split-off impurity bands
since in these cases the chemical potential is relatively large. To
demonstrate the IBs, in Fig. 6, we plot the densities of states
of electrons with spin-up near K node for various chemical
potentials close to the upper limit of gap, |�SO − �z| =
1.55 meV: μ0 = 1.58, 1.59, 1.60, 1.61, 1.62, 1.63, 1.64, and
1.65 meV. The impurity concentration is assumed relatively
low, ni = 1 × 1010 m−2. It is obvious that, for these chemical
potentials, D++ are almost the same within the most part of

FIG. 6. DOSs of spin-up electrons near K node in silicene for
various chemical potentials near the top of the lower energy band.
The density of impurities is ni = 1 × 10−10 m−2 and �z = 2.35 meV.
From bottom to top, the chemical potentials are μ0 = 1.58, 1.59,
1.60, 1.61, 1.62, 1.63, 1.64, and 1.65 meV, correspondingly. The
circles on curves indicate the DOSs at energy E = −1.55 meV, which
corresponds to the lower limit of energy gap for electrons with η =
σ = +1 in the pure system. The inset shows D++ versus E for various
chemical potentials within an enlarged energy scale.
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FIG. 7. The frequency dependencies of real part of total optical
conductivity in silicene for various impurity densities ni = 1 × 1010,
1 × 1012, 2 × 1012, 3 × 1012, and 1 × 1013 m−2. The chemical
potential is μ0 = 1.60 meV, �z = 2.35 meV, and �SO = 3.9 meV.

energy range studied here (see the inset of Fig. 6), except
for E near the top of lower energy band. We see that in the
case of E close to −1.55 meV, i.e., the lower limit of energy
gap in a pure silicene, impurity bands are formed for μ0 =
1.58 ∼ 1.64 meV. When the chemical potential increases,
the center of IB moves towards the low-energy side that it
finally disappears and combines with the valence bands at
μ0 = 1.65 meV.

B. Optical conductivity

After self-consistent evaluation of retarded Green’s func-
tions within the multiple-scattering approximation, the optical
conductivity can be carried out by means of Eq. (7). The results
are presented in Figs. 7 and 8.

In Fig. 7, we plot the real part of total optical conductivity,
Reσtotal ≡ ∑

η,σ=± Reσησ,xx(ω0), versus frequency ω0 (or ν0 =
ω0/h) for various impurity densities ni = 1 × 1010, 1 × 1012,
2 × 1012, 3 × 1012, and 1 × 1013 m−2. The chemical potential
is chosen to be μ0 = 1.60 meV, which is close to the upper limit
of energy gap. When the impurity density is relatively small
(in the case ni = 1 × 10−10 m−2), we can observe two peaks
which correspond to the optical excitations of electrons from
two branches of valence bands: when ω0 increases from ω0 <

2|�z ± �SO| (i.e., 3.1 and 6.5 meV) to ω0 > 2|�z ± �SO|,
Reσtotal first abruptly increases and then gradually decreases.
When the impurity density increases and reaches the value of
order of 1 × 1012 m−2, two peaks begin to be smeared out
due to the increase of DOS within the energy gap. The peak
near ω0 = 6.5 meV reduces monotonically when ni ascends.
However, near the lower frequency location (ω0 = 2|�z −
�SO| = 3.1 meV) the peak first decreases rapidly when ni

increases and then disappears completely at ni = 2 × 1012

m−2. When ni further ascends, the dependence of Reσtotal on
ni for ω0 becomes nonmonotonic: Reσtotal first increases with

FIG. 8. Reσtotal vs ω0 (or ν0) for various impurity densities ni = 1,
2, 3, 4, 5, 6, 7, 8 × 1014 m−2. The chemical potential is μ0 = 20 meV.
Other parameters are the same as those in Fig. 7.

increasing ni from 2 to 5 × 1012 m−2 and then decreases with
further increase of ni .

In Fig. 8, we plot the frequency dependencies of real
part of total optical conductivity for the chemical potential
μ0 = 20 meV, which corresponds to a metallic phase of
silicene. When the frequency increases, Reσtotal decreases
monotonically. The dependencies of the real part of optical
conductivity on the impurity density are quite distinct for
high and low optical frequencies: when ni increases, Reσtotal

decreases for ω0 < 0.5 meV, while it increases in the case
ω0 > 2.5 meV.

From Figs. 7 and 8, it is clear that, to observe band-gap
narrowing in the optical conductivity versus frequency, the
chemical potential of silicene samples should be close to
the energy gap and the concentration of impurities should be
relatively low: ni is of order of 1012 m−2. Besides, we should
also note that it is difficult to detect the split-off impurity
bands from the optical conductivity study since the DOSs of
impurity bands are much smaller than those out of energy
gaps. To observe the IBs, more powerful experimental tools,
such as angle-resolved photoemission spectroscopy (ARPES),
pump-probe spectroscopy within terahertz regime, etc., are
required.

IV. CONCLUSIONS

We have investigated the effects of electron-impurity scat-
tering on the density of states and on the optical conductivity
in silicene at zero temperature by using the multiple-scattering
approach of Green’s functions, generalized to include the
interband correlation. We find that, in the case of relatively
high chemical potential μ0, the energy gap reduces with an
increase of impurity density and it finally disappears when
ni reaches the magnitude of order of ∼5 × 1014 m−2. The
split-off impurity bands can be observed only for low μ0
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and low ni . They transform into band tails as μ0 (or ni)
increases. We also find that, in the frequency dependence of
the real part of conductivity for low ni and low μ0, there
are two peaks associated with the interband excitations of
electrons. These peaks are smeared out when the impurity
density ascends. In the case of high μ0, Reσxx versus ni

shows distinct behaviors for low and high frequency ω0: as
the impurity density increases, Reσxx decreases for low ω0

while it increases in the case of high ω0.
It should be noted that the isolated energy bands and the

energy-gap narrowing in the DOS of electrons as well as the
peak smearing in optical conductivity, predicted above, still
can be observed if the value of �z differing from that used in
our numerical calculation. In a realistic system, �z essentially
depends on the substrates and on the external electric field
applied perpendicular to the silicene plane. The change of
�z leads to a variation of the energy gaps |�SO ± �z|.
Correspondingly, the critical values of impurity density for
observing the disappearance of the energy gap in DOS and
the peak positions in the frequency dependence of optical
conductivity change.

ACKNOWLEDGMENTS

This work was supported by the project of National Key
Basic Research Program of China (973 Program) (Grant No.
2012CB927403) and National Natural Science Foundation of
China (Grant No. 11274227).

APPENDIX: GENERALIZED KUBO FORMULA IN THE
PRESENCE OF INTERBAND CORRELATION

In the previous studies on linear multiband transport, the
Kubo formula without the vertex corrections has been widely
used to interpret the dc and ac conductivities. In the typical
form of this formula, the effect of interband transition induced
by external dc and/or ac electric fields is considered, but the
interband correlation induced by electron-impurity scattering
is ignored. However, the last one is quite important in the
narrow-band semiconductors as well as in new-type two-
dimensional systems, such as graphene, silicene, germanene,
etc. To correctly describe the dc and ac transport properties in
these systems, a generalized Kubo formula is required.

We consider an equilibrium system of carriers, which may
be scattered by impurities, phonons, etc. The single-particle
Hamiltonian in the absence of scatterings is denoted by ĥ0(p̂)
with p̂ as the carrier momentum operator. Further, we assume
that the eigenfunctions of ĥ0(p̂) are known: they are denoted by
ψi(r) with i as the index of eigenvalues Ei . In the framework of
Green’s function approach, the motion of such an equilibrium
system can be determined by the GFs, Ĝr,a,<(r,t ; r′,t ′), in
which the scatterings of carriers due to impurities, phonons,
etc., are embedded. In the basis of eigenfunctions ψi , they can
be rewritten as

Ĝr,a,<(r,t ; r′,t ′) =
∑
i,j

Ĝ
r,a,<
ij (t,t ′)ψi(r)ψ∗

j (r′),

where Ĝ
r,a,<
ij (t,t ′) are the GFs based on eigenfunctions of

ĥ0 and they essentially depend only on the difference of
two times. Note that according to Kubo-Martin-Schwinger

relations [68,69] G< relates to Gr,a in the ω space by

Ĝ<
ij (ω) = −nF(ω)

[
Ĝr

ij (ω) − Ĝa
ij (ω)

]
,

with nF(ω) = [exp((ω − μ0)/T ) + 1]−1 as the Fermi function.
Further, we assume that the system is driven by an external

electric field E(t), described by the vector potential A(t). In
the framework of minimum coupling, the single-particle non-
interacting Hamiltonian takes the form ĥ′

0 ≡ ĥ0(p̂ + eA(t)).
Up to the first order of electric field, ĥ′

0 can be further
rewritten as ĥ′

0 ≈ ĥ0(p̂) + δĥ0. Here, δh0 is the perturbed
part due to E(t) and takes the form δĥ0 = −ĵ0(r) · A(t) with
ĵ0(r) = −e∇pĥ0(p̂). Thus, up to the first order of A(t), the
lesser Green’s function out of equilibrium, Ĝ<, takes the form

Ĝ<(r,t ; r′,t ′) = Ĝ<(r,t ; r′,t ′) − 1

2

∫
dr′′

∫
dtĜ(r,t ; r′′,t ′′)

×{A(t ′′) · [
⇀

ĵ0(r′′) +
↼

ĵ+0 (r′′)]}Ĝ(r′′,t ′′; r′,t ′)]<,

(A1)

where the symbol ⇀ or ↼, standing over the operators,
denotes the direction of action.

To evaluate the conductivity, one has to carry out the single-
particle current operator, j. From the definition of current,
j = −e dr

dt
, and the motion of equation of r, it follows

ĵ(r,t) = −ie[ĥ′
0,r] ≈ −e∇pĥ0(p) − e2[A(t) · ∇p]∇pĥ0(p).

(A2)

ĵ(r,t) can be further rewritten as ĵ(r,t) = ĵ0(r) + δĵ(r,t),
with δĵ(r,t) ≡ −e2[A(t) · ∇p]∇pĥ0(p̂). The macroscopic cur-
rent that observed in experiments, J(r,t), is determined by
J (r) = −i limr′→r

1
2 [ĵ(r,t) + ˆj+(r′,t)]G<(r,t ; r′,t). Substitut-

ing Eqs. (A1) and (A2) into J(r,t) and retaining the terms up
to the first order of E(t), we get

J(r,t) = − i

2
lim
r′→r

[δĵ(r,t) + δĵ+(r′,t)]Ĝ<(r,t ; r′,t)

+ i

4
lim
r′→r

[ĵ0(r) + ĵ+0 (r′)]
∫

dr′′

×
∫

dt ′′[Ĝ(r,t ; r′′,t ′′){A(t ′′) · [
⇀

ĵ0(r′′) +
↼

ĵ+0 (r′′)]}

× Ĝ(r′′,t ′′; r′,t)]<. (A3)

In terms of eigenfunction representation of G<, J(r,t) can be
further rewritten as

J(r,t) = −i
∑
ij

δjij (r,t)Ĝ<
ji(t,t)

+ i
∑
ij i1j1

∫
dt ′′j0ij (r)j0j1i1 [Ĝjj1 (t,t ′′)Ĝi1i(t

′′,t)]<,

where j0ij (r) ≡ 1
2 limr→r′[ĵ0(r) + ĵ+0 (r′)]ψj (r)ψ∗

i (r′) and
ĵ0ij = ∫

drj0ij (r) is the element of matrix ĵ0. δjij (r) is
defined in the same manner as j0ij (r) but with replacing
ĵ(r,t) and ĵ+(r′,t) by operators δĵ(r) and δĵ+(r′), respectively.
Performing Fourier transform, the observed current in (q,ω)
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space is given by

J(q,ω) = −i
∑
ij

δjij (q,ω)
∫

dω′

2π
Ĝ<

ji(ω)

+ i
∑
ij i1j1

∫
dω1

2π
j0ij (q)j0j1i1

[
Ĝjj1 (ω1)Ĝi1i(ω1 − ω)

]<
.

Setting q = 0 and using the relation Jα(ω) =
iω

∑
β=x,y,z σαβAβ(ω) (σαβ is the conductivity) and Kubo-

Martin-Schwinger relation Ĝ< = nF (ω)[Ĝa(ω) − Ĝr (ω)],
we finally arrive at

σαβ(ω) = ie2

ω

∑
ij

∂2

∂pα∂pβ

[ĥ0(p)]ij

∫
dω′

2π
[−iĜ<

ji(ω)]

+ 1

ω

∑
ij i1j1

∫
dω1

2π
ĵα

0ij ĵ
β

0j1i1

× {
nF (ω1 − ω)

[
Ĝr

jj1

(
Ga

i1i
− Gr

i1i

)]
ω1,ω1−ω

+ nF (ω1)
[(

Ga
jj1

− Gr
jj1

)
Ĝa

i1i

]
ω1,ω1−ω

}
. (A4)

In this equation, the first term is just the diamagnetic term. It
reduces to iNee

2/(mω) (Ne is the carrier density) for a one-

band Hamiltonian ĥ(p) = p2/(2m) but it vanishes when the
free-carrier Hamiltonian depends linearly on p. This implies
that the diamagnetic term in conductivity is absent in Dirac-
fermion systems, such as the systems with carriers near the
Dirac nodes of graphene, silicene, germanene, etc.

Note that Eq. (A4) contains momentum integrations, which
are implicitly involved in the summations. Due to the specific
momentum dependence of ĵ0, in Eq. (A4), only the sums
of the terms associated with real parts of quantity ĵ α

0ij ĵ
α
0j1i1

are nonvanishing. Thus the real part of diagonal conductivity
Reσαα can be further rewritten in a compact form:

Reσαα = 1

ω

∑
ij i1j1

∫
dω1

2π
[nF (ω1) − nF (ω1 + ω)]

× {
Re

(
ĵ α

0i1j
ĵ α

0j1i
+ĵ α

0ij ĵ
α
0j1i1

)
ImGr

jj1
(ω1+ω)

× ImGr
i1i

(ω1) + Re
(
ĵ α

0i1j
ĵ α

0j1i
− ĵ α

0ij ĵ
α
0j1i1

)
× ReGr

jj1
(ω1 + ω)ReGr

i1i
(ω1)

}
. (A5)

Here, Ĝr
ij = (Ĝa

ji)
∗ is used.
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