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The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon
scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with
the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that
the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or
elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus,
Hittorf’s phosphorus, BC2N, MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed
that the anisotropic ratio is overestimated by the previously described method.
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I. INTRODUCTION

The successful isolation of graphene in 2004 [1] led us
into the brand new world of two-dimensional (2D) materials
[2,3]. As the lecture title given by Richard P. Feynman in
1959 states [4], “There’s plenty of room at the bottom.” Since
graphene was born, unforeseen physical and chemical prop-
erties of this atomically thin material have quickly attracted
attention [5,6]. For example, unique ballistic transport and
extraordinarily high carrier mobility have greatly expanded
graphene’s potential applications [7,8]. However, graphene
has its own drawback: It is semimetal with a zero band gap,
which severely limits its potential in electronic applications
where a moderate gap is required [9]. Therefore, many studies
have explored other 2D materials beyond graphene [10,11].
Representative semiconducting 2D systems include graphynes
[12–14], transition metal dichalcogenides (TMDs) (such as
MoS2, MoSe2, and WSe2) [15,16], black phosphorus (BP)
[17,18], and transition metal carbides and nitrides (MXenes)
[19,20]. Taking BP as an example, inside a single layer, each P
atom is covalently bonded with three adjacent P atoms to form
a strongly puckered honeycomb structure with troughs running
in a zigzag direction [17,21,22]. Due to the puckering, bonds in
BP are divided into two inequivalent types, a sharp contrast to
the completely planar honeycomb structure of graphene where
all bonds are equivalent. As a result, BP processes a nonzero
band gap between 0.3 eV and 2 eV depending on the thickness,
and the charge-carrier mobility is retained up to about 1000
cm2 V−1 s−1 [17,21]. These unusual properties provide new
opportunities for future electronic and photonic devices.

Some 2D materials are isotropic [15,23–25] while others
are anisotropic [17–20]. In anisotropic 2D semiconductors,
the electrons and phonons behave differently in different
planar directions, leading to angle-dependent mechanical,
optical, and electrical responses. These unique properties may
permit the design of novel sensors with anisotropic crystalline
orientation, optical absorption and scattering, carrier mobility,
and electronic conductance [22,25–27]. In the present study,
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we focus on the theoretical study of the anisotropic carrier
mobility.

Despite the importance of carrier mobility, the theory of
intrinsic mobility for anisotropic 2D semiconductors is not
well developed. The widely used mobility formula in literature
is based on the deformation potential theory proposed by
Bardeen and Shockley in 1950, where the acoustic phonon
limited mobility of an isotropic three-dimensional (3D) non-
polar semiconductor was given as [28]:

μ = 2
√

2πe�
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3
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where m is the effective mass of charge carriers (electrons and
holes), C(3D) = C

(3D)
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(3D)
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33 is the isotropic elastic

constant, and E1 is the deformation potential constant defined
as the energy shift of the band edge position with respect to
the uniaxial strain. Then Kawaji extended the theory to the 2D
electron gas (2DEG) system in 1969 [29]. Later, the effect of
anisotropic mass was added into the theory [30,31], and the
resulting 2D mobility can be given as:
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In recent studies of anisotropic 2D semiconductors, however,
Eq. (2) has been arbitrarily generalized to include the effects
of anisotropic C and E1 [17,19,32,33]:
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Equation (3) implies that the mobility in a specified direction
is determined only by C and E1 in the same direction but is
independent of those in the perpendicular direction. Actually,
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this is logically incorrect, because moving carriers would be
inevitably scattered by phonons from all directions.

The rest of this paper is organized as follows. In Sec. II,
a historic perspective on the mobility of 2DEG is provided
to demonstrate its relation to that of 2D materials. In
Sec. III, the contributions of anisotropic m, C, and E1 on
mobility μ are theoretically studied separately. In Sec. IV,
the obtained formula is applied to numerically analyze the
mobility anisotropy of some 2D materials, showing that the
anisotropy in most systems is weaker than previously thought.
Finally, we summarize our results and conclusions in Sec. V.

II. HISTORICAL PERSPECTIVE

To understand the state of the art in mobility calculations
in anisotropic 2D semiconductors using deformation potential
theory, it is necessary to understand the historical development.
In this section, we make a brief review of the literature and
identify some improper ways in mobility calculations.

The deformation potential theory was first proposed by
Bardeen and Shockley in 1950 for three-dimensional (3D)
nonpolar semiconductors [28]. With the development of metal-
oxide-semiconductor field-effect transistors (MOSFETs) in
the following years, scientists found that the electrons move
freely in two dimensions at the semiconductor-oxide interface
of MOSFETs, but are tightly confined in the third dimension,
which can be described as a 2D sheet embedded in a 3D world.
All constructs with similar characteristics became known as
2DEG [29,34]. In 1969, Kawaji extended the deformation
potential theory to the phonon-limited carrier mobility of
2DEG in a semiconductor inversion layer by an inverted
triangular well potential model, and a simple formula was
reported to calculate the lattice-scattering mobility of 2DEG
[29]:

μ = e�
3ρ(3D)υ2

l

m2kBT E2
1

· Weff, (4)

where ρ(3D) is the 3D mass density of the crystal, υl is the
velocity of the longitudinal wave, and ρυl

2 can be replaced
by 3D elastic constant C

(3D)
11 . Weff is the effective thickness

of the inversion layer with a complex expression determined
by the dielectric constant of the material as well as the
impurity and free electron densities [28,29]. Then in 1981,
Price applied the theory in a semiconductor heterolayer to
calculate lattice-scattering mobility [35]. He described the
layer for active carriers in 2DEG as square wells, obtaining
a simple expression for Weff:

Weff = 2
3L, (5)

where L is the width of the square well [35]. In anisotropic
systems, effective mass m and deformation potential constant
E1 are second-order tensors, whereas elastic modulus C

is a fourth-order tensor, components of these tensors are
not independent [36]. The mobility anisotropy of 2DEG on
oxidized silicon surfaces could be attributed to the difference
in the effective mass. This was explored by Satô et al. in 1971
based on an ellipsoidal constant-energy surface [34]. With the
anisotropic mass, the mobility of 2DEG in the inversion layer

was modified into [30,31]

μx = e�
3ρ(3D)υ2

l

mxmdkBT E2
1

· Weff, (6)

where md = √
mxmy .

2DEG in an inversion layer is not a real 2D system, in
the sense that it is always embedded in 3D material. Thus,
3D parameter ρ(3D) appears in Eqs. (4) and (6). Graphene
and other 2D crystals studied in recent years, however, are
real 2D systems since they could exist independently. As an
important property, their mobility attracted a lot of interest
[16,17,23,37,38]. Almost all of the mobility calculations were
based on the generation of Eqs. (4) and (6) of 2DEG. To
generate the formula to real 2D systems, some studies assumed
ρ(3D)Weff = ρ(2D) to give [24,31,37,39]

μx = e�
3ρ(2D)υ2

l

mxmdkBT E2
1

= e�
3C
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11

mxmdkBT E2
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, (7)

while others assumed ρ(3D)L = ρ(2D) to give [20,40–42]

μx = 2e�
3ρ(2D)υ2

l

3mxmdkBT E2
1

= 2e�
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3mxmdkBT E2
1

. (8)

These generated formulas are somewhat arbitrary without
necessary theoretical deduction. For example, the factor 2/3
comes from 2DEG being confined in a square well, but the
behaviors of electrons in real 2D systems are unrelated to
square wells. Therefore, Eq. (7) is valid when both deformation
potential and elastic modulus are isotropic, whereas Eq. (8)
is always invalid. Another false assumption in the literature
lay is the anisotropic effects. Equation (7) was originally
used to investigate the mobility of an isotropic system such
as 2D hexagonal BN [38] but was later adopted to study
anisotropic systems such as BP [17,22]. As we will show in
the next sections, Eqs. (3), (7), and (8) are not applicable under
anisotropic deformation potential and elastic modulus.

III. THEORETICAL ANALYSES ON THE ANISOTROPIC
MOBILITY

A. General consideration

Carrier mobility of a sample is determined by various scat-
tering processes whose effects are influenced by temperature
and carrier density. The scattering caused by defects and
impurities is insensitive to temperature and carrier density
and can be eliminated or reduced significantly by improving
sample preparation. The scattering caused by electron-electron
interaction increases with increasing carrier density. For
high-quality materials when the carrier density is not too
high, the primary source of scattering comes from phonons
[28]. At low temperatures, because the high-energy optical
phonons cannot be excited, the acoustic phonons dominate the
scattering process. For example, the resistivity of graphene for
T < 200 K is mainly determined by acoustic phonons [43–45].
This scattering by acoustic phonons cannot be eliminated at
finite temperatures and thus determines the intrinsic mobility
of the material. In the present study, we focus on the effects of
acoustic phonon scattering, which is expected to be important
at low temperatures between approximately 10 K and 200 K.
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Theoretically, the intrinsic mobility caused by acoustic
phonons can be described by deformation potential theory
[28], where the atomic displacement associated with a long-
wavelength acoustic phonon leads to a deformation of the
crystal, and in turn, to a shift of the band edge and scattering
between different eigenstates. In the spirit of the deformation
potential theory, the shift of the band edge (�Eedge) is pro-
portional to the longitudinal strain ε(q) caused by longitudinal
acoustic vibrational modes (phonons) with a wave vector q:

�Eedge = E1(q)ε(q), (9)

where the deformation potential constant E1 depends on the
direction of longitudinal strain and phonons for anisotropic
materials. The contribution of transverse acoustic phonons
is ignored as in the usual deformation potential theory.
Under Fermi’s golden rule and the second quantization of
the phonons, the scattering probability of an electron from
eigenstate k to k′ caused by longitudinal acoustic phonons
depends on the scattering matrix element, which was obtained
by Bardeen and Shockley for 3D cases [28] and later by Price
for 2D cases [35]:

Wk,k′ = 2πkBT E1(q)2

A�C(q)
δ(εk − εk′), (10)

where A is the area of 2D sample and C(q) is the elastic
modulus caused by ε(q). The superscript “(2D)” in the formula
is omitted hereafter. The momentum conservation law requires
that q = k′ − k. Both the emission and the absorption of
the phonons were considered in obtaining Eq. (10). The
equipartition principle was also adopted here, which limits
Eq. (10) to be applicative only above the characteristic
degenerate (Bloch-Grüneisen) temperature (usually a few tens
of K). The relaxation time for an electron in k, denoted as
τ (k), is thus given by

1

τ (k)
= A

4π2

∫
Wk,k′

(
1 − vk · vk′

|vk|2
)

d2k′, (11)

where vk is the group velocity. The Boltzmann equation
is the basis for the classical and semiclassical theories of
transport processes. It has been widely used in studying
thermal, mass, and electrical conductivities under weak driving
forces. Based on the Boltzmann equation with the relaxation
time approximation, the 2D conductivity tensor is solved to be
[24,46,47]

↔
σ = 2e2

∫
τ (k)

∂nF(εk)

∂εk
vkvk

d2k

(2π )2 , (12)

where εk is the eigenenergy of state k, and nF(εk) is the
equilibrium Fermi-Dirac distribution. The mobility along the
x direction is thus

μx = σxx

ne
, (13)

where n = 2
∫

nF(εk) d2k
(2π)2 is the carrier density. Equations (9)–

(13) provide the general framework to calculate the intrinsic
mobility of 2D materials under longitudinal acoustic phonons.
The mobility anisotropy may arise from anisotropic εk (which
is related to the anisotropic effective mass), E1(q) or C(q),
which will be analyzed in detail as follows.

B. Anisotropic mass

When only the effective mass is anisotropic, the energy
dispersion is described as

εk = �
2k2

x

2mx

+ �
2k2

y

2my

, (14)

where the x and y directions are chosen to be along the primary
axes of the energy dispersion. Making use of the coordinate
transformation

k̃x = kx√
mx

(15)

k̃y = ky√
my

,

it is straightforward to derive from Eqs. (9)–(13) to get the
relaxation time

τ (k) = �
3C11

kBT E2
1
√

mxmy

, (16)

and the mobility

μx = e�
3C11

kBT E2
1(mx)

3
2 (my)

1
2

, (17)

where E1 ≡ E1(q) and C11 ≡ C(q) are isotropic. τ (k) is
independent on k even if the effective mass is anisotropic
in this case. Equation (17) is identical to Eq. (2), and it is also
the same as Eq. (3) if both C(tr) and E1

(tr) are isotropic, that is,
Eq. (3) is valid when only the effective mass is anisotropic.

C. Elliptic deformation potential

We now consider the case that only the deformation
potential is anisotropic while both effective mass and elastic
modulus remain isotropic. As a second-order tensor, any strain
can be decomposed into three components in 2D systems:
two uniaxial strains (εx and εy along the x and y directions,
respectively) and a shear strain (γ ). Under a first-order
approximation, the shift of the band edge caused by any strain
can be decomposed into

�Eedge = E1xεx + E1yεy + E1γ γ, (18)

where E1x , E1y , and E1γ are three components of the
deformation potential constants. The effective deformation
potential constant E1(q) under a longitudinal strain along any
specified direction as defined in Eq. (9) can be deduced with the
Herring-Vogt transformation [48] as explained here. Denoting
the magnitude and the directional angle of the longitudinal
strain as ε and θq, with the tensor transformation under rotation,
the longitudinal strain is expressed in a tensor form of

↔
ε(q) ≡

[
εx γ

γ εy

]
= RT

[
ε 0
0 0

]
R

=
[

εcos2θq −ε sin θq cos θq

−ε sin θq cos θq εsin2θq

]
,

(19)
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where R is the 2D rotation matrix:

R =
[

cos θq sin θq

− sin θq cos θq

]
. (20)

Substituting Eq. (19) into Eq. (18), yields

�Eedge(
↔
ε(q)) ≡ �Eedge(ε,θq)

= (E1xcos2θq+E1ysin2θq−2E1γ sin θq cos θq)ε.

(21)

If the system has mirror reflection symmetry, by setting the
mirror plane (line) as the x direction, it requires

�Eedge(ε, − θq) = �Eedge(ε,θq), (22)

which results in E1γ = 0. In this case, the contribution of the
shear component to the deformation potential disappears, then
E1(q) becomes

E1(q) = E1xcos2θq + E1ysin2θq. (23)

Combined with Eqs. (10) and (23), the integration in
Eq. (11) gives

1

τ (k)
= mkBT

�3C11

[
Ē2

1 + (�E1)2

2
− Ē1�E1 cos(2θk)

]
, (24)

where θk is the polar angle of k, while Ē1 and �E1 are
notations defined as

Ē1 = E1y + E1x

2

�E1 = E1y − E1x

2
. (25)

τ (k) is anisotropic here, being distinct from the result of Eq.
(16) under anisotropic effective mass. The mobility is obtained
as

μx =
e
∫

�
3C11

mkBT
· k2cos2θk

Ē2
1+ (�E1)2

2 −Ē1�E1 cos (2θk)
· �

2

m2 · ∂nF(εk)
∂εk

d2k∫
∂nF(εk)

∂εk
d2k

= e�
3C11

m2kBT

(
A + B − √

A2 − B2

B
√

A2 − B2

)
, (26)

with the notations

A = Ē2
1 + (�E1)2

2
(27)

B = Ē1�E1.

Equation (26) is a bit complicated. To see the anisotropic effect
more clearly, we rewrite it as

μx = e�
3C11

m2kBT Ē2
1

× 1

f
(

�E1

Ē1

) , (28)

where f (�E1

Ē1
) is a corrected factor due to the anisotropic effect:

f

(
�E1

Ē1

)
= 1

Ē2
1

× B
√

A2 − B2

A + B − √
A2 − B2

. (29)

The curve of f (�E1

Ē1
) is given in Fig. 1. Setting �E1 = 0

gives f = 1, consistent with the isotropic result. Within the

FIG. 1. The corrected factor f ( �E1
Ē1

) due to the anisotropic de-
formation potential. Scattering points were calculated with Eq. (29),
while the solid line is a quadratic approximation as given in Eq. (30).

examined range, f (�E1

Ē1
) can be well reproduced by a quadratic

function:

f

(
�E1

Ē1

)
= 1 − 0.5

�E1

Ē1
+ 0.3

(
�E1

Ē1

)2

, (30)

as demonstrated as the solid line in Fig. 1. With the quadratic
approximation, the mobility under anisotropic deformation
potential is simplified as

μx = e�
3C11

m2kBT
( 9E2

1x+7E1xE1y+4E2
1y

20

) . (31)

D. Elliptic elastic constant

The anisotropic effect of elastic modulus C(q), theoretically
speaking, can be expressed in terms of the complete 2D elastic
constants (C11,C22,C66,C26,C16,C12) using the elastic theory.
However, usually only the values of C11 and C22 along the
primary axes are used in the literature for mobility calculation.
As an approximation, we express C(q) as a function of only C11

and C22. Obviously, C(q) should have the following properties:
(1) C(q) = C11 for a strain applying along the x axis; (2)
C(q) = C22 for a strain applying along the y axis; (3) C(q) is
isotropic when C11 = C22. A simple approximated expression
satisfying the requirements is adopted here as:

C(q) = C11cos2θq + C22sin2θq. (32)

The effective mass and deformation potential are kept
isotropic. The relaxation time is obtained as:

1

τ (k)
= mkBT E2

1

�3

[
1 + C̄

�C
cos(2θk)√

C̄2 − (�C)2
− cos(2θk)

�C

]
, (33)

where

C̄ = C11 + C22

2
(34)

�C = C22 − C11

2
.
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The mobility is given as

μx =

∫
e�

5

m3kBT E2
1

· k2cos2θk
1√

C̄2−(�C)2
− C̄

�C

(
1
C̄

− 1√
C̄2−(�C)2

)
cos (2θk)

· ∂nF(εk)
∂εk

d2k

∫
∂nF(εk)

∂εk
d2k

= e�
3

m2kBT E2
1

(
I + J − √

I 2 − J 2

J
√

I 2 − J 2

)
, (35)

where

I = 1√
C̄2 − (�C)2

(36)

J = C̄

�C

(
1

C̄
− 1√

C̄2 − (�C)2

)
.

Equation (35) can be expanded to the linear order of �C to
give a simplified result:

μx = e�
3

m2kBT E2
1

(
5C11 + 3C22

8

)
, (37)

which shows that the mobility along the x direction depends
on the elastic constants along both x and y directions.

IV. RESULTS AND DISCUSSION

A. Combined anisotropic effects on mobility

In the section above, the anisotropic effects of the effective
mass, the deformation potential, and the elastic modulus on
the mobility of 2D semiconductors were analyzed separately
to give analytical results. When all these anisotropic factors
appear together in a system, it is too complex to achieve
an analytical solution. Therefore, we propose expressing the
mobility approximately by combining different anisotropic
factors directly:

μx = e�
3

kBT (mx)
3
2 (my)

1
2

(
A + B − √

A2 − B2

B
√

A2 − B2

)

×
(

I + J − √
I 2 − J 2

J
√

I 2 − J 2

)
, (38)

where A and B are functions of deformation potential whose
definition was given in Eq. (27), while I and J are functions of
elastic modulus, whose definition was given in Eq. (36). With
the low order approximation, a concise form is achieved as:

μx = e�
3
( 5C11+3C22

8

)
kBT (mx)

3
2 (my)

1
2
( 9E2

1x+7E1xE1y+4E2
1y

20

) . (39)

Anisotropic effective mass is the main contributor to the
mobility anisotropy. To measure the mobility anisotropy, we
define an anisotropic ratio Rani as:

Rani = max(μx,μy)

min(μx,μy)
, (40)

which is equal to 1.0 for isotropic systems and is larger
than 1.0 for anisotropic systems. The variation of Rani with
various parameters is demonstrated in Fig. 2. Anisotropic

FIG. 2. Anisotropic ratio of mobility (Rani) as functions of mx

my
,

E1x

E1y
, and C11

C22
. Results are calculated with Eq. (39). Except the

parameter being varied in each line, mx

my
= 1, E1x

E1y
= 1, C11

C22
= 1.

mass acting along with mx

my
= 2 yields Rani = 2.0. In con-

trast, Rani = 1.18 for C11
C22

= 2 and Rani = 1.38 for E1x

E1y
= 2.

Therefore, the anisotropy contribution from elastic constant
and deformation potential is much weaker than that from the
energy dispersion (effective mass). Consistently, for materials
with Dirac cone and zero band gap, the anisotropic contribution
is also dominated by the energy dispersion (Fermi velocity)
while the contribution from deformation potential is nearly
zero [3,46,49].

B. Numerical results

To numerically evaluate the mobility anisotropy of 2D
semiconductors, and to examine how the new formulas [Eqs.
(38) and (39)] produce results differently from the old one
[Eq. (3)], data for various anisotropic materials were collected
from the literature, including BP [17], single-layer Hittorf’s
phosphorus (HP) [33], BC2N [32], TiS3 [40,41], GeCH3

[42], Ti2CO2 [19,20], Hf2CO2 [19], Zr2CO2 [19], Sc2CF2,
and Sc2C(OH)2 [50]. Analysis results for some representative
systems are listed in Table I. For these systems, Eq. (38) and
Eq. (39) give very close results, suggesting the simplified Eq.
(39) is a good approximation of the full form of Eq. (38).
However, the difference between new and old methods is
distinct, as discussed below.

Undoped BP is p-type semiconductor. Related experiments
on thin-layer BP have suggested that hole mobility is larger
than electron mobility, and that mobility along the x (armchair)
direction is greater than that along the y direction [18,51–53].
However, calculations for single-layer BP using the old
formula have given contrasting results of μx(h) < μx(e) and
μx(h) < μy(h), as shown in Table I. Conversely, under the
same parameters, the new formula produces results more con-
sistent with experiments. There is a discrepancy between the
old and new formulas because the old formula overestimates
the contribution of the deformation potential to the mobility
anisotropy. This leads to a prediction that the anisotropy ratio

is proportional to (E1y

E1x
)
2

[see Eq. (3)]. Because single-layer
BP has E1x (= 2.5 eV) much larger than E1y (= 0.15 eV) for

235306-5



HAIFENG LANG, SHUQING ZHANG, AND ZHIRONG LIU PHYSICAL REVIEW B 94, 235306 (2016)

TABLE I. Predicted mobility anisotropy of some representative 2D semiconductors.

old new simplified

System mx my E1x E1y C11 C22 μx μy Rani μx μy Rani μx μy Rani

BP [17] e 0.17 1.12 2.72 7.11 28.9 102 1.12 0.08 14.0 0.69 0.09 7.40 0.80 0.40 7.64
h 0.15 6.35 2.5 0.15 28.9 102 0.67 16.0 23.9 2.37 0.16 14.6 2.77 0.18 15.1

2-BP [17] e 0.18 1.13 5.02 7.35 57.5 195 0.60 0.15 4.00 0.81 0.14 5.58 0.70 0.13 5.76
h 0.15 1.81 2.45 1.63 57.5 195 2.70 1.80 1.50 6.40 0.85 7.28 5.53 0.76 7.52

3-BP [17] e 0.16 1.15 5.85 7.63 85.9 287 0.78 0.21 3.71 1.17 0.19 6.06 1.01 0.17 6.25
h 0.15 1.12 2.49 2.24 85.9 287 4.80 2.70 1.78 9.72 1.80 5.24 8.41 1.61 5.40

4-BP [17] e 0.16 1.16 5.92 7.58 115 379 1.02 0.28 3.64 1.54 0.25 6.08 1.33 0.22 6.26
h 0.14 0.97 3.16 2.79 115 379 4.80 2.90 1.66 9.66 1.94 4.83 8.38 1.74 4.97

5-BP [17] e 0.15 1.18 5.79 7.53 146 480 1.47 0.38 3.87 2.19 0.32 6.66 1.91 0.29 6.86
h 0.14 0.89 3.40 2.97 146 480 5.90 3.80 1.55 11.1 2.45 4.42 9.68 2.19 4.55

HP [33] e 0.69 3.58 1.40 0.66 49.7 49.9 0.50 0.43 1.16 0.76 0.21 3.65 0.76 0.21 3.65
h 1.24 2.45 1.26 0.18 49.7 49.9 0.31 7.68 24.8 0.61 0.60 1.01 0.62 0.61 1.01

BC2N [32] e 0.15 0.41 1.87 4.25 307 400 52.5 3.70 14.2 22.3 5.59 3.98 22.1 5.56 3.97
h 0.16 2.22 2.13 4.33 307 400 14.8 0.27 54.9 7.66 0.40 19.3 7.62 0.39 19.3

2-BC2N [32] e 0.16 0.40 1.86 4.13 771 769 118 9.61 12.3 52.9 14.6 3.62 52.2 14.7 3.61
h 0.18 0.58 2.15 4.21 771 769 60.5 4.95 12.2 32.0 7.24 4.43 32.2 7.27 4.43

3-BC2N [32] e 0.17 0.41 0.79 2.79 1023 901 809 23.4 34.5 177 42.3 4.22 179 42.5 4.20
h 0.20 0.66 3.41 2.82 1023 901 27.0 10.3 2.62 28.1 9.06 3.10 28.0 9.05 3.10

4-BC2N [32] e 0.17 0.42 0.95 3.30 1254 1285 651 22.4 29.1 161 39.1 4.14 163 39.3 4.12
h 0.21 0.87 2.80 3.47 1254 1285 37.7 6.15 6.13 32.1 7.01 4.58 32.1 7.02 4.58

5-BC2N [32] e 0.18 0.43 2.0 0.88 1856 1571 200 364 1.81 289 169 1.71 290 170 1.71
h 0.23 1.0 3.44 2.63 1856 1571 31.3 10.2 3.06 34.2 8.61 3.97 34.1 8.59 3.97

Ti2CO2 [19] e 0.38 3.03 9.17 4.71 253 256 0.15 0.07 2.08 0.23 0.04 5.83 0.23 0.04 5.84
h 0.09 0.13 3.25 5.28 253 256 50.1 12.8 3.91 34.1 17.9 1.90 34.1 18.0 1.90

Ti2CO2 [20] e 0.44 4.53 5.71 0.85 267 265 0.61 0.25 2.41 0.56 0.11 5.31 0.55 0.10 5.34
h 0.14 0.16 1.66 2.60 267 265 74.1 22.5 3.29 66.1 46.4 1.43 65.9 46.3 1.42

TiS3 [40] e 1.47 0.41 0.73 0.94 81.3 145 1.01 13.9 13.7 2.89 10.6 3.66 2.99 10.9 3.64
h 0.32 0.98 3.05 -3.8 81.3 145 1.12 0.15 8.07 2.30 0.71 3.26 4.16 1.12 3.73

GeCH3 [42] e 0.03 0.19 12.7 12.5 51.7 49.6 6.71 0.12 53.7 3.71 0.51 7.31 3.72 0.51 7.31
h 0.04 0.31 6.24 6.28 51.7 49.6 14.0 0.19 75.3 7.07 0.83 8.56 7.07 0.83 8.56

Sc2CF2 [50] e 0.25 1.46 2.26 1.98 193 182 5.03 1.07 4.70 5.62 1.02 5.48 5.62 1.02 5.48
h(u) 2.25 0.44 1.91 − 4.7 193 182 0.48 0.39 1.25 0.61 1.20 2.43 0.42 1.02 1.96
h(l) 0.46 2.65 − 5.0 2.2 193 182 0.31 0.26 1.18 0.94 0.41 2.93 0.78 0.26 2.32

Sc2C(OH)2 [50] e 0.50 0.49 − 2.7 − 2.6 173 172 2.06 2.19 1.06 2.18 2.22 1.02 2.18 2.22 1.02
h(u) 5.01 0.27 − 3.5 − 9.9 173 172 0.05 0.11 2.24 0.02 0.20 11.7 0.02 0.20 11.7
h(l) 0.29 1.91 − 10 − 3.2 173 172 0.16 0.24 1.45 0.29 0.07 4.05 0.29 0.07 4.07

Hf2CO2 [19] e 0.23 2.16 10.6 7.10 294 291 0.33 0.08 4.27 0.44 0.06 7.72 0.44 0.06 7.72
h(u) 0.42 0.16 7.64 2.30 294 291 0.92 26.0 28.1 1.67 7.13 4.28 1.68 7.21 4.26
h(l) 0.16 0.41 2.02 7.42 294 291 34.3 1.00 34.3 8.04 1.86 4.33 8.14 1.88 4.31

Zr2CO2 [19] e 0.27 1.87 13.9 5.21 265 262 0.15 0.15 1.02 0.26 0.06 4.59 0.26 0.06 4.60
h(u) 0.16 0.38 9.84 1.80 265 262 1.37 17.5 12.8 2.72 2.20 1.24 2.74 2.21 1.24
h(l) 0.36 0.16 5.45 6.04 265 262 2.08 3.71 1.78 1.98 4.17 2.10 1.98 4.17 2.10

Note. ‘e’ and ‘h’ denote ‘electron’ and ‘hole’, respectively. mx and my are measured as the ratio with m0 (the electron mass in vacuum). E1x

and E1y are in units of eV. C11 and C22 are in units of J/m2. μx and μy are in units of 103 cm2V−1s−1. The values of μx , μy , E1x , E1y , C11

and C22 are extracted from references as indicated. μx and μy are calculated in three ways: (old) same as in original references (largely based
Eq. (3)), (new) Eq. (38), and (simplified) Eq. (39). The anisotropic ratio Rani is calculated by Eq. (40).“upper” and “lower” sub-bands in the
literature are represented by (u) and (l) here. For few layer samples, for n layer sample, which is expressed as n − sample type, such as n-BP
and n − BC2N.

holes, it predicted that μx < μy . However, according to the
new formula, the contribution of the deformation potential
to the mobility anisotropy is actually weak, and the main
contributor is the effective mass. mx of BP is smaller than my ,
so μx > μy under the new formula. This is consistent with
predictions made using the Kubo-Nakano-Mori method based
on electron-phonon scattering matrices [54] and charged-

impurity scattering theory [55]. Moreover, this is in agreement
with the experimental observations [18,52,53].

TiS3 monolayer is a new 2D material predicted to possess
novel electronic properties [40,41,56]. First-principles calcu-
lations showed that TiS3 is a direct-gap semiconductor with
a bandgap of 1.02 eV, close to that of bulk silicon [40].
With the old method, TiS3 was predicted to possess high
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FIG. 3. Comparison between the results for various systems
calculated by old and new methods, i.e. Eq. (3) and Eq. (39). (a)
The mobility μx and μy . (b) The anisotropic ratio Rani defined by
Eq. (40). Detailed data are provided in Table I.

mobility up to 14 × 103 cm2 V−1 s−1 for electrons in the y

direction [μy(e)], and more remarkably, the mobility is highly
anisotropic, i.e., μy(e) is about 14 times higher than μx(e) and
is even two orders of magnitude higher than μy(h) [40]. With
the new method, however, the obtained anisotropy is much
smaller. The re-calculated μy(e) is 10.6 × 103 cm2 V−1 s−1,
close to the old value, but the re-calculated μx(e) increases
from 1.01 × 103 cm2 V−1 s−1 to 2.89 × 103 cm2 V−1 s−1, giv-
ing Rani = 3.7 (see Table I). The recalculated electron/hole
mobility ratio is 15, compared with the previously calculated
100, suggesting that the potential in electron/hole separation
is not so remarkable as previously thought.

The overall comparison between the results calculated
by old and new methods is provided in Fig. 3. The order

of magnitude of μ from the old method is consistent with
that from the new method [Fig. 3(a)], although actual values
of μ from the two methods differ by a few times. Closer
inspection suggests that the deformation potential constant E1

makes the largest contribution to the resulting discrepancy
(data not shown). In contrast, for the calculated anisotropy
ratio Rani, there is almost no correlation between the results
from old and new methods [Fig. 3(b)], indicating that the old
method is highly unreliable in predicting Rani. There are two
main reasons for that. First, Rani is determined by ratios of
parameters, such as mx/my , C11/C22, and E1x/E1y , but is
independent of these individual parameters. As a result, the
range of magnitude of Rani is much smaller than that of μ

(see Fig. 3). Second, based on Eq. (3) and Eq. (39), when
the factor mx/my , C11/C22, or E1x/E1y overestimates (or
underestimates) μx of a system in the old method (compared
with the new method), it would inevitably underestimate (or
overestimate) μy of the same system. This further amplifies
the discrepancy in Rani between old and new methods.

Overall, the old method is more likely to predict high
anisotropy. For example among all 42 data points, only three
were predicted by the new method to possess Rani > 10: holes
of BP (14.6), holes of BC2N (19.3), and holes of Sc2C(OH)2

(11.7). In comparison, the old method predicted 15 data points
to have Rani > 10, three of which possess Rani > 50: holes of
BC2N (54.9), and holes (75.3) and electrons (53.7) of GeCH3.

V. SUMMARY

In summary, we theoretically studied the longitudinal acoustic
phonon limited mobility for anisotropic 2D semiconductors
under the framework of the deformation potential theory.
The influences of anisotropic deformation potential constant
and elastic modulus were analytically derived. We showed
that the mobility in one direction depends not only on the
parameters (effective mass, deformation potential constant,
and elastic modulus) in the same direction, but also on those
in the perpendicular direction. The mobility anisotropy is
mainly contributed by the anisotropic effective mass, while
the contribution from the deformation potential constant and
elastic modulus are much weaker. Parameters for various
anisotropic 2D materials were collected for the anisotropic
mobility calculation. It was demonstrated that the old formulas
widely adopted in the literatures are unreliable and more
likely to overestimate Rani when compared with our new
formula.
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