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Entanglement properties of the Haldane phases: A finite system-size approach
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We study the bond-alternating Heisenberg model using the finite-size density-matrix renormalization-group
(DMRG) technique and analytical arguments based on the matrix product state, where we pay particular attention
to the boundary-condition dependence on the entanglement spectrum of the system. We show that, in the
antiperiodic boundary condition (APBC), the parity quantum numbers are equivalent to the topological invariants
characterizing the topological phases protected by the bond-centered inversion and π rotation about the z axis. We
also show that the odd parity in the APBC, which characterizes topologically nontrivial phases, can be extracted
as a twofold degeneracy in the entanglement spectrum even with finite system size. We then determine the phase
diagram of the model with the uniaxial single-ion anisotropy using the level spectroscopy method in the DMRG
technique. These results not only suggest the detectability of the symmetry protected topological (SPT) phases
via general twisted boundary conditions but also provide a useful and precise numerical tool for discussing the
SPT phases in the exact diagonalization and DMRG techniques.
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I. INTRODUCTION

Quantum spin models have long been studied in the field
of strongly correlated electron systems. Since the discovery of
the Haldane conjecture [1,2], qualitative difference between
systems of half-integer spins with gapless excitations and those
of integer spins with gapful excitations has attracted much at-
tention. In particular, the Affleck-Kennedy-Lieb-Tasaki model
of spin S = 1, which has a unique and analytically exact
solution of the ground state, was an important clue for quantum
disordered phases of the integer spin systems [3,4]. The
exact solution clarifies that exotic properties such as string
orders and edge states are observed in the Haldane phase and
concomitantly that such quantum phases do not have local
order parameters.

According to the Landau-Ginzburg-Wilson (LGW) the-
ory [5], quantum phases are classified by the spontaneous
symmetry breakings and local order parameters. In this sense,
the Haldane phase is a quantum disordered phase defined
beyond the LGW theory and often called the topological
phase [6]. However, we do not yet have a theoretical framework
that enables one to identify the topological phases comprehen-
sively. Generally, two gapful phases are identical if there is
at least one path that connects the two phases adiabatically
without any spontaneous symmetry breaking or a gap closing.
In particular, the two phases that are distinguishable for
a deformation under an imposed symmetry are called the
symmetry-protected topological (SPT) phases [7–11]. The
Haldane phase and topological insulators are known as
examples of the SPT phase: the former is a quantum phase that
is protected by either the bond-centered inversion symmetry,
time-reversal symmetry, or dihedral group (π rotations about
the x, y, and z axes) symmetry of the spin space [9], and
the latter is a quantum phase protected by the time-reversal
symmetry and U(1) gauge symmetry of charge [12,13].
Among the Haldane phases, the topologically nontrivial phase
with even numbers of degenerate edge states, which is
called the odd-Haldane (OH) phase, is clearly distinguished

from the topologically trivial phase with odd numbers of
degenerate edge states, which is called the even-Haldane (EH)
phase [9–11,14].

The Haldane phases have been studied by many analytical
and numerical methods. In particular, the methods for classi-
fying quantum disordered phases, such as the ones using the
string order parameters [15–18], quantized Berry phases [19],
twisted order parameter [20], and level spectroscopy [21–24],
have achieved a great success. The former string order
parameters, which characterize a hidden Z2 × Z2 symmetry
breaking in the Haldane phase, enable one to distinguish the
Haldane phase with the dihedral group symmetry [16]. The
latter quantized Berry phase, twisted order parameter, and level
spectroscopy are often used in finite-size systems, which are
the methods using the difference in the quantum numbers of
the systems with twisted phases in an arbitrary bond and enable
one to identify the phase boundary clearly, unlike the methods
of using the string order parameters.

Recently, a technique for distinguishing the SPT phases has
been proposed [25], where the entanglement spectrum (ES) is
used. The ES, which is the spectral structure appearing in
the reduced density matrix obtained by dividing the system
into two subsystems, has much more information on the
ground state than the entanglement entropy (EE) obtained
as a von Neumann entropy of the reduced density matrix
does. It is known that the ES reproduces the spectral structure
similar to the edge states in the SPT phase and that its
twofold degeneracy can be used as an index characterizing the
difference between the trivial and nontrivial phases. The ES is
thus a powerful method for examining the edge states such as
the quantum Hall insulators, topological insulators, and other
quantum spin chains. In the calculations of the ES, a variety
of variational methods using the infinite matrix product states
(iMPS), such as infinite time-evolving block decimation [26]
and infinite density-matrix renormalization-group (iDMRG)
methods [14,27], as well as the exact diagonalization and
conventional DMRG methods [28,29] for finite-size systems,
have often been applied.
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In this paper, motivated by the above developments in the
field, we study the antiferromagnetic (AF) Heisenberg spin
chains with a general spin quantum number S and calculate the
ES for finite-size systems of the model. To find the degeneracy
in the ES of the SPT phases generally requires sufficiently
large subsystems. This is because the Schmidt decomposition
keeping the twofold degeneracy in the ES can only be achieved
in the limit of large subsystems [9], as was confirmed by
the direct calculation of the ES for the valence-bond-solid
(VBS) wave function [30,31]. Thus, in the systems of large
correlation lengths, such as those of a large spin S or near
critical points, the degeneracy of the ES is not exact, and
therefore not necessarily an appropriate index characterizing
the SPT phases.

We therefore study the boundary-condition and system-size
dependences of the ES in the AF spin chains with periodic
and antiperiodic boundary conditions based on the matrix
product state (MPS). We show analytically that the parity
quantum numbers in the antiperiodic boundary condition
(APBC) are equivalent to the topological invariants in the
SPT phases, which enables us to classify the phases. We
also show that the parity quantum number leads to the
twofold degeneracy in the ES for the systems with the APBC
and that the spin rotational symmetry leads to the quantization
of the ES for the subsystem with a spin quantum number
Sz

A. To confirm the validity of these proofs, we introduce
the bond alternation δ to the model and study the behav-
ior of the ES by numerical calculations using the DMRG
technique.

For systems with large S, where the gap decreases exponen-
tially in the classical limit, the Haldane phase of the pure AF
Heisenberg chain becomes unstable. Moreover, the single-ion
anisotropy D leads to an instability of the in-plane AF ordering,
which makes it difficult to determine the phase boundary due to
the Berezinskii-Kosterlitz-Thouless (BKT) transition [32–34].
We therefore apply the method of level spectroscopy using the
PBC and APBC in the DMRG technique, with the help of the
calculations of the central charge and string order parameter,
and determine the phase boundaries for systems with S = 1,2,
and 3. We in particular determine the phase diagram of the
S = 2 system in the parameter space of δ and D. We moreover
find that the spin gap defined in the APBC reproduces not
only the accurate gap-closing behavior but also the values of
the Haldane gap in agreement with the previous numerical
calculations. The critical behavior at the transition points and
topological properties of the system are also extracted by
investigating the central charge and string order parameter.
We thus clarify the entanglement properties of a variety of
Haldane chains comprehensively.

The rest of this paper is organized as follows. In Sec. II,
we define the bond-alternating Heisenberg model and discuss
the methods of calculations used in this paper. In Sec. III,
we discuss the SPT phases of our model and construct the
boundary condition by the MPS formalism. We also clarify
the meaning of the parity quantum number in the APBC. In
Sec. IV, we study the boundary and finite-size effects on the
ES using the DMRG calculations. We also discuss the stability
of the twofold degeneracy in the ES from the viewpoint of the
symmetry and corresponding quantum numbers. In Sec. V, we
discuss the effects of the single-ion anisotropy and determine

the phase diagram of the S = 2 model. A summary of this
paper is given in Sec. VI.

II. MODEL AND METHOD

A. The model Hamiltonian

Since the discovery of the Haldane phase, there are many
analytical and numerical studies of the Heisenberg AF (HAF)
chains with integer spins [9–11,14–24,30,31,35–44]. To study
the entanglement properties of the Haldane phase, we consider
the following AF chain with bond alternation δ and uniaxial
single-ion anisotropy D defined by the Hamiltonian

H = J

L∑
j=1

{1 + (−1)j δ}Sj · Sj+1 + D
∑

j

(
Sz

j

)2
, (1)

where J (>0) is the AF exchange interaction (taken as a unit
of energy) and δ causes the dimerization transition. D (>0)
breaks the SU(2) symmetry of the spin rotation, which leads
to several gapful and gapless phases such as the large-D phase
and in-plane AF phase. However, neither of these terms breaks
any symmetry of the bond-centered inversion, time-reversal,
and dihedral group symmetry of spin space, which protect the
Haldane phase.

The qualitative picture of the HAF chain with bond
alternation can be obtained from the (1 + 1)-dimensional O(3)
nonlinear sigma model (NLSM) [45], which is derived from a
semiclassical large-S limit of the HAF chain. The O(3) NLSM
is defined as follows:

A = v

2g

∫
dτdx

{
(∂xn)2 + 1

v2
(∂τ n)2

}
+i�Q, (2)

where g = 2/S, v = 2JS, and the three-dimensional unit
vector n(x) is related to the spin operator as Sj /S ∼
(−1)j n(x) + l(x) [45]. The term i�Q is called the � term,
which is written as

Q = 1

4π

∫
dτdxn · ∂n × ∂n. (3)

Thus, Q describes the integer-valued winding number. If δ �=
0, the � term is written as � = 2πS(1 + δ). As proposed
first by Haldane [1,2], the � term leads to the qualitative
difference between the half-integer and integer spin systems. If
� = 0, the O(3) NLSM model represents the gapful excitation,
whereas if � = π , the model has the gapless excitation, which
corresponds to the massless free-boson theory that has the
central charge c = 1. Therefore, when the bond alternation
changes from −1 to 1, the phase transitions with gap closing
occur 2S times.

B. Generalized valence-bond-solid state

The phase transition in the bond-alternating system can be
interpreted as the change in the VBS configuration (see Fig. 1).
To see the qualitative properties of the gapped quantum phases,
we introduce the (m,n)-type generalized VBS state [17,20]
defined in the PBC as

|(m,n)〉PBC = 1√
N

L/2∏
j=1

(B†
2j−1,2j )m(B†

2j,2j+1)n|vac〉, (4)
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FIG. 1. Schematic pictures of the dimerization transition in the
bond-alternating HAF chains with (a) S = 1 and (b) S = 2. The
links represent the spin-1/2 singlet bonds. The unconnected point
represents the free edge spin. The panel (a) shows the Haldane-dimer
transition, where we use the (m,n)-type VBS state to represent the
(1,1) Haldane phase and (2,0) dimer phase. The panel (b) shows
the dimerization transition in the S = 2 HAF chain with the (2,2)
Haldane phase, partially dimerized (3,1) phase, and fully dimerized
(4,0) phase.

where B
†
i,j = a

†
i b

†
j − b

†
i a

†
j with bosonic operators a

†
i and b

†
i ,

N is the normalization factor, and |vac〉 is the vacuum of
bosons. Here, we use the Schwinger-boson representation of
the spin operator defined as S+

i = a
†
i bi , S−

i = b
†
i ai , and Sz =

(a†
i ai − b

†
i bi)/2. The integers m and n satisfy m + n = 2S.

If we consider the APBC defined as Sz
L+1 = Sz

1 and S±
L+1 =

eiπS±
1 between L and 1 sites, the operator BL,L+1 is written

as BL,L+1 = i(a†
Lb1 + b

†
La1). Thus, for the bond-centered

inversion P : Si → SL−i+1, the (m,n)-type VBS state has a
parity quantum number defined as

P |(m,n)〉APBC = (−1)n+SL |(m,n)〉APBC . (5)

Therefore, the difference in the parity quantum number can be
used to identify the phase boundaries of the different VBS
states. Moreover, the presence of these different phases is
closely related to the existence of the string order, which char-
acterizes the breaking of the hidden Z2 × Z2 symmetry [16].

C. Level spectroscopy

The level spectroscopy technique employing the APBC is
a powerful tool for determining the phase boundary between
different VBS states. Due to the cancellation of the logarithmic
corrections, this method can suppress the finite-size effect
and determine the phase diagram precisely. According to the
previous studies of the level crossing [21–24], the gapful VBS
phases and gapless in-plane AF phase can be characterized by
the differences between the three lowest excitation energies
defined as

�EH =E0,APBC(0,+) − E0,PBC(0), (6)

�OH =E0,APBC(0,−) − E0,PBC(0), (7)

�XY =E0,PBC(2) − E0,PBC(0), (8)

FIG. 2. Schematic pictures of the bipartition of the bond-
alternating HAF chain used in the entanglement spectrum calculation.
Alternating nearest-neighbor interactions J (1 ± δ) are depicted by
the solid and broken lines. The red and green areas indicate the
subregions (or subsystems) A and B, respectively. (a) The subregions
are separated at the two strong (or weak) bonds that face each
other. The system size is L = 12 = 0 mod 4. (b) The subregions
are separated at the strong and weak bonds that face each other. The
system size is L = 14 = 2 mod 4.

where En,PBC(M) is the nth lowest energy with the z

component of the total spin M = ∑
j Sz

j under the PBC and
En,APBC(M,P ) is the nth lowest energy with the z component
of the total spin M and parity quantum number P under the
APBC. As was pointed out in the previous section, if �EH

(�OH) is the lowest, the EH (OH) phase is the most stable one.
On the other hand, if the in-plane AF phase is the most stable
state, the �XY has the lowest energy. We also use the spin gap
defined as

�spin =|�EH − �OH| (9)

for evaluating the phase transition points between the EH and
OH phases. The spin gap calculated by this definition is in
good agreement with the results of many previous numerical
studies, such as the DMRG and quantum Monte Carlo (QMC)
calculations [36,37], for the Haldane gap of the isotropic HAF
chain because the finite-size effect is rather small [38].

D. Entanglement spectrum

The entanglement related quantities have recently been
studied extensively for investigating nonlocal correlations in
many-body quantum states. In particular, Li and Haldane [25]
proposed that the ES is one of the powerful tools for
investigating topologically ordered phases and symmetry
protected (or enriched) topological phases, which are known as
gapped phases with long-range and short-range entanglements,
respectively. In our calculations, we consider the ES obtained
by partitioning the system into two subregions (or subsystems)
A and B (see Fig. 2). Defining ξλ in the Schmidt decomposition
of the ground state |ψ〉 as

|ψ〉 =
∑

λ

e−ξλ/2 |λ〉A |λ〉B , (10)

where |λ〉A (|λ〉B) is the orthonormal basis for the subregion
A (B), we can interpret the ES as the energy spectrum of
the entanglement Hamiltonian He defined as e−He = ρA =
TrB |ψ〉 〈ψ | = ∑

λ e−ξλ |λ〉A 〈λ|A. In particular, if the system
size is sufficiently larger than the correlation length, the ES can
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be described by the two virtual edge states; the ES therefore
represents the gapless mode at real edges [25]. Indeed, it was
rigorously proved that the degeneracy corresponding to the
gapless edge mode can be found in the ES for the (m,n)-
type VBS states [30,31]. Figure 2 shows the examples of the
bipartition of the bond-alternating Heisenberg model in the
periodic systems. In the case of open boundary conditions, we
need to take into account the contribution from real edges or
suitably chosen boundary constraints for different VBS states.
To avoid these difficulties, we only consider the ES in the
periodic systems with the PBC and APBC. For simplicity, we
only discuss the bipartition shown in Fig. 2(b) in this paper,
where the system is divided into two subregions of length
L/2 = odd. Here, the (m,n)-type VBS state has (m + 1)(n +
1) gapless modes at real edges.

The entanglement entropy (EE), which is defined as the
von Neumann entropy SA = −Tr[ρA ln ρA], also has important
information on the topological phases and criticality of the
system. From the conformal field theory [46], the EE in the
periodic systems can be obtained as

SA(l) = c

3
ln

[
L

π
sin

(
πl

L

)]
+ s1, (11)

where s1 is a nonuniversal constant and l is the length of the
partition A. c is the central charge characterizing the critical
theory describing the low-energy physics. To determine the
central charge, we evaluate the terms [47]

c∗(L) ≡ 3[SA(L/2 − d) − SA(L/2)]

ln [cos (πd/L)]
(12)

from the direct calculations of SA(l) assuming the PBC. d is
the lattice constant. The values of c∗(L) converge to the central
charge c in the infinite system-size limit.

III. PARITY IN THE ANTIPERIODIC
BOUNDARY CONDITION

As discussed in Sec. II B, the (m,n)-type VBS state in
the APBC has a parity quantum number with respect to the
bond inversion operation. The difference in the parity quantum
numbers, which is applied to the level spectroscopy, has so
far played a major role in the numerical determination of
the boundary between the VBS states. In this section, we
consider the meaning of the parity quantum numbers in the
APBC based only on the MPS formalism and symmetry
arguments. First, using the MPS, we clarify the meaning
of the SPT phases that are derived under the assumptions
of the translational symmetry of the bond-alternating chain
and the bond-centered inversion symmetry of the lattice. Next,
we clarify the properties of the operators corresponding to the
APBC by constructing the MPS from the exact VBS wave
functions. Also, based on the above discussions, we extend
our theory to the general MPS and clarify the relationship
between the boundary conditions and parity quantum numbers.
Moreover, we clarify the equivalence between the parity
quantum numbers and topological invariants on the basis of
the classification of the SPT phases by the π rotation about the
z axis and bond-centered inversion operation.

A. Matrix-product-state formalism

First, let us discuss the classification of the SPT phases in
the bond-alternating systems. In the one-dimensional system,
the MPS is a good approximation for the gapped ground
state [26,48]. Thus, the MPS formalism can rigorously prove
the presence of several SPT phases. Here, we introduce the
classification of the SPT phases by the bond-centered inversion
symmetry and translational symmetry of the dimerized lattice.
First, we define the MPS as

|ψ〉 =
∑

i1,i2,··· ,iL
Tr

[
�AA

i1
�BB

i2
· · ·�AA

i2N

]
× |i1,i2, · · · ,i2N 〉 , (13)

where �a (a = A,B) is a χa × χa positive matrix, and A and
B are χA × χB and χB × χA matrices, respectively. Here, we
define N = L/2. in represents the physical degrees of freedom
of site n. The MPS representation is not unique for given
states, but we can choose the canonical MPS [48] satisfying
Tr[(�A)2] = Tr[(�B)2] = 1 and∑

m

A
m�B�B

(
A

m

)† =
∑
m

(
B

m

)†
�A�AB

m = IχB
, (14)

∑
m

B
m�A�A

(
B

m

)† =
∑
m

(
A

m

)†
�B�BA

m = IχA
, (15)

where Iχa
is a χa × χa matrix. The canonical conditions

Eqs. (14) and (15) imply that the transfer matrix has a left
(right) eigenvector IχA

(IχB
) with eigenvalue λ = 1. Moreover,

since the MPS must be a pure state, we assume that Iχa
is the

only eigenvector with the largest eigenvalue 1.
Next, let us consider the inversion symmetry at a bond

between the sites 1 and 2N . Since the MPS is invariant
under the bond-centered inversion, there exists a unitary
transformation Ua

P with [Ua
P ,�a] = 0 such that

(
A

m

)T = eiθA
P

(
UB

P

)†
B

mUA
P , (16)(

B
m

)T = eiθB
P

(
UA

P

)†
A

mUB
P , (17)

where θa
P is a phase. Using the above relation twice, we obtain∑

m

A
m�BUB

P

(
UB

P

)∗
�B

(
A

m

)† = e−i(θA
P +θB

P )UA
P

(
UA

P

)∗
, (18)

∑
m

B
m�AUA

P

(
UA

P

)∗
�A

(
B

m

)† = e−i(θA
P +θB

P )UB
P

(
UB

P

)∗
, (19)

where we use the canonical conditions Eqs. (14) and (15).
Moreover, due to the assumption of the pure MPS, we obtain
Ua

P (Ua
P )∗ = eiφa

P Iχa
and 2(θA

P + θB
P ) = 0 mod 2π . Using the

canonical condition and these results, we obtain the following
relation:

θA
P + θB

P − φA
P + φB

P = 0 mod 2π. (20)

As a consequence, by the bond-centered inversion symmetry,
we can distinguish four different states (θA

P + θB
P ,φA

P ,φB
P ) =

(0,0,0), (0,π,π ), (π,π,0), and (π,0,π ), which are separated
by the quantum phase transitions. The large-D phase |D〉 =
|0〉 |0〉 · · · |0〉 is a trivial phase, where the matrices a , �a , and
Ua

P are scalars. Thus, the large-D phase belongs to the state
with (θA

P + θB
P ,φA

P ,φB
P ) = (0,0,0).
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The other three states can be described as the generalized
VBS states. Using the MPS, the (m,n)-type VBS state of
Eq. (4) can be rewritten as

|(m,n)〉PBC =
∑

i1,i2,··· ,i2N

Tr
[
gA

i1
gB

i2
· · · gB

i2N

]
× |i1,i2, · · · ,i2N 〉 , (21)

where the matrices are given by

{
gA

l

}
q,p

= (−1)n−q
√

n−q+pCp m−p+qCqδl=(n−m)/2−q+p,

(22){
gB

l′
}

p,q
= (−1)m−p

√
m−p+qCq n−q+pCpδl′=(m−n)/2−p+q

(23)

with 0 � p � m and 0 � q � n. l and l′ are indices of the
local quantum states satisfying −(m + n)/2 � l and l′ � (m +
n)/2, respectively. We ignore the normalization factor that
does not affect our discussion. If we introduce the matrices
{uA}qq ′ = (−1)qδq+q ′=n and {uB}pp′ = (−1)pδp+p′=m, where
0 � p, p′ � m and 0 � q,q ′ � n, we obtain the following
relations: {

(uB)†gB
i uA

}
p,q

= (−1)m
(
gA

i

)T

p,q
,{

(uA)†gA
i uB

}
q,p

= (−1)n
(
gB

i

)T

q,p
. (24)

These results correspond to Eqs. (16) and (17) with ei(θA
P +θB

P ) =
(−1)n+m = (−1)2S . Therefore, the (m,n)-type VBS states with
integer spins describe the states with (θA

P + θB
P ,φA

P ,φB
P ) =

(0,0,0) for even m and n and (0,π,π ) for odd m and n. The
(m,n)-type VBS states with half-integer spins describe the
states with (θA

P + θB
P ,φA

P ,φB
P ) = (π,π,0) and (π,0,π ) for even

n and odd n, respectively. Moreover, if the system recovers the
translational symmetry of the original lattice without dimer-
ization, the SPT phases with (θA

P + θB
P ,φA

P ,φB
P ) = (0,0,0) and

(0,π,π ) are connected to the so-called even Haldane and odd
Haldane phases, respectively. Note that the SPT phases with
(θA

P + θB
P ,φA

P ,φB
P ) = (π,π,0) and (π,0,π ) vanish. In the above

discussions, we assume the translational symmetry of the
dimerized lattice. However, even if there is only the inversion
symmetry about a bond center, the classification of the SPT
phases can be discussed for systems with any larger unit
cells [9]. The change in the translational symmetry due to
lattice dimerization thus plays an important role for classifying
the phases in the (m,n)-type VBS state.

B. Meanings of the parity quantum number

Next, let us consider the parity quantum number in the
APBC. Here, we present a general symmetry argument without
using the exact VBS wave functions, which is based only on
the MPS formalism. To treat the boundary condition, we now
rewrite the (m,n)-type VBS state in the MPS representation as
follows:

|(m,n)〉APBC =
∑

i1,i2,··· ,i2N

Tr
[
UA

twgA
i1
gB

i2
· · · gB

i2N

]
× |i1,i2, · · · ,i2N 〉 , (25)

where we define {UA
tw}q,q ′ = (−1)n−qδq,q ′ . As in the

Schwinger-boson argument for the bond-centered inversion,
the above MPS representation can also reproduce Eq. (5).
Here, we note that the matrix UA

tw satisfies uA(UA
tw)T (uA)† =

(−1)nUA
tw. Thus, this argument on the APBC can be general-

ized as follows: If there is a unitary matrix UA
tw corresponding

to the projective representation of some symmetry satisfying

UA
P

(
UA

tw

)T (
UA

P

)† = eiφA
twUA

tw, (26)

where eiφA
tw is a topological invariant characterizing the SPT

phases, then the MPS with a boundary condition defined as

|ψ〉 =
∑

i1,i2,··· ,i2N

Tr
[
UA

tw�AA
i1
�BB

i2
· · · �BB

i2N

]
× |i1,i2, · · · ,i2N 〉 (27)

should have the parity quantum number as the topological
invariant eiφA

tw . In particular, as long as the global π rotation
about the z axis, Rz, is not broken, we can reproduce the APBC
by choosing UA

tw to be the projective representation of Rz. Here,
the parity of the MPS in Eq. (27) can be written as e−i(φA

z,P −φA
z ).

Details of the proof are given in Appendix A. The projective
representation of P itself satisfies Eq. (27), so that e−iφA

P

corresponds to the parity. The twisted boundary condition can
also be applied to the cases with other symmetries such as
dihedral group and time-reversal symmetries [49]. In the case
of the dihedral group of the spin rotation, we find that the
spin-reversal operation gives us similar topological invariants.

IV. ENTANGLEMENT SPECTRUM IN THE
BOND-ALTERNATING HEISENBERG MODEL

In this section, we discuss our numerical DMRG results
for the entanglement properties of the bond-alternating HAF
chains with S = 1,2, and 3. First, we determine the phase
boundaries and then calculate the spin gap under the APBC,
which signals the transition between the EH and OH phases.
Second, we evaluate the ES of the (m,n)-type VBS state
and their symmetry protected properties in the periodic
systems. Here and hereafter, we pay particular attention to
the S = 2 case. Third, we discuss the stability of the twofold
degeneracy in the ES from the viewpoint of the symmetries
and corresponding quantum numbers. Moreover, making the
finite-size scaling analysis of the ES, we clarify the equivalence
between the two boundary conditions PBC and APBC and the
edge-ES correspondence in the thermodynamic limit.

A. Phase boundaries

First, let us discuss the phase boundaries of the bond-
alternating HAF chains with S = 1, 2, and 3. To determine
the phase boundaries between the different VBS states, we
evaluate the three quantities: spin gap �spin, string order
parameter Oz

string, and central charge c∗(L). The calculated
results are shown in Fig. 3.

We note here that the qualitative behaviors of the bond-
alternating HAF chain can be obtained from the O(3) NLSM;
in particular, this model at the phase transition point is
described by the SU(2) symmetric Tomonaga-Luttinger liquid,
which corresponds to the conformal field theory with the
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FIG. 3. Calculated quantities as a function of δ in the bond-alternating HAF chain Eq. (1) for S = 1, 2, and 3. Upper panels (a)–(c): Spin
gap �spin calculated using Eq. (9) with L = 80 for S = 1, with L = 50 for S = 2, and with L = 40 for S = 3. Middle panels (d)–(f): Central
charge c∗(L) calculated using Eq. (12). Lower panels (g)–(i): String order parameter Oz

string calculated using Eq. (28). Here, the dotted line
shows the size extrapolation adopting Eq. (29). In the calculations of the central charge and string order parameter, we use the PBC with L up
to 74 for S = 1, with L up to 62 for S = 2, and with L up to 74 for S = 3. The peak positions of the central charge clearly correspond to the
level crossing points between the EH and OH phases in the APBC.

central charge c = 1. As shown in Fig. 3(d), our numerical
result for S = 1 is in quantitative agreement with this argu-
ment. Moreover, the transition point obtained from the spin
gap precisely coincides with the peak positions of the result
for the central charge c∗(L). From the level crossing point
of S = 1 with L = 80, we obtain δ = 0.25995J , which is
in precise agreement with the previous result of the QMC
calculations [20], δc = 0.25997(3)J . Similarly, for S = 2 and
3, the transition points are also in good agreement with
the results of the previous studies [20]. The details of the
transition points for S = 1/2,1, · · · ,4 are summarized in
Appendix B. We moreover find that the S = 1 Haldane
gap obtained without size extrapolation at δ = 0 becomes
�S=1 = 0.401479J , which is again in precise agreement with
the QMC result �S=1 = 0.41048(6)J [37] as well as a recent
DMRG result �S=1 = 0.41047924(4)J [36]. Similarly, we
obtain the Haldane gaps for S = 2 and 3 as �S=2 = 0.088653J

and �S=3 = 0.009763J , respectively, which are also in
quantitative agreement with the previous QMC results [37],
�S=2 = 0.08917(4)J and �S=3 = 0.01002(3)J . We note that
the central charges for S = 2 and 3 show peaklike structures
at the level crossing points (see Fig. 3). However, the data for
c∗(L) at the peaks do not have the value c = 1 precisely, which
may be caused by the large correlation lengths for S = 2 and
3 systems.

The lower panels of Fig. 3 show the results for the string
order parameter Oz

string, which is defined as

Oz
string(|j − k| = L/2) =

〈
Sz

j exp

(
iπ

k−1∑
l=j

Sz
l

)
Sz

k

〉
. (28)

The nonzero string order parameter can be used to distinguish
between the topologically trivial EH phase and nontrivial OH
phase as long as the dihedral group symmetry remains. This
definition, however, depends on the positions of the strong
and weak bonds. Thus, we use the system with L = 4n + 2
(n ∈ Z) sites and consider the case with j = even and k =
odd in the PBC (see Fig. 2). The string order parameter thus
calculated shows a very slow convergence with respect to L

due to the large correlation length in the S � 2 systems. In
the extrapolations, we assume the correlation function at a
distance L/2 to be of the form

Oz
string(L/2) ∼ A + B exp (−L/λ)/Lγ , (29)

where λ and γ are positive constants. Here, we use a
least-square fitting with L = 38,50,62,74 for S = 1, with
L = 26,38,50,62 for S = 2, and with L = 38,50,62,74 for
S = 3. We confirm that the extrapolated values for S = 1 and
2 are in good agreement with the transition points obtained
from the spin gap.
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FIG. 4. Calculated entanglement spectra of the S = 2 bond-alternating HAF chain with L = 50 as a function of δ under the (a) PBC and
(b) APBC. Panel (c) shows the results for L = 50 in the APBC obtained by applying the staggered magnetic field hz/J = 0.001. Note that
the staggered magnetic field breaks the bond-centered inversion and other symmetries that protect the Haldane phase. Thereby, (c) shows an
adiabatic continuation of the entanglement spectra, which signals nonexistence of the SPT phases.

B. Entanglement spectrum of the dimer Haldane phase

Next, let us discuss the ES for the ground state of the
bond-alternating HAF chain. The gapless modes for the
real edges become in general a good explanation of the
degeneracies in the ES. Indeed, using the (m,n)-type VBS
state, the correspondence between the degeneracies in the ES
and those in the edge modes for the real edges was identified
analytically [30,31]. In the periodic systems, the (m,n)-type
VBS state has an (n + 1)(m + 1)-fold [(n + 1)(n + 1)-fold or
(m + 1)(m + 1)-fold] degeneracy for the bipartition shown in
Fig. 2(b) [Fig. 2(a)]. For simplicity, we consider the ES for
the bipartition shown in Fig. 2(b). Moreover, we consider
two types of the periodic boundary conditions, APBC and
PBC, to study the ES of the finite-size systems. Figures 4(a)
and 4(b) show calculated results for the ES of the S = 2
bond-alternating HAF chain for L = 50 in the PBC and APBC,
respectively, where the spectra are normalized as

∑
λ e−ξλ = 1.

We find that the ES shows different behaviors, depending
on the boundary conditions: In the PBC, the ES deforms
continuously as the bond alternation δ increases. In contrast,
the ES in the APBC shows sudden changes at δ = 0.18 and
0.55, which correspond, respectively, to the level crossing
between the (2,2) and (3,1) phases and between the (3,1)
and (4,0) phases. Note that all the spectra in the (3,1) phase
are doubly degenerate but such degeneracy does not appear
in the (2,2) and (4,0) phases. From the viewpoint of the level
degeneracy, we identify that the larger contributions to the ES
(e−ξλ > 10−3 ∼ 10−4) shown in Figs. 4(a) and 4(b) are roughly
consistent with the ES of the VBS ground state in the infinite
system, where the (n,m) state has the (n + 1)(m + 1)-fold
degeneracy in the ES. It should be noted that the ES in the
PBC does not show a complete twofold degeneracy due to
the finite-size effect. As was rigorously proved in [30,31], the
twofold degeneracy in the ES is preserved as long as the system
size is sufficiently larger than the correlation length [36]. In
the APBC, there is some freedom in selecting the bipartition
shown in Fig. 2 and in selecting the bond of the phase π

twisting; however, we find that the result depends only on the
geometric difference in the bipartition but does not depend on
the bond of the phase π twisting.

Let us consider the staggered magnetic field
∑

j (−1)jhzS
z
j

here, which breaks the inversion symmetry about the bond
center and other symmetries protecting the Haldane phase.

Figure 4(c) shows the ES in the APBC with hz = 0.001J . We
find that the ES deforms continuously as the bond alternation
increases, i.e., no level crossings, suggesting that, under the
staggered magnetic field, the Haldane phase does not exist
or the topological invariant e−i(φA

z,P −φA
z ) = ±1 disappears. This

absence of the Haldane phase in the staggered magnetic field
is in agreement with the result of Ref. [39].

C. Degeneracy in the entanglement spectrum

Now, let us discuss details of the degeneracy in the ES. Here,
we first show analytically the degenerate structure of the ES
from the viewpoint of the symmetry. We consider the case of
the PBC first. Here, we pay attention to the following properties
of the ground state: (i) the system has the SU(2) symmetry and
(ii) the ground state has a total spin quantum number Stot = 0.
Hence, the ground state can be written as a state, in which the
total angular momentum Stot of the subregions A and B is zero:

|ψ〉 =
∑

s

as |Stot = 0,M = 0; SA = s,SB = s〉 , (30)

where Stot, M , SA, and SB are the quantum numbers of S2
tot,

Sz
tot, S2

A, and S2
B , respectively. Noting the Clebsch-Gordan

coefficients to be 〈s,m,s,−m|0,0; s,s〉 = (−1)s−m/
√

2s + 1,
we can rewrite the ground state as

|ψ〉 =
∑

s

s∑
m=−s

(−1)s−m

√
2s + 1

as |s,m〉A |s,−m〉B . (31)

The reduced density matrix ρA is then written as

ρA =
∑

s

a2
s

2s + 1

s∑
m=−s

|s,m〉A 〈s,m|A , (32)

which leads to the result that the degeneracy in the PBC
depends only on the quantum number of the subregion A, S2

A.
This result also holds when the system has an open boundary
condition. However, when the ground state of the system is
ferromagnetic, this result does not necessarily hold because of
the condition (ii). In fact, the ES behaves differently depending
on Sz

A [40].
Next, we consider the case of the APBC. The above result

cannot be used because the APBC breaks the SU(2) symmetry.
Here, the parity about the bond-centered inversion gives an
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important contribution to the twofold degeneracy in the ES.
Assuming the bond-centered inversion symmetry P between
equally divided subregions A and B of the system, we can
choose the wave function satisfying

P |i〉A = |i + 1〉B , P |i + 1〉B = |i〉A , (33)

where |i〉A (|i〉B) is the orthonormal basis in the subregion A

(B) and i (=even) is an index of the wave function. Thereby,
all the wave functions in this system can be written as

|ψ〉 =
∑

i=even

∑
j=odd

ci,j |i〉A |j 〉B , (34)

where ci,j is a complex coefficient satisfying the normalization
condition

∑
i,j |ci,j |2 = 1. If we apply the bond-centered

inversion P on the above wave function, we obtain the relation

P |ψ〉 =
∑

i=even

∑
j=odd

ci,j |j − 1〉A |i + 1〉B

=
∑

i=even

∑
j=odd

cj−1,i+1 |i〉A |j 〉B . (35)

Thus, the wave function with a parity η = ± has the coeffi-
cients ci,j satisfying ci,j = ηcj−1,i+1. Let us then introduce a
complex matrix ai,j = c2i,2j+1, so that ai,j = ηaj,i . Using this
relation, we can write the wave function as

|ψ〉 =
∑
i,j=0

ai,j |2i〉A |2j + 1〉B . (36)

When the parity is odd, the matrix ai,j is written as a
complex skew-symmetric matrix. Generally, a complex skew-
symmetric matrix can be written as a block-diagonalized form
containing eiφiσ y on a proper basis, where we use the Pauli
matrix σy . Thus, the above wave function can be written as

|ψ〉 =
∑

k

λke
iφk (|k,1〉A |k,2〉B − |k,2〉A |k,1〉B), (37)

where |k,1〉A(B) and |k,2〉A(B) are the orthonormal bases and
λk is a real coefficient satisfying 2

∑
k λ2

k = 1. The reduced
density matrix can then be obtained as

ρA = TrB |ψ〉 〈ψ | =
∑

k

λ2
k(|k,1〉A 〈k,1|A + |k,2〉A 〈k,2|A).

(38)

Thereby, we find that the reduced density matrix for the odd
parity phase has the twofold degeneracy. We therefore find
that, due to the odd parity, the OH phase in the APBC can
be detected as the twofold degeneracy in the ES. Note that,
in the PBC, the VBS states do not have an odd parity even in
the nontrivial cases, and thus the ES does not show a stable
twofold degeneracy in any finite-size systems. We also note
that the direct calculation for the (m,n)-type VBS state in the
APBC leads to the confirmation of the presence of the twofold
degeneracy in the ES.

Now, to confirm the validity of the proofs given above, we
consider the Sz

A dependence of the ES calculated numerically.
Our numerical results for the ES in the PBC and APBC are
shown in Figs. 5(a)–5(f), which are given as a function of Sz

A

at L = 50, where Sz
A is the z component of the total spin of

the subregion A. In the APBC, we find that all the spectra at

δ = 0.4 are doubly degenerate but that a part of the spectra at
δ = 0 and 0.6 does not show the degeneracy. This difference in
the degenerate structure comes from the difference in the parity
quantum number, whereby we find that the phase at δ = 0.4
belongs to the (3,1) VBS state, whereas the phases at δ = 0
and 0.6, which have the even parity, belong to the (2,2) VBS
and (4,0) VBS states, respectively. These results are consistent
with the results shown in Fig. 3. In the PBC, in contrast, SA

becomes a good quantum number in all the parameter space.
This is due to the SU(2) symmetry of the system and the spin
quantum number Stot = 0 of the wave function.

Looking, in particular, at the low-lying states of the ES in
the APBC and PBC shown in Fig. 5, we find that the same
numbers of the degenerate spectra, which are separated by
the gaps, are present. If we consider that the low-lying ES
consists of two free edge spins with S = n/2 and m/2, the
degeneracy becomes (n + 1)(m + 1)-fold, which is consistent
with the numbers of the spectra observed in Figs. 5(a)–5(f).
The result in the PBC is also consistent with the fusion rule of
the SU(2) symmetry: i.e., 3 ⊗ 3 = 1 ⊕ 3 ⊕ 5, 4 ⊗ 2 = 3 ⊕ 5,
and 5 ⊗ 1 = 5. Here, the lack of the exact (n + 1)(m + 1)-
fold degeneracy in the PBC is interpreted to be due to the
interference between the edge spins because the system size
is smaller than the correlation length. Therefore, the ES in the
PBC does not show the twofold degeneracy even in the (3,1)
VBS state, which is in contrast to the exact twofold degeneracy
in the ES observed in the APBC.

To clarify the points given above further, let us make the
size extrapolation of the ES. Figures 5(g)–5(i) show the results
for δ = 0, 0.4, and 0.6 with Sz

A = 0 in the APBC and PBC,
where we assume the polynomial function of form ξ (L) =
A + B/L + C/L2 + D/L3 for the extrapolation. We thus find
that the degeneracies in the ES in the APBC and PBC are
approximately in agreement with each other at L → ∞. This
result not only indicates that the difference in the boundary
conditions can be neglected in the thermodynamic limit but
also suggests that the wave functions in the APBC and PBC
become locally equivalent to each other in the thermodynamic
limit. In other words, the absence of the SU(2) symmetry in
the APBC cannot be seen in the ES in the thermodynamic
limit, whereas in the PBC, the difference in the topological
triviality or nontriviality appears in the degeneracy of the ES
in this limit. We thus find that the twofold degeneracy in the
ES established using the MPS formalism [9] is consistent with
the results of the size extrapolations of finite-size calculations
with different boundary conditions.

V. UNIAXIAL SINGLE-ION ANISOTROPY

Finally, let us discuss the effect of the uniaxial single-ion
anisotropy D in the bond-alternating HAF chain. The uniaxial
single-ion anisotropy D (>0) causes the topologically trivial
large-D phase and gapless in-plane AF phase (XY ) in the
HAF without bond alternation. Therefore, the HAF chain with
this anisotropy leads to the Gaussian transition between the
different VBS states and also to the BKT transition between
the gapful and gapless phases. In the HAF chain with S = 2, in
particular, this anisotropy is conjectured to lead to the gapful
intermediate phase called the intermediate-D phase [16].
However, the existence of these phases has not sufficiently
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FIG. 5. Entanglement spectra of the model with S = 2 as the function of the z component of the total spin of the subregion A, Sz
A, calculated

using the APBC (left panels) and PBC (middle panels) with L = 50. Upper, middle, and lower three panels are for δ = 0, 0.4, and 0.6,
respectively. Right panels (g)–(i) show the finite-size extrapolations of the entanglement spectra for the PBC and APBC with Sz

A = 0.

been worked out, except for systems with special terms such
as D4

∑
j (Sz

j )4. This is in particular the case when the system
shows the BKT transition with quite a large correlation length.
There are, however, several methods for approaching the BKT
transition. As discussed in the previous section, to use the level
spectroscopy obtained from the conformal field theory gives us
one of the powerful solutions. Moreover, recent methods using
iMPS, which treats infinite-size systems within a reasonable
truncation error, are expected to solve this problem [14].

Here, we first present the results for the phase boundaries
of the BKT transition in the HAF chains with S = 2 and 3
(see Fig. 6). We use the level spectroscopy technique in the
DMRG for large-size systems. In the previous calculations
using iDMRG, the BKT transition points for (2,2) − XY

and XY − (4,0) are obtained as Dc/J = 0.045 ± 0.002 and
Dc/J = 2.42 ± 0.05, respectively. Our results, on the other
hand, show a saturation behavior as a function of L as shown

in Fig. 6(a), whereby we can determine the phase transition
points for (2,2) − XY and XY − (4,0) as Dc/J = 0.0474(5)
and 2.3897(6), respectively, in a high precision. Thus, the level
spectroscopy technique using the DMRG offers a very accurate
method for determining the BKT transition points. We note,
however, that the transition point for (3,3) − XY is hard to
determine even with our technique, which is due to quite a
large correlation length.

Next, let us discuss the phase diagram of the model for
S = 2 in the parameter space of δ and D. As was discussed
in Ref. [41] for S = 1, the (2,0) dimer phase and large-D
phase are adiabatically connected with each other, but the
gapless in-plane AF phase does not appear in the S = 1 case.
In Fig. 7, we show the phase diagram in the S = 2 case, which
is calculated using the level spectroscopy for L = 26 in the
DMRG technique. As seen in Figs. 6(a) and 6(b), we find
that a qualitatively correct phase diagram can be obtained
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FIG. 6. System-size dependence of the BKT transition points Dc

of the S = 2,3 HAF chains with the uniaxial single-ion anisotropy.
(a) [(c)] Transition point between the (2,2) [(3,3)] VBS state and
in-plane AF phase (XY). (b) Transition point between the in-plane AF
phase and (4,0) VBS state as the large-D phase. The size-extrapolated
values of our results are shown in (d). The iDMRG, LS+ED (level
spectroscopy plus exact diagonalization), and DMRG results are
taken from Refs. [14,24,43,44].

without size extrapolation, which is little changed even in the
thermodynamic limit. As in the case of S = 1, we find that the
large-D phase is connected with the (4,0) dimerized phase.
However, in the case of S = 2, the phase diagram is mostly

FIG. 7. Calculated phase diagram of the S = 2 HAF chain in the
parameter space of the bond alternation δ and uniaxial single-ion
anisotropy D. The phase boundaries between the (2,2), (3,1), and
(4,0) VBS states are determined by the level crossing of the excitation
energies, �EH and �OH. The region of the in-plane AF phase (XY )
is determined as the region where the excitation energy �XY is the
lowest among the three energies �EH, �OH, and �XY .

covered by the in-plane AF phase. This behavior is also found
in the phase diagram in the parameter space of the uniaxial
single-ion anisotropy and Ising anisotropy [14,42], and may
be due to the large correlation length in the large-S systems; in
other words, this result reflects the classical-spin-like behavior
of the HAF chain.

VI. SUMMARY

In this paper, we have studied the entanglement properties
of the bond-alternating HAF chain. We determined the phase
boundaries of the different VBS states with high precision
via the DMRG method employing the level-spectroscopy
technique. We found that the spin gap defined in the APBC
reproduces not only the accurate gap-closing behavior but also
the values of the Haldane gap in agreement with the previous
numerical calculations. Moreover, investigating the central
charge and string order parameter, we extracted the critical
behavior at the transition points and topological properties
of the system. We, however, found that for S > 1 the proper
size extrapolation is required to determine the accurate phase
boundaries due to the large correlation length. We also
discussed the effect of the uniaxial single-ion anisotropy in
the bond-alternating HAF chain. We confirmed the adiabatic
continuation between the large-D phase and (4,0) dimer phase
for S = 2, which is in qualitative agreement with the S = 1
case. We also found that the phase diagram for S = 2 is covered
largely by the in-plane AF phase.

We have moreover studied the ES in the APBC using not
only the DMRG calculation but also the symmetry argument
from the MPS formalism. Considering the boundary effects
on the degeneracy of the ES in finite systems, we elucidated
the following: First, we analytically proved the equivalence
between the parity quantum numbers in the APBC and
the topological invariants, which enables us to classify the
SPT phases by use of the π rotation about the z axis and
bond-centered inversion operation. Second, we showed that the
odd parity in the APBC, which characterizes the topologically
nontrivial phase, leads to the twofold degeneracy in the ES.
Third, evaluating the ES in the thermodynamic limit by the
DMRG method, we confirmed that the ES in the PBC and
APBC complementarily recovers the edge-state picture of the
low-lying ES. These arguments obtained in this paper are
based on the general MPS formalism. Thus, we can apply
this method to the classification of other SPT phases with
general boundary conditions and also to the evaluation of their
entanglement quantities. In particular, our theory, if extended
to general twisted boundary conditions, will not only provide
a useful numerical tool for investigating other SPT phases but
also offer valuable clues for identifying novel SPT phases.
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APPENDIX A: DETAILED PROOF FOR THE PARITY
QUANTUM NUMBER

To make our discussion on the parity quantum number in
the APBC complete, we here consider the SPT classification
for the bond-centered inversion P and π rotation about the z

axis Rz. The projective representation of Rz may be defined as

Rz
A = eiθA

z

(
UA

z

)†
AUB

z , (A1)

Rz
B = eiθB

z

(
UB

z

)†
BUA

z , (A2)

where we ignore the suffixes m for simplicity. Using the above
relation twice, we obtain (Ua

z )2 = eiφa
z Iχa

. Then, considering
the case where the two operators Rz and P act, we obtain the
following relations using Eqs. (16) and (A1):

PRz
A = ei(θA

z +θA
P )

(
UB

z

)T (
UB

P

)†
BUA

P

(
UA

z

)∗
, (A3)

RzPA = ei(θB
z +θA

P )
(
UB

P

)†(
UB

z

)†
BUA

z UA
P . (A4)

Using the relation PRz
A = RzPA, we obtain

ei(θA
z −θB

z )B = UB
P

(
UB

z

)∗(
UB

P

)†(
UB

z

)†
×BUA

z UA
P

(
UA

z

)T (
UA

P

)†
. (A5)

Similarly, exchanging the suffixes A and B, we obtain

ei(θB
z −θA

z )A = UA
P

(
UA

z

)∗(
UA

P

)†(
UA

z

)†
×AUB

z UB
P

(
UB

z

)T (
UB

P

)†
. (A6)

Since UA
P (UA

z )∗(UA
P )†(UA

z )† becomes an eigenvector of the
transfer matrix, we find

UA
z UA

P = eiφA
z,P UA

P

(
UA

z

)∗
. (A7)

Noting the relations UA
P = eiφA

P (UA
P )T and UA

z = eiφA
z (UA

z )†,
we find

UA
z UA

P = ei(φA
z,P +φA

P −φA
z )

(
UA

z UA
P

)T
, (A8)

where UA
z UA

P corresponds to the projective representation
of the combined symmetry RzP . Therefore, we obtain the
relation

φA
z,P + φA

P − φA
z = 0, π mod 2π, (A9)

which leads to further classification of the SPT phases [9].
Moreover, because the matrix Uz

P satisfies the relation

UA
P

(
UA

z

)T (
UA

P

)† = e−i(φA
z,P −φA

z )UA
z , (A10)

we find that the parity quantum number in the APBC can
be written as the topological invariant e−i(φA

z,P −φA
z ) = ±1. In

particular, we find φA
z,P − φA

z = π in the OH phase, so that
the OH phase has an odd parity, resulting in the twofold
degeneracy in the ES in the APBC, as discussed in Sec. IV C.

FIG. 8. (a) Transition points δc calculated for the bond-alternating
HAF chain with integer and half-integer spins S = 1/2,1, · · · ,4. The
solid and dotted lines show the calculated results for δc in the DMRG
and the results for δ̄c obtained from the O(3) NLSM, respectively.
(b) The difference in the transition points between our results and the
results from the O(3) NLSM.

APPENDIX B: TRANSITION POINTS OF
THE BOND-ALTERNATING HAF CHAIN

Since the discovery of the (m,n)-type VBS states in the
bond-alternating Heisenberg chain, the dimerization transition
points δc have been estimated by a number of numerical
studies using the string order parameter [17], level spec-
troscopy [21–24], twisted order parameter [20], and quantized
Berry phase [19]. In Fig. 8, we summarize the transition points
calculated for the bond-alternating HAF chain with integer
and half-integer spins S = 1/2,1, · · · ,4, where we adopt the
level spectroscopy technique for large-size systems in the
DMRG framework. The extrapolations to L → ∞ are made
by the polynomial fitting of δc(L) = δc(∞) + A/L2 + B/L4,
where we use the systems up to L = 80 for S = 1, up to
L = 46 for S = 3/2, up to L = 50 for S = 2, up to L = 40

TABLE I. Calculated transition points δc of the bond-alternating
HAF chain with integer and half-integer spins S. The size extrap-
olations L → ∞ are made using the polynomial δc(L) = δc(∞) +
A/L2 + B/L4. The transition points δ̄c obtained in the O(3) NLSM
are also given. Our results are compared with results of the previous
QMC simulation [20], where the twisted order parameter is used.

Transition points δc δ̄c Previous studies

S = 1, (1,1)-(2,0) 0.25995(3) 0.500 0.25997(3)
S = 2, (2,2)-(3,1) 0.1831(0) 0.250 0.1866(7)
S = 2, (3,1)-(4,0) 0.5491(7) 0.750 0.5500(1)
S = 3, (3,3)-(4,2) 0.137(7) 0.167
S = 3, (4,2)-(5,1) 0.416(0) 0.500
S = 3, (5,1)-(6,0) 0.695(8) 0.833
S = 4, (4,4)-(5,3) 0.108(8) 0.125
S = 4, (5,3)-(6,2) 0.327(8) 0.375
S = 4, (6,2)-(7,1) 0.551(4) 0.625
S = 4, (7,1)-(8,0) 0.778(7) 0.875
S = 3/2, (2,1)-(3,0) 0.4310(3) 0.667 0.43131(7)
S = 5/2, (3,2)-(4,1) 0.316(5) 0.400
S = 5/2, (4,1)-(5,0) 0.633(7) 0.800
S = 7/2, (4,3)-(5,2) 0.243(6) 0.286
S = 7/2, (5,2)-(6,1) 0.492(7) 0.571
S = 7/2, (6,1)-(7,0) 0.742(7) 0.857
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for S = 5/2, up to L = 40 for S = 3, up to L = 20 for
S = 7/2, and up to L = 20 for S = 4. The results are given
in Table I, where we find that our results obtained by the
size extrapolation are consistent with the previous results
obtained by the QMC simulations using the twisted order
parameter [20] but that our results are much more accurate
due to a small finite-size effect. As discussed in Sec. II A,
the bond-alternating HAF chain in the large-S limit can be
described by the O(3) NLSM [see Eq. (2)]. The phase transition

points, in particular, can be estimated as δ̄c = 1 − (2n + 1)/2S

(n = 0,1, · · · ,2S − 1), where the � term becomes π . We
compare our results for the transition points with those of
the O(3) NLSM in Fig. 8(b). Our calculated results, which
converge to zero in the large-S limit, are consistent with the
semiclassical treatment in the O(3) NLSM. Moreover, the
slow convergence shown in Fig. 8(b) suggests the power-law
dependence of the renormalized transition points as a function
of 1/S.
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