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The two-dimensional two-orbital Hubbard model is studied with the use of a finite-size cluster world-line
quantum Monte Carlo algorithm. This model is widely used for simulation of the band structure of FeAs clusters,
which are structure elements of Fe-based high-temperature superconductors. The choice of a special basis set of
hypersites allowed us to take into account four-fermion operator terms and to overcome partly the sign problem.
Spectral functions and the density of states for various parameters of the model are obtained in the undoped
and low-doped regimes. The correlated distortion of the spectral density with the change of doping is observed,
and the applicability of the “hard-band” approximation in the doped regime is demonstrated. Profiles of the
momentum distribution are obtained for the first Brillouin zone; they have pronounced jump near the Fermi level,
which decreases with the growth of the strength of the interaction. The invariance of the Fermi surface with
respect to the strength of the interaction is testified. Nesting is found in the case of electron and hole doping.
Fermi-liquid parameters of the model are derived. The Z factor grows sharply with the increasing of the level of
doping and monotonously decreases with the growth of the strength of the interaction. Moreover, electron-hole
doping asymmetry of the Z factor is revealed. The non-Fermi-liquid behavior and the deviation from Luttinger
theorem are observed.

DOI: 10.1103/PhysRevB.94.235145

I. INTRODUCTION

The role of electron correlations in high-temperature
superconductors (HTSC) based on iron [1] is decisive in
the formation of physical properties of such systems. The
effect of strong Coulomb interactions on the nature of super-
conductivity and the formation of a complex phase diagram
including antiferromagnetic, structural, and superconducting
ordering is a major focus of interest [2,3]. Like copper
HTSC, iron-based superconductors are characterized by a
strongly expressed anisotropy and have a structure of closely
spaced atomic planes of Fe and As (for pnictides). The main
contribution to the band structure near the Fermi surface
is provided by two orbitals, dxz and dyz. Therefore, the
simplest model Hamiltonian for iron-based HTSC reflecting
their crystal and electronic structure is the two-dimensional
generalized two-orbital Hubbard model [4], which has been
intensively studied since the discovery of iron-based HTSC
with the use of various approximate analytical and numerical
methods. The mean-field approximation was used in Ref. [5]
to determine the magnetic order parameter and the electron
density of states; the symmetry of the superconducting order
parameter was investigated in Ref. [6] using the random-phase
approximation. Numerical methods generally also use various
simplifications for modeling the Hamiltonian of the two-orbital
model. Charge stripes states were obtained in Ref. [7] within
the real-space Hartree-Fock approximation away from the half
filling. Quasi-one-dimensional “ladder” geometry was used in
Ref. [8] for the study of the properties of the ground state of
the two-orbital model by density matrix renormalization group
approach. In a recent paper [9], the scheme “Monte-Carlo
+ mean-field,” which has successfully approved itself in
the study of one-dimensional models, was generalized, and
thermal properties of the two-orbital model were investigated.
Exact numerical simulations of the two-orbital model, which
include the method of exact diagonalization and the quantum

Monte Carlo algorithms, are also limited in their applications.
The problem of the two-orbital model for pnictides was solved
in full by the exact diagonalization technique in Ref. [10];
however, the maximum size of the lattice, which one could
managed to diagonalize, was

√
8 × √

8. The applicability of
finite-size cluster quantum Monte Carlo algorithms that allow
us, in principle, to obtain exact results, is limited in this case
by the sign problem, which exponentially slows calculations
at a sufficiently low temperature and/or away from the half
filling.

In this work, with choosing specific basis states for the
Hamiltonian of the two-orbital model and the use of the
CTWL algorithm [11], we were able to overcome partly
the sign problem and to obtain data for Matsubara Green’s
function at sufficiently low temperature in a wide range of
model parameters. Our previous studies for FeAs clusters
of size from 3 × 3 to 10 × 10 have shown the possibility
of effective A1g pairing [11–13]. Note that all calculations
were performed within the limits of the full two-orbital
model. Accurate accounting of nondiagonal four-fermion
terms a+

i,σ aj,σ
′ a+

l,σ
′′ ak,σ

′′′ which can play a key role in the
formation of correlation properties, and which, from our point
of view, cannot be neglected, is the main feature of our
algorithm.

Using the relationship between Matsubara Green’s function
and the density of electron states, we have derived the
momentum distribution and the Fermi liquid parameters of
the model—quasiparticle weight (Z factor), self-energy �,
and scattering rate �—and studied the properties of the model
under doping. The momentum distribution has a clear jump
near the Fermi level; the value of this jump is sensitive to the
strength of the interaction. The asymmetry in the behavior of
the Z factor was observed at electron and hole doping, which
reflects the asymmetry of the Hamiltonian. The evolution of the
Fermi surface was studied at changing the model parameters
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and the level of doping; it is shown that the “hard-band
approximation” is acceptable for the analysis of the topology
of the Fermi surface at low doping and finite value of the
interaction. An increase of the volume of the Fermi surface
with the growth of interaction was observed, which shows the
deviation from Luttinger theorem.

The paper is organized as follows. In the next section
we introduce the Hamiltonian of the two-dimensional two-
orbital model for pnictides. In Sec. III, the relation between
Matsubara Green’s function and the momentum distribution is
demonstrated. Section IV is devoted to the study of the half-
filling case of the model. In Sec. V, the spectral function and
the total density of states are restored, and their dependences
on the parameters of the model are obtained. The doped regime

is studied in Sec. VI, and the Fermi-liquid parameters of the
model are derived in Sec. VII. In Sec. VIII we summarize the
results obtained.

II. THE MODEL

First introduced in Ref. [4], the two-orbital model for iron-
based HTSC takes into account the real crystal structure of
these compounds, as well as the two-dimensional nature of
physical properties. Provided that the main contribution to the
formation of the band structure near the Fermi level makes 3d

states of iron atoms [10,14], the Hamiltonian of the model is
presented as follows:

H = Hint + Hkin

Hint = U
∑

iα

niα↑niα↓ + V
∑

i

nixniy − μ
∑

i

ni − J
∑

i

(nix↑niy↑ + nix↓niy↓)

− J
∑

i

(a+
ix↓aix↑a+

iy↑aiy↓ + a+
ix↑aix↓a+

iy↓aiy↑ + a+
ix↑aiy↓a+

ix↓aiy↑ + a+
iy↑aix↓a+

iy↓aix↑)

Hkin = −t1
∑

iσ

(a+
ixσ ai+x,xσ + a+

iyσ ai+ y,yσ ) − t2
∑

iσ

(a+
iyσ ai+x,yσ + a+

ixσ ai+ y,xσ )

− t3
∑

iσ

(a+
ixσ ai+x+ y,xσ + a+

ixσ ai+x− y,xσ + a+
iyσ ai+x+ y,yσ + a+

iyσ ai+x− y,yσ )

+ t4
∑

iσ

(a+
ixσ ai+x− y,yσ + a+

iyσ ai+x− y,xσ − a+
ixσ ai+x+ y,yσ − a+

iyσ ai+x+ y,xσ ) + H.c. (1)

Here operator a+
ix(y)σ (aix(y)σ ) creates (annihilates) an electron

with spin projection σ on site i and orbital x(y); ti , i =
1, . . . ,4 are hopping amplitudes between orbitals x(y); U ,
V , and J are Coulomb interaction terms; μ is the chemical
potential. In this work we used the quantum continuous
time world-line Monte Carlo algorithm (CTWL algorithm),
adapted for the two-orbital model [11]. The algorithm is free
from Wick’s decomposition and allows the calculation of the
Matsubara Green’s function and obtaining information about
the quasiparticle spectrum and its dependence on temperature
and interaction parameters.

According to our studies [11,12], the exchange term is im-
portant for the correct description of the correlation properties
of the system and the manifestation of a certain type of pairing
symmetry. At the same time, this term is what distinguishes
the model (1) from the usual generalized Hubbard model,
and it leads to difficulties in the implementation of the
simulation by quantum Monte Carlo algorithm. Each term
of the Hamiltonian (1) should be considered separately for
inclusion in the scheme of the algorithm. All the features
of the numerical modeling, encoding of the basic states, and
calculation of correlation functions and Green’s function in
the framework of the CTWL algorithm are described in detail
in Refs. [11–13].

The parameters of Hkin in (1) were taken the same as in
Ref. [10]:

t1 = 0.058(eV ); t2 = 0.22; t3 = −0.21; t4 = −0.08, (2)

and the relationships between Coulomb terms in Hint are the
following:

V = 0.5U ; J = 0.25U. (3)

According to LDA+DMFT calculations and ARPES exper-
iments [15], for NaFeAs these parameters are U = 3.5 eV,
J = 0.85 eV; these correspond to (3).

III. MATSUBARA GREEN’S FUNCTION AND
MOMENTUM DISTRIBUTION

The Matsubara Green’s function

Gijσσ
′ (τ ) = −〈

Tτaiασ (τ )a+
jβσ

′ (0)
〉

(4)

was calculated for clusters up to 10 × 10 FeAs cells in the
temperature range 1/T = 1 ÷ 5 for various values of U =
1 ÷ 8 while maintaining the relation (3). An off-diagonal term
of the form

−γ
∑
ijα

(a+
iασ + aiασ ) (5)

has been added in the calculation. Here γ ∼ 5 × 10−3. On one
hand, such addition to the Hamiltonian does not modify the
calculation results within the accuracy achieved, and on the
other hand, the input of such a controlled off-diagonal term
substantially “animates” the statistics and increases the speed
of convergence. In addition, the presence of this term allows us
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to directly accumulate statistics on Matsubara Green’s function
in the world-line algorithm.

Actually, the momentum distribution n(k) can be obtained
from the relation

n(k) = G(k,τ → −0);

G(k,τ ) =
∑
ij

Gij (τ )eikr ij . (6)

Direct approximation (6) in a numerical calculation leads to
uncontrolled errors; therefore, we have used the following
expression:

nσ (k) =
∫

Aσ (k,ω)

1 + eβ(ω−μ)
dω. (7)

Normalization of nσ (k) was made on the average occu-
pation numbers of orbitals calculated independently in the
same calculation for a given chemical potential. To calcu-
late (7), the spectral function Aσ (k,ω) and the total density of
states N (ω) = ∑

kσ Aσ (k,ω) were recovered from the integral
equation relating the spectral function with Matsubara Green’s
function,

Gσ (k,τ ) = −
∫

Aσ (k,ω)e−τ (ω−μ)

1 + e−β(ω−μ)
dω, (8)

with the use of a stochastic procedure, the details of which are
explained in Sec. V.

IV. THE HALF-FILLING CASE

It should be noted that the results for clusters with the size of
6 × 6 FeAs cells and larger no longer depended on the system
size indicating the applicability of the results for the analysis
of the properties of a macroscopic system. Further data are
presented primarily for 8 × 8 clusters.

Figure 1 shows the profiles of the momentum distribution
depending on the parameter U at half filling along the main
crystallographic directions. The data are presented for the in-
verse temperature β = 1. This is a reasonably low temperature

k
(0,0) (0,π/2) (0,π) (π/2,π) (π,π) (π/2,π/2) (0,0)

n σ
(k

)

0.4

0.45

0.5

0.55

U=1
U=2
U=3
U=4
U=5
U=6
U=7
U=8

FIG. 1. Profiles of the momentum distribution along the main
crystallographic directions, depending on the parameter U at half
filling. Cluster 8 × 8; β = 1.

as βtmax = βt2 ∼ 0.2; in addition, the sign problem did not
allow lowering the temperature significantly. We were not able
to investigate the features of superconducting correlations at
that temperature but succeeded in obtaining the overall picture
of the band structure and the momentum distribution.

The Fermi level was determined by half filling of the
distribution (see Ref. [16] for the peculiarities of determining
the Fermi surface (FS) at nonzero interaction and T > 0).
In the graphs, it is seen as a rather abrupt change of
occupation numbers, and, in a first approximation, it coincides
with the maximum gradient of the momentum distribution
(Fig. 1). There are no distinct filled and unfilled bands; the
interaction significantly blurs the profile. The more strong is
the interaction, the more blurred is the jump, and the more
flattened is the distribution. It is worthy to note that in a first
approximation, the FS is independent of the strength of the
interaction; all the curves intersect at the same points of the
Brillouin zone. This invariance of the FS for FeAs systems was
reported in Ref. [17], and, in addition, was demonstrated in the
framework of the extended Hubbard model [18]. However, a
more detailed examination of the data in Fig. 1 shows that the
distribution curves for various interaction parameters cross
the half-filling level at slightly different momenta, indicating
a weak dependence of the shape of the FS on interaction.

The momentum distribution for the first Brillouin zone is
presented in Fig. 2 for various interaction parameters. The FS
is shown in white and corresponds to the level of half filling
n(k) = 0.5. Its shape is generally consistent with the results of
ARPES experiments and numerical calculations [17,19–23]. A
typical picture of hole pockets at the points � and M is visible,
which was observed also in LnOFeAs (1111) and BaFe2As2

(122) [17]. A similar picture was observed in LiFeAs [22,23].
As can be seen from Fig. 2, the form of the FS is weakly

dependent on the interaction; with increasing of U a slight
redistribution of excitations occurs from the hole to the
electronic branch, simultaneously with the reducing of the
hole pockets and the flattening of the momentum distribution

FIG. 2. Momentum distribution in the first Brillouin zone and the
Fermi surface (white line) for various values of U . Cluster 8 × 8;
β = 1; half filling. (a) U = 0; (b) U = 2; (c) U = 4; (d) U = 8.
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FIG. 3. Momentum distribution in the first Brillouin zone as a
function on the interaction parameter U . Cluster 8 × 8; β = 1; half
filling.

(Fig. 1). The shrinkage of the electron and hole subbands is
accompanied by a tendency of the straightening of the FS. This
is particularly evident around the hole pocket in the center of
the zone, at the point �: With the increase of the interaction
the boundary of the FS around the shrinking hole pocket turns
into a diamond, and a tendency to nesting is observed.

The features of the momentum distribution are also clearly
visible in the 3D picture shown in Fig. 3: the flattening of
the distribution with increase of the interaction, as well as the
presence of the hole pockets at the center (�) and the periphery
(M) of the zone, the filling of which increases with U .

V. THE DENSITY OF STATES

The spectral function Aσ (k,ω) is related to the Matsubara
Green’s function by the integral equation

Gσ (k,τ ) = −
∫

Aσ (k,ω)e−τω

1 + e−βω
dω, (9)

where G(k,τ ) ≡ −〈Tτ [ak(τ )a+
k (0)]〉; k runs the full set of

allowed momenta in the system; τ is imaginary time; σ is
a spin projection. The task of restoring the spectral function
from the equation (9), therefore, is the ill-posed problem of
solving the Fredholm integral equation of the first kind.

One of the most effective schemes for solving the equa-
tion (9) was proposed in Ref. [24]. The main idea of the
method is to approximate the density of states A(ω) by a
piecewise constant function ρ̃(ω),

A(ω) ←− ρ̃(ω) =
∑

χc,w,h(ω), (10)

representing the sum of rectangles determined by the center
position c, the width w, and the height h.

The algorithm is based on minimizing the deviation
between the input Matsubara Green’s function (obtained from
finite-size cluster quantum Monte Carlo calculations) and
the approximated function G̃χ (τ ) by generating stochastic
configurations consisting of various numbers of rectangles
χc,w,h. Various functionals can be used for the calculation
of the deviation; in this work good convergence was achieved

ω-μ
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FIG. 4. The density of states at various temperatures. U = 4; half
filling.

with the use of the least squares functional

�G =
∫ β

0
(G(τ ) − G̃(τ ))

2
dτ. (11)

Figure 4 shows the total density of states (DOS) depending
on temperature at half filling, i.e., in the undoped regime.
The significant variation of the β = 1 curve from the others
is presumably due to the temperature effect; it can be
concluded that the temperature β > 1 is sufficiently low for the
study.

The total DOS depending on the value of the interaction is
shown in Fig. 5 at the half filling. The DOS in the absence
of interaction (black line) was calculated analytically for
comparison. The calculations were performed at β = 1, so
a thermal broadening of the bands takes place; however,

ω-μ
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FIG. 5. The total DOS as a function of U . Cluster 8 × 8, β = 1.
The DOS for a free system is obtained analytically and is shown in
black.
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FIG. 6. The spectral function along the main crystallographic
directions. Left: profiles of the spectral function; right: the dispersion.
(a),(b) U = 3; (c),(d) U = 6. Cluster 8 × 8, β = 1.

we believe that it should not prevent us from seeing the
evolution of the bands with changing of U . This choice of
temperature is associated with the convergence of quantum
Monte Carlo algorithm, namely, with the sign problem. Only
at this temperature were we able to perform the calculations at
a series of values of the interaction parameters with sufficient
accuracy.

The interval between the bands increases with the increase
of the interaction, and is close to the value of U , but not identi-
cal with it, since the interaction part of the Hamiltonian (1)
is more complicated than the conventional Hubbard term.
With the growth of the interaction the bands shrink turning
into narrow peaks; this leads to a reduction of the dispersion
and flattening of the momentum distribution as was noted in
Sec. IV.

A clear picture of the flattening of the dispersion and
shrinking of the bands is also visible in the spectral function
and dispersion of excitations and is shown in Fig. 6. Note that
as the strength of the interaction increases, the quasiparticle
approximation becomes more and more valid for electron and
hole excitations, since the half-width of the spectral peaks (and
hence the damping) decreases.

Consider now the doped case. As noted above, the finite-
size cluster quantum Monte Carlo algorithm suffers from
the minus-sign problem when calculating a two-dimensional
Fermi system. This leads to the fact that the deviation from
the half filling may not afford calculation of thermodynamic
average values, including the Green’s function, with the
reasonable accuracy. We have managed to obtain a good
convergence in the doped case only at several parameters of U

and at temperatures not lower than β = 2. The same problems
were mentioned in Ref. [25] where the doped single-band
Hubbard model was studied.

Figure 7 shows the total density of states at a low level
of electron and hole doping. The shape of the bands changes
as the chemical potential moves from the electron to the hole
doping region. Thus, at n > 1 (electron doping) the right peak
(unoccupied states) is higher, while at n < 1 the left peak (filled
states) becomes higher, as some redistribution of the spectral

ω-μ
505-

A
(ω

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

n=0.94
n=0.97
n=1.00
n=1.04

FIG. 7. The evolution of the density of states with change of
doping near the half filling. U = 4; β = 2.

density occurs. The broadening of the bands is observed
with increasing the level of doping (both hole and electron).
The value of DOS at the Fermi level increases slightly with
increasing the hole doping. Similar correlation effects were
also observed in Ref. [25] for the Hubbard model in the
low-doped regime. However, it will be shown further that the
hard-band approximation can be used as a first approximation
for the study of the Fermi surface topology and characteristics
of the quasiparticle spectrum.

VI. THE MOMENTUM DISTRIBUTION IN THE DOPED
CASE

Figure 8 shows the profiles of the FS at U = 4, β = 2
in the doped case. The first thing to note is the presence of
nesting at electron doping and finite value of U , which is in
agreement with ARPES experiments [22,23]. The changes of
the Fermi surface are similar to those observed experimentally,

FIG. 8. Momentum distribution and the FS (shown in white) as
functions of the level of doping. Cluster 8 × 8. U = 4; β = 2.
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for example, in LiFe1−xCoxAs [23]. This is seen in the contour
of the FS around the central hole area (�), as in the case of
the electron doping a diamond emerges (shrinking with the
increase of the interaction) at an angle of 45 degrees to the
edge of the Brillouin zone. In addition, the shape of the FS
is different in this area for hole and electron doping. Indeed,
the shape of a square oriented along the main crystallographic
directions is almost retained under hole doping, i.e., nesting is
observed (as shown by calculation, for any interaction).

It is useful to compare these data of the direct MC
calculations with the hard-band approximation, or with a
simple filling of the bands by the shift of the chemical potential
with the use of the exactly calculated spectral density at the
half filling. This description of a strongly correlated system,
as was shown in Sec. V, is not entirely correct, but considering
the fact that the profile of the FS in a first approximation is
weakly dependent on the interaction near the half filling, it
is possible to obtain data that will not be too much different
from the accurate calculation. In addition, due to the better
convergence of the Monte Carlo algorithm at the half filling, a
wider range of the values of U can be studied.

FIG. 9. The distribution of occupation numbers in the hard-band
approximation. (a) U = 0; (b) U = 1; (c) U = 2; (d) U = 4; (e)
U = 8.

Figure 9 presents the momentum distribution in the hard-
band approximation for various fillings and interaction param-
eters for 8 × 8 cluster; for clarity, the analytical result for U =
0 is also shown. As well as in the exact calculation, nesting is
observed here at electron doping and finite interaction; the
square shape of the FS maintains at hole doping for any
interaction. It can be seen that in the case of hole doping carriers
tend to localize near the regions (0, ± π ), (±π,0). Under
electron doping the central hole pocket dramatically shrinks,
and the curvature of the FS at the corners of the zone (M) is
close to a circle, somewhat flattened only at sufficiently large
interaction. Therefore, in a first approximation, the invariance
of this section of the FS is preserved even for deviation from
the half filling.

Thus, the main features of the momentum distribution in
the hard-band approximation are not much different from
these of the exact calculation. Figure 10 shows the profiles
of the momentum distribution along the main crystallographic
directions in the first Brillouin zone for the same values of
doping, as in Fig. 7. The following can be noted. The profiles
with different fillings are substantially equidistant, which
means that the bands are filled with virtually no distortion as
the concentration changes, and the hard-band approximation
works well. The momentum distributions vary little with the
change of the filling, which is consistent with the statement
that the momentum distribution of quasiparticles has the same
features (including the Fermi jump) as the total momentum
distribution. Interaction blurs distribution gradients as well as
in the half-filling case.

These results lead us to analyze the profiles of momentum
distributions along the main crystallographic directions in
hard-band approximation (Fig. 11). It is possible in this
situation to consider a greater level of doping at various values
of U away from the half filling. As a result, Fig. 11 represents
the momentum distribution of quasiparticle excitations of hole
and electron types. Almost all the features of the momentum
distribution demonstrated in Fig. 10 for the exact simulation
are observed also in this case of the hard-band approximation.
The distributions change little with the filling, and there is

k
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FIG. 10. Momentum distribution for various levels of doping.
U = 4; β = 2.
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k
(0,0) (0,π/2) (0,π) (π/2,π) (π,π) (π/2,π/2) (0,0)

n
σ
(k

)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
U=1
U=2
U=4
U=8

n=0.8

n=1.0

n=1.2

FIG. 11. Momentum distribution for various doping and interac-
tion parameters. Hard-band approximation. n = 0.8; 1.0; 1.2, β = 1.

blurring of distribution gradients with the increase of the
interaction. As for comparison of the profiles for various values
of U , the following can be noted: In a first approximation, all
the curves meet at points coinciding with the doping level, as
in the half-filling case.

VII. FERMI-LIQUID PARAMETERS

Studies of the Hubbard model [25,26] and experimental
data on FeAs systems [23] may indicate the non-Fermi-liquid
nature of these strongly correlated systems. To investigate
this issue, we extracted the Fermi-liquid parameters of the
model (1). In the quasiparticle approximation, the spectral
density near the maximum of a peak for electron and hole
excitations can be described as follows [27]:

A(k,ω) = Z(k)�(k,ω)

π ((ω − ε(k) + μ)2 + (�(k,ω))2)
. (12)

Here Z(k) is the quasiparticle weight or Z factor, ε(k) is
the excitation energy identified with the maximum of the
spectral peak for a given point of the Brillouin zone [Figs. 6(b)
and 6(d)], �(k,ω) is the quasiparticle scattering rate:

�(k,ω) = −Z(k)Im(�(k,ω)). (13)

Here �(k,ω) is the self-energy; it is assumed that the following
condition is satisfied:

|(ε(k) − μ)| � |�(ω = μ; k = kF )|, (14)

so the quasiparticle scattering rate is small.
The Z factor can also be obtained as follows [28]:

Z =
(

1 − ∂(Re�(ω))
∂ω

∣∣∣∣
ω→0

)−1

. (15)

It is not possible to use the expression (15) for Z factor directly;
one needs to make an analytic continuation of the self-energy
from imaginary to real frequencies and an extrapolation to zero
temperature, using the fact that

�(ωn → 0+) = �(ω → 0), (16)
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FIG. 12. Imaginary part of the self-energy at k = kF as a function
of (a) interaction at n = 1; (b) doping at U = 4.

where ωn is the Matsubara frequency. This allows us to
rewrite (15):

Z = 1

1 − Im�(k,iω0)
ω0

, (17)

where ω0 = π/β is zero fermion Matsubara frequency.
The relation between the Green’s function and the self-

energy is given by the Dyson equation (the chemical potential
is set equal to zero):

G(k,iωn) = 1

iωn − ε(k) − �(k,iωn)
. (18)

Hence,

Z = π

β

1

Im[(G(k,iω0))−1]
. (19)

U
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Z
(U

)

0

0.2

0.4

0.6

0.8

1

FIG. 13. Z factor as a function of U at half filling. Z factor was
calculated at k = kF according to (19).
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FIG. 14. Z-factor as a function of doping. U = 4; β = 2

Figure 12 shows the dependence of the self-energy on the
strength of the interaction and the level of doping. We can
notice that with increasing of U the imaginary part of the
self-energy grows as U 2; at the same time the damping of
quasiparticles decreases: |(ε(k) − μ)/�(ω = μ; k = kF )| ∼
1 for U ∼ 1 ÷ 2 and |(ε(k) − μ)/�(ω = μ; k = kF )| ∼ 4 for
U ∼ 4 ÷ 8.

The dependence of the imaginary part of the self-energy on
doping is very close to that observed in Ref. [28]. Electron-
hole asymmetry is clearly visible; it can be explained by the
asymmetry of Hamiltonian (1).

Figure 13 shows the decrease of the Z factor on the strength
of the interaction. The renormalization of Z can be seen with
the increase of the interaction. It is important to notice that
the Z factor and the imaginary part of the self-energy are
almost constant all over the first Brillouin zone (variation is less
than 5%).

The effect of doping on the Z factor is shown in Fig. 14.
Z factor increases significantly even at low doping; this
indicates growth of DOS at the Fermi level. Note that similar
results were obtained in Ref. [28] for the single-band Hubbard
model.

At the end of this section, we compare the dependence
of the volume of the FS on the interaction strength with
predictions of Luttinger theorem (Fig. 15). According to
Luttinger theorem, the volume of the FS is independent on U

and changes linearly with doping. The evident deviation from
the Luttinger theorem is caused presumably by two factors.
First, as we previously noticed, β = 1 is too large a temperature
to clearly define the FS. The temperature effect can be
estimated from the difference [VF (U = 0) − 0.5]. Second,
the difference of the curve from the constant is due to the
role of the interaction.

U
0 1 2 3 4 5 6 7 8

V
F
(U

)

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

FIG. 15. The volume of the FS as a function of U at the half-filling

VIII. CONCLUSIONS

The two-dimensional two-orbital Hubbard model was
studied with the use of the finite-size cluster world line
quantum Monte Carlo algorithm. This model is widely used
for simulation of the band structure of FeAs clusters, which
are structure elements of Fe-based high-temperature supercon-
ductors. We were able to overcome partly the sign problem and
to obtain data for Matsubara Green’s function at sufficiently
low temperature in a wide range of model parameters. Spectral
functions and the density of states were restored with the use
of the stochastic optimization method in the undoped and low-
doped regimes. Profiles of the momentum distribution were
obtained for the first Brillouin zone; they have a pronounced
jump near the Fermi level, which decreases with the growth of
the strength of the interaction. Fermi surface and its evolution
were analyzed using exact numerical calculations and within
the framework of “hard-band” approximation, when simple
filling of the bands is realized at constant DOS obtained from
MC calculations in the undoped regime. It was shown that the
main features of the momentum distribution in the hard-band
approximation are not much different from these of the exact
calculation. Nesting in electronic and hole doped regimes was
observed. The Fermi-liquid parameters of the model were
derived. The Z factor has shown continuous decreasing with
growing of the strength of the interaction and sharp growth
at the deviation from the half filling. Electron-hole doping
asymmetry of the Z factor was revealed. The non-Fermi-liquid
behavior and the deviation from Luttinger theorem were
observed.
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