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Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation
into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms,
they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a
stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type
correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body
Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to
produce a multideterminant trial wave function. We demonstrate that intelligent sampling of the most significant
determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated
energies. Our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors
and applied to a variety of model and chemical systems.
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I. INTRODUCTION

The development of predictive quantum simulation meth-
ods is one of the foremost challenges in the fields of quantum
chemistry and condensed matter physics. One step toward
being able to accurately predict the properties of a variety
of complex molecules and solids is to develop improved
variational trial wave functions [1,2] for projection quantum
Monte Carlo methods, such as diffusion Monte Carlo (DMC)
[1–5]. In these methods, the trial wave function serves not
only as an importance function to drive the sampling of
configurations, but also as a constraint used to suppress the
development of the sign/phase problems. Accurate variational
wave functions are therefore pivotal for guaranteeing con-
vergence to the correct ground state energy with minimal
bias and for improving the efficiency of simulations [6–8].
This is especially true for strongly correlated systems, for
which noninteracting or mean field trial wave functions are
known to yield substantial statistical and systematic errors
[9]. Developing more accurate variational wave functions
is thus a crucial step toward being able to properly model
many technologically important, yet theoretically challenging,
materials, such as high-Tc superconductors, the lanthanides
and actinides.

One route toward more accurate variational wave functions
for larger, multidimensional systems has been to develop more
sophisticated variational Ansätze, most of which explicitly
include some amount of correlation. Such forms include
antisymmetric geminal product (AGP) [10–15], Bardeen-
Cooper-Schrieffer (BCS) [16–18], Pfaffian [19,20], and matrix
product state (MPS) wave functions [21]. All of these forms
have a long history of being used in calculations performed
at the variational level, but have assumed a more limited role
in projector QMC calculations. A second path toward more
accurate variational states is to create such wave functions
by applying a physically inspired projection operator onto
a trial wave function. For years, the DMC community has
generated trial wave functions using Jastrow factors contain-
ing one-, two-, and/or three-body terms that, among other

things, provide a compact way of enforcing cusp conditions
[1,2,5,6,22–24]. These Slater-Jastrow wave functions and the
advent of new techniques for variationally optimizing them
[25,26] have greatly expanded the fidelity and reach of this
method in recent years. Symmetry-projected wave functions
have also been shown to recover substantial portions of the
correlation energy at the variational level and to considerably
reduce the statistical noise observed in auxiliary-field quantum
Monte Carlo (AFQMC) calculations when used as trial wave
functions [27–31]. Even more sophisticated projectors could
be imagined, but key to unlocking their potential is the ability
to apply and evaluate them in an efficient manner in the
framework of AFQMC.

In this paper, we propose a scheme to create strongly
correlated variational/trial wave functions by exploiting the
Hubbard-Stratonovich (HS) transformation, commonly used
to decouple the Coulomb term in AFQMC simulations, to
decouple two-body projection operators [32]. Based upon
this scheme, we generate Slater-Jastrow trial states for use
in second-quantized projector QMC methods, thus extending
the benefits of the Jastrow wave function beyond the realm of
first-quantized techniques. Within our method, the exact form
of the Slater-Jastrow wave function yields a multideterminant
expansion whose size scales exponentially with the system
size. We therefore explore a few techniques that allow us to
generate representations that quickly converge to the exact
variational energy using but a fraction of the total number
of determinants. In this paper, we use the one-band Hubbard
model and the Gutzwiller projector, the simplest form of a Jas-
trow factor, to demonstrate our methodology. Nevertheless, the
method we propose is completely general and can be extended
to more sophisticated wave function forms and systems.

II. METHOD

A. The Gutzwiller wave function

We choose to demonstrate our scheme on the
modified Gutzwiller wave function (GWF) defined
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as [33,34]

|�G〉 = e−hK̂ P̂G|�〉 = e−hK̂e−β
∑

i n̂i↑n̂i↓ |�〉. (1)

Here, |�〉 = |�↑〉 ⊗ |�↓〉 denotes a single Slater determinant,
such as the free-electron or Hartree-Fock wave function. β > 0
is a variational parameter. The projector P̂G [35], which is
the simplest Jastrow correlator, introduces correlations among
electrons by suppressing doubly occupied configurations in
|�〉. K̂ is a one-body operator often chosen to be the kinetic
energy term of the Hamiltonian, and h is also a variational
parameter. It is shown that the projector e−hK̂ enhances kinetic
exchange, and can improve the variational energy of the
Hubbard model [33,34]. For simplicity, we still refer to the
state given by Eq. (1) as the Gutzwiller wave function.

The two-body nature ofPG hinders the direct application of
|�G〉 in QMC simulations. Nonetheless, using the discrete HS
transformation [32], the projector can be decoupled as follows,

|�G〉 =
∑

{si }
e−hK̂

∏

i

e(− β

2 +γ si )n̂i↑e(− β

2 −γ si )n̂i↓ |�〉, (2)

where cosh γ = eβ/2, and si = ±1 is the auxiliary field on
the ith site. The Gutzwiller wave function produced after
decoupling may be viewed as a finite sum over determinants,
each of which is a function of a discrete set of HS fields
(s1,s2,s3, . . .). We refer to this wave function [Eq. (2)] as the
exact GWF (exGWF).

For a given system size L and filling ρ = (N↑ + N↓)/L
(where N↑ and N↓ represent the number of spin-up and
spin-down electrons), we optimize the variational energy
Evar = 〈�G|Ĥ |�G〉/〈�G|�G〉 as a function of (β,h). We
use the standard AFQMC technique to compute Evar. The
expectation value can be cast as an integral of a product of
determinants that depend on auxiliary fields. The integration
is then carried out by Metropolis Monte Carlo sampling. The
cost generally scales as L3 without employing any local update
technique. For more sophisticated wave functions that involve
many variational parameters, it is necessary to resort to more
efficient algorithms such as the work proposed by Ref. [25].
We have verified that our optimized (β,h) are consistent with
those reported in Ref. [33] for the half-filled Hubbard model
in one and two dimensions.

B. The Hubbard model and the constrained-path
Monte Carlo algorithm

To showcase the GWF, we study the ground state of the
one-band repulsive Hubbard model in two dimensions using
the constrained-path Monte Carlo (CPMC) technique [36,37].
The system is defined by the Hamiltonian

Ĥ = − t
∑

i,σ

(ĉ†iσ ĉi+1,σ + ĉ
†
i+1,σ ĉiσ ) + U

∑

i

n̂i↑n̂i↓. (3)

The parameters t and U represent the hopping amplitude and
on-site repulsion, respectively. ĉ

†
iσ (ĉiσ ) creates (destroys) an

electron with spin σ = ↑,↓ at site i, and n̂iσ is the number
operator for a spin-σ electron.

The CPMC algorithm is an AFQMC method that works in
the second-quantized framework. For a detailed discussion of
the CPMC method and benchmark results, we refer readers to

FIG. 1. Extrapolation of the Trotter approximation error to �τ =
0. The CPMC energy is plotted as a function of the time step �τ

for the half-filled ten-site square lattice at U = 20. Dotted lines are
second-order polynomial fits to the data. The exact energy Eexact (red
circle) and exGWF variational energy Evar (purple square) are also
included for reference. The (red) dashed square in the inset indicates
the geometry of the ten-site square lattice.

Refs. [36–38]. Here we note that CPMC eliminates the sign
problem much as the fixed-node approximation does in DMC
by rejecting random walkers that have negative overlaps with
the trial wave function. We use t as the unit of energy and set
t = 1 throughout this work.

III. RESULTS AND DISCUSSION

In order to demonstrate the benefits of using a Slater-
Jastrow wave function, we first examine how the quality of
the trial wave function affects the magnitude of the systematic
Trotter factorization error. To do so, we compare the ground
state energies obtained using the free-electron (FE) and
exGWF trial wave functions for various time steps �τ for
the half-filled ten-site two-dimensional (2D) Hubbard model
at U = 20 under periodic boundary conditions. Although
quantum Monte Carlo does not exhibit the sign problem
at this filling, we deliberately apply the constrained-path
approximation [36] in the simulations so that we can gauge
how the bias and errors that result from the constrained-path
approximation vary with the quality of trial states. In both
sets of calculations, we have utilized the second-order Trotter
breakup formula for the propagators. Figure 1 compares the
correction of the Trotter error obtained by extrapolating the
CPMC energy to the limit �τ → 0. As illustrated in Fig. 1, the
FE case has a strong dependence on �τ , and the extrapolated
energy is off by 6.2%. In contrast, the energies are not only
more accurate, but have a much weaker dependence on �τ

when the exGWF is used. Similar conclusions may be drawn
from other simulation results (e.g., Fig. 6 in the Appendix).

Next, we compare the fully extrapolated CPMC ground
state energy obtained using a FE trial state with that obtained
using the exGWF. We again consider the half-filled 2D
Hubbard model on the ten-site square lattice with peri-
odic boundary conditions, and retain the constrained-path

235144-2



AUXILIARY-FIELD-BASED TRIAL WAVE FUNCTIONS IN . . . PHYSICAL REVIEW B 94, 235144 (2016)

TABLE I. Ground state energies of the half-filled 2D Hubbard
model on the ten-site square lattice. Eexact denotes exact diagonaliza-
tion results. Evar is the optimized variational energy of exGWF. The
last two columns show the CPMC energies with free-electron (FE)
and optimized exGWF trial wave functions, respectively. Numbers in
parentheses are statistical errors.

U Eexact Evar CPMC + FE CPMC + exGWF

10 −4.2821 −3.9708 −4.1285(31) −4.2831(7)
12 −3.6872 −3.3485 −3.5316(12) −3.6873(9)
16 −2.8771 −2.5444 −2.7259(17) −2.8790(19)
20 −2.3517 −2.0488 −2.2037(18) −2.3498(12)

approximation in order to gauge the effects of the different
trial wave functions.

The results of this comparison are listed in Table I. The
deviation between the exact and FE trial wave function results
generally grows with U , and can be as large as 6.2% at
U = 20. The exGWF data, on the other hand, are in excellent
agreement with the exact energies regardless of U . As manifest
in Table II, the same conclusion may be drawn for other
half-filled systems. While Table I illustrates that the exGWF
is an accurate trial wave function for the system examined, the
exGWF quickly becomes computationally intractable because
the number of determinants in the expansion in Eq. (2) scales
exponentially with L. In order to reduce the computational
cost, we propose several compact representations of the
exGWF and discuss their performance below.

Method I. Using Monte Carlo sampling, we construct a rep-
resentation of the exGWF by randomly choosing determinants
from the 2L states of the full exGWF expansion. The wave
functions constructed in this manner will be called randomly
sampled GWFs (rGWFs). Figure 2 illustrates results obtained

FIG. 2. CPMC energies for the half-filled ten-site 2D Hubbard
model at U = 12 obtained using a rGWF as the trial state. The rGWF
consists of 100 and 800 determinants in (a) and (b), respectively.
In each figure, a solid (green) dot represents a single simulation
using a rGWF. The dashed (green) line represents the average
obtained by averaging over 30 simulations using different rGWFs.
The width of the shaded area is twice the estimated error. FE and
exact diagonalization results are plotted as dotted (red) and solid
(blue) lines, respectively.

from using 30 independent rGWF samples for the half-filled
ten-site 2D Hubbard at U = 12. In Figs. 2(a) and 2(b), each
rGWF consists of 100 and 800 determinants, respectively.
The final CPMC energy is computed by averaging the 30
simulations in each case. Using 100-determinant rGWFs as

TABLE II. Ground state energy comparisons for the 2D Hubbard model. We have considered the square lattice (half-filled as well as two-hole
doped) and four-hole doped 2 × 2 × 3 kagome lattice. The second column denotes the configuration of spin-up and spin-down electrons. Eex

denotes exact diagonalization results. Evar is the variational energy of the sfGWF. The last two columns list the CPMC energies obtained using
the sfGWF and free-electron (FE) trial wave functions, respectively. The column “B.C.” lists the boundary conditions implemented in the
simulations. Note that the CPMC energy is not variational [43]. However, it is possible to construct an energy estimator that gives the upper
bound of the ground state energy [43]. Here we do not address this issue.

U Eex Evar EsfGWF
CPMC EFE

CPMC B.C.

Square 10 site (5,5) 10 −4.28210 −3.94084 −4.2881(9) −4.1285(31) PBC
12 −3.68722 −3.32770 −3.6862(6) −3.5316(12)
16 −2.87709 −2.53662 −2.8673(21) −2.7259(17)
20 −2.35166 −2.04540 −2.3485(27) −2.2037(17)

Square 4 × 4 (8,8) 10 −7.13238 −4.834(11) −7.156(21) −6.9214(38) TABC
12 −6.06247 −3.745(10) −6.024(23) −5.8942(43)
16 −4.64872 −2.582(7) −4.641(10) −4.4892(41)
20 −3.76123 −1.963(9) −3.737(15) −3.6114(29)

Square 4 × 4 (7,7) 10 −11.11166 −9.742(10) −11.2806(10) −11.3393(24) TABC
12 −10.28901 −8.839(10) −10.4218(13) −10.5095(17)
16 −9.23087 −7.766(9) −9.2872(14) −9.4049(31)
20 −8.58849 −7.174(10) −8.5923(20) −8.6963(36)

Kagome 2 × 2 × 3 (4,4) 10 −13.47310 −13.39881 −13.4750(1) −13.4885(6) PBC
12 −13.02480 −12.93998 −12.0282(2) −13.0464(8)
16 −12.40616 −12.28907 −12.4085(1) −12.4309(9)
20 −12.00351 −11.85899 −12.0024(4) −12.0296(11)
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trial states, the averaged CPMC ground state energy is about
0.56% away from the exact result, which compares favorably
against the 4.22% deviation of the FE result. By increasing the
sample size to 800 determinants, the deviation is reduced to
0.29%. We note that the average overlap between the rGWF
and exGWF is 34% and 72% for the 100- and 800-determinant,
respectively. The higher overlap explains the improvement
seen in the 800-determinant data, as more terms are involved
in the sampling process.

Although each rGWF contains a subset of terms from the
exGWF, the comparisons demonstrate that the approach could
still capture the essential physics of the exact Gutzwiller wave
function. There are two factors that can affect the accuracy and
computational cost of the rGWF: the number of determinants
in a given sample, and the total number of independent rGWF
samples. As the system size L and interaction strength U are
increased, we expect the number of determinants needed to
achieve the same level of accuracy as the exGWF to also
increase for a fixed number of independent samples.

Method II. In the rGWF approach, because the determinants
(and their corresponding HS field configurations) are selected
randomly, one clear way of reducing the effort needed to
sample rGWFs is to select the determinants more intelligently.
This is precisely what motivates importance sampling in
efficient Monte Carlo algorithms. To make progress, we
proceed as follows. Let |φi〉 (i = 1,2, . . . ,2L) denote the deter-
minants in the expansion Eq. (2). We construct a Hamiltonian
matrix [M]ij = 〈φi |Ĥ |φj 〉/〈φi |φj 〉 using the nonorthogonal
determinants {|φi〉}. After diagonalizing M , we interpret the
eigenvector of the lowest eigenvalue of the matrix as the weight
w of the determinant |φi〉.

The inset of Fig. 3 shows one example of the distribution
of the determinant weights for the 2 × 2 × 3 kagome lattice
doped with four holes at U = 20. Based on the information in
w, we construct our trial wave functions by linearly combining
determinants with weights satisfying w > wc, where wc is
a cutoff, and study their variational energy as a function
of the number of determinants nd (hence wc) retained. The
open (red) circles in the main panel of Fig. 3 depict the
results for the doped 12-site kagome lattice system. As the
curve indicates, the variational energy quickly converges with
the number of “important” (i.e., large weight) determinants
included in the wave function. For instance, in the main panel
of Fig. 3, the vertical arrow indicates a state containing 252
determinants, corresponding to the cutoff wc = 0.0168. This
state contains ∼6.2% of the total determinants, and has a
87.9% overlap with the exGWF. Its energy is 92.4% of the
exact GWF variational energy.

These results indicate that, as long as importance sampling
is employed, it is possible to construct a trial wave function
much reduced in size which still recovers a sizable fraction
of the variational energy. The same trend carries over to
CPMC calculations using these same trial wave functions.
In fact, as shown in the main panel of Fig. 3, the CPMC
energies converge faster than the variational energies do. For
example, using the 252-determinant trial state indicated by
the vertical arrow, the resulting CPMC result is 0.12% away
from the exact energy. Using the next exGWF representation
(which contains 504 determinants), the deviation is further
reduced to 0.044%. Therefore, by properly sampling the most

FIG. 3. Circles (red): Relative error in the variational energy of
the “importance-sampled” GWF for the 2 × 2 × 3 kagome lattice
doped with four holes at U = 20. The reference is the exGWF
variational energy. The horizontal axis is the number of determinants
nd sampled. Diamonds (green): Relative error of the CPMC results
with respect to the exact energy for the same system. Inset: Weight
distribution of determinants in the exGWF. The solid (blue) horizontal
line indicates the cutoff wc = 0.0168. The resulting variational and
CPMC energies of this state are highlighted by the vertical arrow in the
main panel. The (red) dashed parallelogram indicates the simulation
cell of the 12-site kagome lattice.

important determinants, one is able to create an accurate
representation of the exact Gutzwiller wave function that is
also computationally tractable.

For a given accuracy, the computational cost of methods I
and II is less than that of the full GWF expansion since fewer
determinants are involved in the calculations. The scaling of
both methods is O(L3) times a prefactor proportional to the
actual number of determinants being used/sampled. In the case
of method I, for example, this is the number of determinants per
sample times the number of samples averaged. In general, the
computational cost needed to achieve a set accuracy typically
increases with the system size L and the interaction strength U .

Method III. In order to gain insight into the distribution of
weights, we took a closer look at the determinants’ correspond-
ing HS field configurations. Let 1 and 0 denote the field values
+1 and −1, respectively. Drawing upon the half-filled ten-site
square lattice case as an example, we make the following
observations. First, the field configurations of many of the
important determinants are all permutations of the configu-
ration (1111100000), which has an equal number of +1 and
−1 fields. Second, the field structures with nearly degenerate
weights (as indicated by the “band”-like structure in the inset
of Fig. 3) are related via translational symmetry. For instance,
determinants generated from configurations (1110001010) and
(0001010111) have almost identical weights while these two
configurations are related via a translation in the y direction
by one lattice constant (cf. Fig. 4).

Based on this idea, we generate a trial wave function
(denoted as sfGWF) using only the HS field configuration
(1111100000) and its permutations. The resulting sfGWF
has C10

5 = 252 determinants and a surprisingly large overlap
99.98% with the exGWF. For the same system, we observe
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FIG. 4. Examples of Hubbard-Stratonovich field configurations
that are connected through translation operation in the y direction.
Determinants generated by these fields have essentially the same
weight after the diagonalization procedure discussed in method III.

the same behavior at other interaction strengths: sfGWFs
constructed in this manner ubiquitously have almost unity
overlap with the corresponding exGWF.

Encouraged by these observations at half filling, we
subsequently considered the 2 × 2 × 3 kagome lattice doped
with four holes. This is a closed-shell filling under periodic
boundary conditions. The coefficients from diagonalizing the
matrix [M]ij indicate that highly weighted determinants have
two degenerate HS field configurations.

(11 . . . . . . 1︸ ︷︷ ︸
(L+h)/2

00 . . . . . . 0︸ ︷︷ ︸
(L−h)/2

) and (11 . . . . . . 1︸ ︷︷ ︸
(L−h)/2

00 . . . . . . 0︸ ︷︷ ︸
(L+h)/2

),

where h is the number of holes. Because these configurations
are degenerate, we adopt one of them to construct the sfGWF
trial wave functions for our doped system.

Benchmark results of the sfGWFs for the Hubbard model
are depicted in Fig. 5. FE trial wave function data are also
included for comparison. More detailed data can be found
in the Appendix. In the case of the half-filled ten-site square

FIG. 5. Relative error (absolute value) in the CPMC energy with
FE and sfGWF trial wave functions for half-filled and doped 2D
Hubbard models. Detailed comparisons for the doped kagome lattice
can be found in the Appendix.

lattice and the doped 12-site kagome lattice, the noninteracting
ground state is closed shell under periodic boundary condi-
tions. On the 4 × 4 square lattice, we have implemented twist
boundary conditions in order to have closed-shell free-electron
states at the fillings considered. In all cases, the CPMC ground
state energy is improved when sfGWF is adopted as the trial
wave function. This is particularly true for the ten-site square
and 12-site kagome lattice systems where the sfGWF results
are almost exact. On the 4 × 4 square lattice, the deviation in
the sfGWF result is typically less than 1% from the exact
energy for half filling. In the doped case, the error only
becomes smaller at large couplings.

Before we close the discussion, we would like to make a few
remarks regarding the three methods presented in this section.
Because the exGWF expansion scales exponential with system
size, reducing the computational cost of using Slater-Jastrow
wave functions such as the Gutzwiller wave function discussed
here is essential in making these wave functions practically
useful. The “importance sampling” scheme (i.e., method II)
appears to be the most efficient approach, at least for the
clusters tested. To converge the CPMC energy, the number
of dominant determinants required is only a fraction of the
total number of terms 2L. Obviously, the diagonalization
technique is only suitable for small clusters. A full variational
approach will be required for large simulation cells and
realistic Hamiltonians in quantum chemistry. This idea will
be explored in a future publication.

The computational cost of the proposed sfGWF approach
scales as CL

n (2n being the total number of electrons), which
compares favorably with the 2L scaling of the exGWF, but
nevertheless is substantial. The cost may be further reduced
if the symmetry among degenerate fields is exploited. We
also note that the HS fields generated in the sfGWF do not
exhaust all the highly weighted determinants. This may be
responsible for the slightly larger deviation (comparing to
exGWF data) observed in Table II for systems simulated with
periodic boundary conditions.

The comparisons in Fig. 5 and Table II indicate that the
best agreement between the sfGWF and exact energies is
achieved for closed-shell systems with PBCs. For the 4 × 4
lattice cases, while twist boundary conditions allow the free-
electron state at any filling to be unique (i.e., closed shell),
they nevertheless break the C4 rotational symmetry of the
lattice. We speculate that the effective magnetic flux resulting
from twist boundary conditions may be responsible for the
relatively large deviations in the sfGWF results because the
decomposition Eq. (2) breaks the SU(2) spin symmetry. This
speculation is partly supported by the fact that, for the 4 × 4
lattice system, the variational energy is at least 10% higher
than the exact energy and can be as large as 47.8% (half filled,
U = 20). In contrast, the variational energy of the sfGWF is
quite accurate for the ten-site square and 12-site kagome lattice
cases, with the smallest deviation being only 0.55% (four-hole
doped 12-site kagome at U = 10; cf. Table II in the Appendix).
In addition to the “spin” decomposition scheme Eq. (2), one
could also employ the charge decomposition which preserves
the spin rotation symmetry [39]. This issue of different HS
decomposition techniques will be explored in future works.

It should be noted that Gutzwiller-projected wave functions
have been adopted in real-space QMC methods for lattice
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FIG. 6. Correction of the systematic Trotter approximation error for the four-hole doped 2 × 2 × 3 kagome lattice. The geometry of the
simulation cell is depicted in the inset of Fig. 3. The CPMC energy is plotted as a function of the time step �τ . The exact diagonalization
(ED) energy (red circle) and sfGWF variational energy (purple square) are also included for reference. We note that the CPMC energy is not
variational [43], as can be seen from the extrapolated results.

fermions such as in the fixed-node Green’s function quantum
Monte Carlo (FNMC) [40,41]. Because the configuration
space is discretized, the FNMC replaces the true Hamiltonian
with an effective one, and the converged solution is an upper
bound to the true ground state. Nevertheless, one advantage of
the real-space technique is that it is less demanding to incorpo-
rate Gutzwiller-type projectors into trial wave functions. We
have compared the ground state energy computed by FNMC
with that obtained using our approach. For the 2D Hubbard
model doped with six holes on the 4 × 4 lattice, the exact
energy is Eex = −1.094 39 per site. Our approach [a sfGWF
state generated using permutations of the field configuration
(111110000000000), which consists of 4368 determinants]
gives ECPMC = −1.094 36(3), while the FNMC energy is
EFNMC = −1.086(2) [42]. We speculate that the relatively
large deviation in the FNMC result is due to the use of a
less accurate variational wave function, since the variational
energy of the GWF state employed in the FNMC calculation is
Evar = −1.066(2) [42], which is considerably higher than that
produced by our optimized sfGWF state, Evar = −1.0872.

IV. SUMMARY

Using the Gutzwiller-projected wave function as an ex-
ample, we have illustrated an auxiliary-field-based scheme

for generating Slater-Jastrow trial wave functions for second-
quantized AFQMC simulations. We have shown that, by
intelligently sampling multideterminant representations of
these wave functions, we can produce trial wave functions
that recover substantial amounts of both the variational and
correlation energies. These wave functions decrease CPMC
errors when compared with those produced by traditional
AFQMC techniques that rely on single determinant trial
wave functions. Although the HS field structure is unique
to the discrete HS transformation adopted in this work,
the results presented shed light on how to develop a more
efficient sampling scheme for more general Jastrow-type wave
functions, paving the way toward more accurate AFQMC
simulations of not only strongly correlated model systems,
but of molecules and solid-state materials as well.
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APPENDIX: BENCHMARKING THE sfGWF

We list detailed sfGWF benchmark data for the square and kagome lattices in Table II. In Fig. 6, Trotter corrections for the
four-hole doped 2 × 2 × 3 kagome lattice are presented.
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