
PHYSICAL REVIEW B 94, 235116 (2016)

Competing effects of magnetic impurities in the anomalous Hall effect on the
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We investigate the anomalous Hall effect (AHE) on the surface of a topological insulator induced by a finite
concentration of magnetic impurities, and find topologically nontrivial and trivial mechanisms simultaneously
contributing to the Hall conductivity. In the topologically nontrivial mechanism, the impurities gap the surface
spectrum and result in a half-integer quantized intrinsic Hall conductivity in units e2/h, while in the topologically
trivial mechanism, the half-integer quantized plateau is modified by impurity-induced localized states via a
gap-filling process. The nonmagnetic charge potential itself, though participating in the gap-filling process,
cannot induce the AHE. In the presence of a finite magnetic potential, the charge potential would destroy the
symmetric distribution of the Hall conductivity by redistributing the localized levels. More interestingly, the sign
of the Hall conductivity is tunable by changing the strength of the charge potential.
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I. INTRODUCTION

Topological insulators (TIs) [1–3], possessing strong spin-
orbit interactions and time-reversal symmetry (TRS), represent
a novel quantum state of matter in condensed matter physics.
TIs have a bulk band gap and gapless surface states protected
by the TRS [4–6], being adiabatically distinct from ordinary
insulators. The topological surface states (TSSs) are featured
with a Dirac-like dispersion relation and a chiral spin structure
due to spin-momentum interlocking [7–10]. Owing to their
fundamental interest and promising applications in spintronics
and topological quantum computation, manipulating the Dirac
electronic properties or engineering the Dirac spectrum of the
TI materials have been paid much attention recently [11–14].
Artificially creating an energy gap in the spectrum of the TSSs
is one of the most promising pathways in the manipulation
of the Dirac electrons [15–24], as the gap opening would
result in multiple exotic phenomena, such as the recently
observed quantum anomalous Hall effect (AHE) [25]. The
AHE in conventional ferromagnetic metals [26], as a result
of the interplay between the spin-orbit interaction and TRS
breaking, has two distinct origins, intrinsic and extrinsic
mechanisms. The intrinsic mechanism is dominated by the
Berry curvature of the electron states below the Fermi energy,
which can give rise to an integer or half-integer quantized Hall
conductivity [27]. The extrinsic mechanism is an outcome
of the scattering of the electrons near the Fermi energy by
impurities [28–34].

Theoretically, doping magnetic impurities in TI materials
would induce the AHE, due to broken TRS. Recently,
theoretical investigations showed that magnetically doping
the bulk of a TI material will lead to a gap opening for the
TSSs [35,36], and a single magnetic impurity deposited on
a TI surface with a finite spatial extent can gap the TSSs
as well [37]. While no incipient gap was found for single
pointlike magnetic impurity scattering [12], interestingly, for
a finite concentration of pointlike magnetic impurities with
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their spins ferromagnetically aligned [38], an energy gap
can be generated. On the other hand, it was found that
the energy gap could be filled rapidly by scattering off the
strong nonmagnetic potential of impurities [18], and so the
gap-opening effect may be unobservable from the density of
states (DOS) of the TSSs in the strong potential scattering
regime [24]. Compared to the DOS, the AHE is expected to
be very sensitive to the energy gap, and can be experimentally
probed by magneto-optical Faraday and Kerr effects [39,40].
Therefore, anomalous Hall conductivity may serve as an
alternative measurable quantity for the experimental study
of the properties of impurity-induced energy gap, especially
when the scattering potential is strong. It is highly desirable
to understand theoretically how the competing gap-opening
and gap-filling processes caused by the magnetic impurities
manifest themselves in the AHE of the TSSs.

In this paper, we study the AHE induced by a finite
concentration of magnetic impurities deposited on a TI
surface. We find that two mechanisms, topologically nontrivial
and trivial mechanisms, relating to the gap-opening and
gap-filling processes, contribute simultaneously to the Hall
conductivity. In a topologically nontrivial mechanism, the
magnetic impurities gap the Dirac spectrum, resembling a
two-dimensional (2D) Dirac band in graphene or MoS2 with
spin-orbit coupling [29,31], which results in a half-integer
quantized intrinsic Hall conductivity plateau in units e2/h.
In a topologically trivial mechanism, the extrinsic Hall
conductivity due to impurity scattering, with signs opposite to
the intrinsic Hall conductivity, develops peaks when the Fermi
energy approaches the localized levels. The contributions
from the two mechanisms separate well from each other in
energy for weak magnetic impurity scattering. However, with
increasing the strength of the magnetic potential, the trivial
localized states would enter the gap gradually, making the two
mechanisms compete with each other. As a result, the Hall
conductivity plateau deviates from the half-integer quantized
value in the strong impurity scattering regime. The charge
potential itself, though taking part in the gap-filling process,
cannot induce the AHE. For a finite magnetic potential, the
charge potential will destroy the symmetric distribution of the
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Hall conductivity due to the redistribution of localized levels.
More interestingly, the sign of the Hall conductivity is tunable
by adjusting the strength of the charge potential.

The rest of this paper is organized as follows. In the
next section, we demonstrate the gap-opening and gap-filling
processes caused by the magnetic impurities deposited on a TI
surface. Then we study the magnetic-impurity-induced AHE
on a TI surface in Sec. III. A brief summary is given in Sec. IV.

II. MAGNETIC-IMPURITY-INDUCED ENERGY GAP

Let us start from a continuum model of the TSSs with a
low-energy effective Hamiltonian given by

H0 =
∑

k

c
†
k[�υF(k × ẑ) · σ − μσ0]ck, (1)

where c
†
k = (c†k,↑,c

†
k,↓) represents the electron creation opera-

tor at momentum k = (kx,ky), σ denotes the vector of the Pauli
matrices for electron spin, and μ is the chemical potential. The
eigenenergies of the Hamiltonian H0 are E± = −μ ± �υF|k|,
where the energy position of the Dirac point is determined by
μ. The impurities are modeled by the Hamiltonian

Himp =
∑
m

∫
c†(r)V δ(r − rm)c(r)dr, (2)

with c†(r) = 1√
N

∑
k c

†
ke

−ik·r (N represents the number of
the total states) and V = U0σ0 − JS·σ being the scattering
potential, which contains both a charge potential U0 and a
magnetic potential with S as the spin of the impurity. The δ

function in Himp is used to approximate a spatially continuous
scattering potential sharply peaked at the impurity sites. Since
the quantum nature of the impurity spins is not crucial, we
adopt the classical impurity model, in which the limits of large
spin |S| → ∞ and weak hybridization J → 0 are taken, but
their product J |S| is kept to be finite [12,18].

For the TSSs to open an energy gap, we need to consider
a finite concentration of magnetic impurities, as discussed
in Ref. [12]. Under the perturbation of localized impurities,
the configuration-averaged Matsubara Green’s function of the
TSSs reads

G(k,iωn) = G0(k,iωn) + G0(k,iωn)T (iωn)G(k,iωn), (3)

where G0(k,iωn) = [iωn − H0]−1 is the impurity-free Green’s
function, and T (iωn) is the T matrix, with ωn as the
Matsubara frequencies. The density of magnetic impurities,
ρ = ∑

m

∫
δ(r − rm)dr/N , is taken to be small, so that the

T matrix can be evaluated within the first Born approxima-
tion [42], yielding T (iωn) = ρ[σ0 − V

∑
k G0(k,iωn)]−1V +

O(ρ2). The impurity-modified averaged Green’s function,
to first order in ρ, has the form G(k,iωn) = [iωn − H0 −
�(iωn)]−1, where �(iωn) is the self-energy, given by

�(iωn) = [Ũ0(iωn)σ0 − J S̃(iωn) · σ ]ρ. (4)

Here, Ũ0(iωn) = U0−g(iωn)U+U−
[1−g(iωn)U−][1−g(iωn)U+] , S̃(iωn) =

S
[1−g(iωn)U−][1−g(iωn)U+] , U± = U0 ± J |S|, and g(iωn) =
N(iωn+μ)
4π(�υF)2 ln (iωn+μ)2

(iωn+μ)2−	2 , with 	 being a high-energy cutoff.
Expression (4) for the self-energy is valid for impurity

spins ordered in an arbitrary direction. The self-energy is

FIG. 1. (a) The low-energy band structure, given by
−Im{Tr[G(k,ω+)]}/π , for U0 = 0 and JS = 1. (b)–(d) The DOS
of the TSSs as a function of ω for some different choices of the
parameters U0 and JS. Here, JS = J |Sz|, and the other parameters
are taken to be μ = 0, 	 = 300 meV (see, e.g., Ref. [8]) and ρ = 0.1
(the experimental value is about 0.08 measured in Ref. [41]). U0 and
JS are in units of meV.

an operator in the electron spin space, and plays the role of
an effective potential energy. For a weak impurity scattering
potential, i.e., g(iωn)U±(iωn) � 1, the self-energy reduces to
�(iωn) = (U0σ0 − JS · σ )ρ, which is identical to the mean-
field approximation of the impurity scattering potential. One
can see that as long as the z component Sz of the impurity
spins is nonzero, an energy gap will appear around the Dirac
point in the electron energy spectrum, with the gap size being
proportional to ρJ |Sz|. With increasing the strength of the
magnetic scattering potential, the energy gap is expected to
enlarge. However, as will be shown, some localized levels,
which are determined by the poles of the Green’s function,
approach the Dirac point, leading to the gap-filling effect.
Therefore, in the present approach, the gap-opening and
gap-filling processes are treated on an equal footing, which
are both described by the spin-dependent self-energy.

From the above discussion, we notice that no energy gap
will appear, if all the spins of the magnetic impurities are
confined in the x-y plane. We consider a favorable situation,
where the spins of the magnetic impurities are aligned in the
normal direction to the x-y plane. The self-energy then reduces
to

�(iωn) = [λ+(iωn)σ0 + λ−(iωn)σz]ρ, (5)

where λ±(z) = 1
2 [ U+

1−g(z)U+
± U−

1−g(z)U−
].

In Fig. 1(a), we plot the low-energy band structure, given by
−Im{Tr[G(k,ω+)]}/π , with ω± = ω + i0±, for U0 = 0 and
J |Sz| = 1. From Fig. 1(a), we see that for a moderate strength
of the magnetic scattering potential, a well-defined energy gap
will emerge. As indicated by Eq. (5), the size of the energy
gap is defined by λ−(ω)ρ . It is proportional to ρJ |Sz| for a
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weak magnetic scattering potential, which is very consistent
with the observations in Ref. [41], because λ−(ω) is dominated
by U± if 1/J |Sz| � g(ω). With increasing the strength of the
magnetic scattering potential, the gap should get bigger, but the
localized levels, determined by 1 ± g(ω)ρJ |Sz| = 0, approach
the Dirac point. As a consequence, for a strong magnetic
impurity scattering, the gap will become less noticeable in
the DOS, because the impurity-induced localized states will
fill the gap rapidly when they approach the Dirac point. The
DOS of the TSSs is obtained as

ρTS(ω) = Im

[
ω+ + μ − λ+(ω+)ρ

2π2(�υF)2
ln

F(ω+) − 	2

F(ω+)

]
, (6)

where F(z) = [z + μ − λ+(z)ρ]2 − [λ−(z)ρ]2. In Fig. 1(b),
we plot the calculated DOS as a function of ω, for several
different values of J |Sz|, demonstrating the gap-filling process
by the localized levels.

The charge potential scattering would accelerate the gap-
filling process by redistributing the localized levels and
renormalizing the position of the Dirac point, as shown in
Figs. 1(c) and 1(d). For a nonzero charge potential U0, the
localized levels are determined by 1 ± g(ω)U± = 0. With
increasing the charge potential U0, the localized level for
ω < 0 will approach the Dirac point, accompanied with an
increasing and narrowing of the corresponding DOS peak.
The localized level for ω > 0 behaves in an opposite way. With
increasing U0, it shifts away from the Dirac point, and the DOS
peak vanishes gradually. As a result, the originally symmetric
distribution of the localized levels is destroyed, as shown in
Fig. 1(d). The localized level for ω > 0 will entirely disappear
if U0 � J |Sz| (for U± > 0), followed by another localized
level emerging on the ω < 0 side, as shown by the dark solid
curve in Fig. 1(d). If U0 changes sign, the behaviors of the
localized levels for ω < 0 and ω > 0 will interchange. In the
more complicated case, where the charge potential is randomly
distributed with 〈U0〉 = 0, the localized levels are expected to
remain symmetrically distributed with respect to the Dirac
point. We note that while it participates in the gap-filling
process, the charge potential scattering alone cannot induce
a gap for the TSSs, because λ−(ω) = 0 if J |Sz| = 0.

In Ref. [24], Pieper et al. numerically investigated the effect
of magnetic surface disorder on the TSSs. In their work, an
inherent energy gap around the Dirac point was assumed
to preexist and the magnetic surface disorder was modeled
as a random Zeeman field. Though different in models and
methods, their result is consistent with ours. For example,
they also observed that the energy gap around the Dirac
point in the DOS would become ambiguous for a strong
magnetic potential. Therefore, alternative methods, other than
the measurement of the DOS, are highly desirable to study the
effects of impurities on the TSSs, especially when the impurity
potential is strong.

III. MAGNETIC-IMPURITY-INDUCED AHE

The magnetically doped TI surface can host an interesting
AHE, which will be studied in this section. The AHE has been
extensively explored in quantum anomalous Hall systems [33],
such as graphene [29,30], MoS2 [31,32,34], and 2D electron
gas [28]. Using the Streda-Smrcka [29,34] version of the Kubo

formula, one can divide the Hall conductivity into two different
terms, σxy = σ I

xy + σ II
xy , with σ I

xy and σ II
xy corresponding to

the contributions of the electrons at the Fermi level and
below the Fermi level, respectively. It was found σ I

xy = 0 and
σ II

xy = −e2/2h for the 2D Dirac band of a single spin of a
single valley in graphene or MoS2 in the insulating regime, and
σ I

xy = − �

2
√

(υkF)2+�2

e2

h
and σ II

xy = 0 in the metallic regime.

The Kubo-Streda formula can be expressed in terms of
Green’s functions as

σ I
αβ = −e2

�

4π

∫
dε

df (ε)

dε
Tr{υα[GR(ε) − GA(ε)]υβ

×GA(ε) − υαGR(ε)υβ[GR(ε) − GA(ε)]}, (7)

and σ II
xy is easy to find in Refs. [29,34]. Here, υα/β =

∂H/�∂kα/β is the velocity operator and GR/A(ε) is the
retarded (advanced) Green’s function. For convenience, we
rewrite the impurity-modified Matsubara Green’s function
for the TSSs as G(k,iωn) = ∑

η=±
1

iωn−ξη
( 1

2σ0 + ηP ), with

ξ± = −μ + λ+(iωn)ρ ±
√

(�υF|k|)2 + [λ−(iωn)ρ]2 and

P = 1

ξ+ − ξ−

(
λ−(iωn)ρ �υF(ky + ikx)

�υF(ky − ikx) −λ−(iωn)ρ

)
. (8)

Employing Eqs. (7) and (8) and the relation GR/A(ε) =
G(k,ε±), we derive the extrinsic and intrinsic Hall conduc-
tivities σ I

xy and σ II
xy for the magnetically doped TI surface

to be

σ I
xy = −e2

h

π − φ

π
Im

[
E−

F + μ − λ+(E−
F )ρ

|F(E−
F )| sin φ

λ−(E+
F )ρ

]
(9)

and

σ II
xy = −e2

h

∫
dε

π
f (ε)Im

[
1−2λ+(ε−)̃ε∂εg(ε−)

F(ε−)
λ−(ε−)ρ

]
,

(10)

where ε̃ = ε + i0− + μ − λ+(ε−)ρ, EF is the Fermi energy,
and φ is the argument of F(E−

F ).
As expected, the Hall conductivity is generated by an

effective Zeeman-like field, namely, λ−(ε−)ρ, produced by
the collective effect of a finite concentration of magnetic
impurities. The magnetic-impurity-induced effective Zeeman-
like field is distinct from the intrinsic mass term induced by
the spin-orbit interaction for the 2D Dirac band in graphene
and MoS2 [29,31], because the energy-dependent Zeeman-like
term here, λ−(ε−)ρ, determined by the impurity density ρ and
the scattering potentials U±, contains both the topologically
nontrivial and trivial contributions.

In the topologically nontrivial mechanism, the magnetic
impurities gap the TSSs, and result in a half-integer quantized
intrinsic Hall conductivity plateau in units of e2/h (σ I

xy = 0
and σ II

xy = e2/2h), when the Fermi level is within the energy
gap, as can be seen from Figs. 2(a) and 2(b). To see more clearly
the contribution from the topologically nontrivial mechanism,
we note that the function g(ε−) accounts for the impurity
scattering effect, and its key role is to generate localized
electron states, as has been discussed in Sec. II, relating
to the topologically trivial mechanism. The intrinsic Hall
conductivity is mainly determined by the topological structure
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FIG. 2. Hall conductivities σ I
xy and σ II

xy vs EF for JS = 0.2 in (a)
and (b), and varied JS in (c) and (d). Here, U0 = 0, and the other
parameters are chosen to be the same as in Fig. 1.

of the valence band, and is insensitive to g(ε−). Therefore, we
can reduce Eqs. (9) and (10) by setting g(ε−) = 0, and find the
intrinsic Hall conductivity to be

σ I,int
xy = e2

h

ρJ |Sz|
4

θ (EF + μ − ρU+) − θ (ρU− − EF − μ)

EF + μ − ρU0
(11)

and

σ II,int
xy = e2

h

f (−μ + ρU−) − f (−μ + ρU+)

2
, (12)

which is obviously half-integer quantized for the Fermi level
within the energy gap.

For a weak magnetic impurity scattering, the gap-filling
process is suppressed, and the contributions from the topolog-
ically nontrivial and trivial mechanisms separate well from
each other in energy. As a result, the plateau of the Hall
conductivity resides at the half-integer quantized value. With
increasing ρJ |Sz|, the Hall conductivity plateau will deviate
from the half-integer quantized value, since the trivial localized
levels enter the gap gradually. The plateau of σ II

xy , as shown in
Fig. 2(d), reduces its height due to the competition between
the topologically nontrivial and trivial mechanisms. In fact,
the gap cannot be fully filled by the localized levels, since the
Dirac point is decoupled to the classical impurities, and the
impurity-induced bound states cannot cross the Dirac point.
As a result, the gap-filling process by the localized levels does
not destroy the topological nature of the system, and the Hall
conductivity plateau does not vanish completely during the
gap-filling process.

In the metallic regime for a Fermi level out of the energy
gap, the property of the Hall conductivity is dominated by the
contribution of the electrons at the Fermi surface, including the
intrinsic and extrinsic contributions. The intrinsic contribution,
i.e., Eqs. (11) and (12), is similar to that for the 2D Dirac band

-2 0 2
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-0.8
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0

0.4

σ
xy

 (e
2 /h

)

(a)
U

0
= 0

U
0
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F
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F
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FIG. 3. Hall conductivity σxy = σ I
xy + σ II

xy vs EF in (a), and vs U0

in (b), for J |Sz| = 2. The other parameters are the same as in Fig. 1.

of a single spin and a single valley in graphene or MoS2 with an
intrinsic gap, where σ int

xy = e2

h
�

2|EF| and it decays monotonously
to zero without changing its sign, when the Fermi energy shifts
away from the energy gap. However, due to the topological
trivial mechanism, the impurity-scattering-induced extrinsic
Hall conductivity can overwhelm the intrinsic one, as shown
in Figs. 2(c) and 2(d). The impurity scattering processes mainly
occur around the localized levels, where the Hall conductivity
may change its sign and develop peaks. It is quite different from
a clean system in that, besides σ I

xy , σ II
xy can also contribute to the

extrinsic Hall conductivity. Similar to σ I
xy , σ II

xy first reaches a
negative maximum around the localized levels and then decays
to zero as the Fermi level shifts away from the gap. As we
increase the magnetic potential, the peaks of the extrinsic Hall
conductivity will approach the energy gap, and overlap the
intrinsic Hall conductivity plateau.

In addition to the main peaks in σ I
xy , one may notice from

Fig. 2(c) that two other small peaks emerge, decorating the
main peaks. In fact, to the first order in ρ, we can obtain

σ I,ext
xy = e2

h

π − φ

2π

Im[λ−(ε+)]

Im[λ+(ε−)]
. (13)

From this formula, one can find that the main peaks origi-
nate from Im[λ−(ε+)]/Im[λ+(ε−)], and the small peaks are
attributable to φ.

A nonmagnetic charge potential alone cannot induce the
AHE, because if J |Sz| = 0, λ−(ε) = 0, and both the intrinsic
and extrinsic Hall conductivities vanish, as indicated by
Eqs. (9) and (10). In the presence of a finite magnetic impurity
potential, the charge potential can destroy the symmetrical
distribution of the Hall conductivity through redistributing the
localized levels, as shown in Fig. 3(a). More interestingly,
from Fig. 3(b), we see that the sign of the Hall conductivity is
tunable by the strength of the charge potential U0.

In the above discussion, JS > 0 is assumed. The gen-
eralization of the conclusion to JS < 0 is straightforward.
The effective Zeeman-like field λ−(ε−)ρ is dependent on the
exchange coupling JS . When changing the sign of JS, the
effective Zeeman-like field changes its sign, and as a result,
the anomalous Hall conductivity will change sign as well.

Our calculation is done in a 2D bulk. For a finite ribbon,
one would expect edge states to carry the Hall conductivity.
A finite ribbon has two surfaces, and contributions to the Hall
conductivity from the two surfaces are additive, giving rise
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to an integer-quantized Hall conductivity. If the total Hall
conductivity is e2/h, then there will exist one chiral edge
state at an edge of the ribbon, which is jointly possessed by
the two surfaces. The truncation of the two surface bulk bands
only corresponds to one band of the edge states, similar to
the truncation of K and K ′ valleys in graphene [29]. In our
paper, the classical impurity model is employed. In a more
complicated case, e.g., for quantum impurities, the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interactions are shown to be
strongly nonuniform [41], and how these interactions affect
the gap-filling and gap-opening effects of the impurities is still
an open question.

IV. SUMMARY

The anomalous Hall effect induced by magnetic impurities
on a TI surface has been studied. We find both topologically
nontrivial and trivial mechanisms simultaneously contribute to
the Hall conductivity. The former gaps the surface spectrum,

resulting in a half-integer quantized intrinsic Hall conductivity
in units e2/h in the insulating regime, and the latter modifies
the half-integer quantized plateau of the Hall conductivity
by filling the gap with trivial localized states. The charge
potential scattering itself, though participating in the gap-
filling processes, cannot induce the AHE, but it destroys the
symmetric distribution of the Hall conductivity by redistribut-
ing the localized levels and can modify the sign of the Hall
conductivity.
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