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Modal and excitation asymmetries in magnetodielectric particle chains
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We study the properties of dipolar wave propagation in linear chains of isotropic particles with independent
electric and magnetic response, embedded in vacuum. It is shown that the chain can support simultaneously
right-handed modes (RHMs) and left-handed modes (LHMs) of transverse polarization. The LHMs are supported
by the structure even if the chain’s particles possess positive polarizabilities and no Bi isotropy; the needed
structural Bi isotropy is provided by the propagator instead of by the particle’s local properties. In contrast to the
transverse modes in chains that consist of purely electric particles that are inherently RHM, the LHM dispersion
lacks the light-line branch since the dipolar features are not aligned with the electric and magnetic fields of a
right-handed plane-wave solution in free space. Furthermore, it is shown that the spatial width of the LHM is
significantly smaller than that of the RHM. Excitation theory is developed, and it is shown that the chain possesses
modal and excitation asymmetries that can be used to eliminate reflections from the chain’s termination.
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I. INTRODUCTION

Wave propagation and modal analysis for linear arrays
of electrically polarizable particles were studied in many
publications [1–6]. In its most basic form—a linear array
of isotropic electric particles—the structure supports two
independent modes: transverse modes, where the dipole
moments are polarized perpendicular to the chain axis, and
longitudinal modes, for which the dipoles are polarized along
the chain axis. In addition, it was shown that for the transverse
modes, there is always a portion of the dispersion curve that
runs adjacent to the light line. Modes associated with this part
of the dispersion, termed as the light-line modes, are typically
very wide, resembling a plane wave interacting very weakly
with the particle chain [4], and are hardly excitable [5]. If the
interparticle distance d is much smaller than the surrounding
free-space wavelength λ, then the typical modal width away
from the light line (i.e., at wave numbers β(ω) � k = ω/c) is
also much smaller than λ and the mode decays exponentially
away from the chain [3,4]. Hence these structures are often
called subdiffraction chains (SDCs). SDCs were suggested
as potential candidates for ultranarrow optical waveguides,
junctions, couplers [7], as one-way guiding structures and
optical isolators [8,9], and as leaky-wave antennas [10,11].

Electric-magnetic and bi-isotropic particles, characterized
by both electric and magnetic response, were also studied
extensively. In most cases, the context of these studies was
the reflection, transmission, and absorption properties of
planar arrays of such particles under external plane-wave
excitation, both reciprocal [12–15] and nonreciprocal [16].
Three-dimensional (3D) arrays of scalar magnetoelectric
particles were studied in [17], where the full interparticle
electric and magnetic coupling has been taken into account
and the effect of array packaging on the electromagnetic
modes has been studied. Such 3D arrays were also studied
in [18,19] in the context of homogenization techniques, and it
has been shown that the homogenized material may possess
negative index properties even if the microscale inclusions are
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made of conventional material (e.g., spherical particles made
of material with positive scalar ε and μ). Magnetic crystals
(either one or two dimensional, 1D or 2D, respectively) with
various models and interaction schemes, taking into account
short-range and/or long-range interparticle interactions, were
also considered [20,21].

Not much attention was given to the guiding properties
of magnetoelectric particle arrays, either in 1D or 2D. In the
present work, we investigate the microscopic modal properties
of such particle chains in vacuum. It is shown that the
chain can support simultaneously (i.e., at the same frequency)
right-handed modes (RHMs) and left-handed modes (LHMs)
of transverse polarization. This is to contrast with the 3D arrays
in [18,19], where the left-handedness and right-handedness are
mutually exclusive. The LHMs are supported by the structure
even if the chain’s particles possess positive polarizabilities
and no Bi isotropy; the needed structural Bi isotropy is
provided by the propagator instead of the particle’s local
properties. In contrast to the regular transverse RHM in
purely electric particle chains, the transverse LHM dispersion
lacks the light-line branch discussed above since their dipolar
features are not aligned with the electromagnetic fields of a
right-handed plane-wave solution in free space. We study the
modal confinement of the LHM and RHM around the chain and
show that the spatial width of the LHM is significantly smaller
than that of the RHM. This is intuitively expected, since the
surrounding free space is inherently right handed and therefore
it is less “susceptive” to the LHM. Hence, the chains studied
here may be better suited for dense packaging of photonic
systems. We use the Z-transform (ZT) method to study the
chain excitation and show that it possesses asymmetries that
can be used to eliminate unwanted reflections from the chain’s
termination, paving the way to use the chain as a new kind of
leaky-wave antenna.

The structure of the paper is as follows. The formulation,
based on the discrete dipole approximation, is presented in
Sec. II. The transverse modes are discussed in Sec. III, where
the corresponding dispersions, the existence of LHMs and
RHMs, and the chain’s eigenstates asymmetries are explored.
A rigorous excitation theory, based on the Z transform,
is outlined in Sec. IV, where the asymmetric excitation is
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FIG. 1. A linear chain of magnetic-electric particles. The particles
are made of simple ε,μ material, and no coupling between E,H
occurs within the material.

presented, discussed, and exploited to eliminate backreflection
from a chain’s termination. Concluding remarks are provided
in Sec. V.

II. FORMULATION

Consider the linear array of equally spaced isotropic
particles shown in Fig. 1. The interparticle distance is d, and
the particle diameter is much smaller than the wavelength
λ at which the structure is supposed to operate. Hence, the
individual particle response to electromagnetic excitation is
appropriately described by its polarizability matrix α. We
further assume that the particles possess electric and magnetic
response only, with no bi-isotropic or bianisotropic properties.
(A simple example for such particles is a sphere made of
conventional ε and μ material.) The corresponding α is
a 6 × 6 matrix, describing the relation between the local
electromagnetic field E,H (the field at the particle’s location
in the absence of the particle) and the electric and magnetic
dipole moments excited in the particle p and m,

� ≡
(

ε−1
0 p
η0m

)
= α

(
E

η0 H

)
, (1a)

where, in the quasistatic approximation,

α−1 =
(

αeeI3 03

03 αmmI3

)−1

− 2

3
ik3I6, (1b)

and where in α above we have used the unified notations
defined in [22]. For convenience they are summarized in
Appendix A. Unless otherwise stated, all bold-italic quantities
here and henceforth represent column vectors, and underlined
quantities represent matrices. I� is a � × � identity matrix. For
a chain of identical particles, the chain dynamics is governed
by the infinite matrix equation

�n = α

∞∑
m = −∞
m �= n

G n−m�m + αFinc
n , (2)

where Finc
n = [Einc(rn),ηH inc(rn)]T is the incident field at the

location of the nth particle. G n is a 6 × 6 matrix representation
of the Green’s dyadic, discussed in Appendix B and given
by Eqs. (B1)–(B2b) there. It consists of the four 3 × 3
submatrices Gee

n , Gem
n , Gme

n = −Gem
n , and Gmm

n = Gee
n . The

diagonal elements of Gem
n vanish; this is a direct manifestation

of the fact that the H (E) field generated by the dipole
p (m) vanishes along the dipole axis. In fact, the structure
of G n indicates that the chain supports four independent
polarizations:

(1) Longitudinal electric mode: (E, p) = ( ẑEz,ẑpz). The
chain electrodynamics has been studied thoroughly. The
modes were studied in, e.g., Refs. [3,4]. Excitation (Green’s
function) theory has been developed in [5].

(2) Longitudinal magnetic mode: (H,m) = ( ẑHz,ẑmz).
Essentially the same as the point above.

(3) Transverse coupled (mixed) mode: (Ex,px) and
(Hy,my). It will be formulated and studied below.

(4) Transverse coupled (mixed) mode: (Ey,py) and
(Hx,mx). The same as in 3.

An important feature to note here is that there is a coupling
between the magnetic and electric dipoles: an electric dipole
p = α ee EL, excited by the local electric field EL in a given
particle, generates both E and H radiation fields. Then the H
field excites magnetic dipoles m = α mm HL in the neighboring
particles. Hence, this coupling is nonlocal in the sense that it is
provided only by the field propagator and not by the properties
of the chain’s particles; the latter lack intrinsic bi-(an)isotropy.
In view of the above, we turn to study the transverse mixed
modes.

III. TRANSVERSE MODES

Since we are interested only with the transverse modes, we
truncate Eq. (2) using its 1,5 rows only, yielding

�T ,n = αT

∑
m�=n

GT , n−m�T ,m + αT Finc
T ,n (3a)

where

GT ,n =
(

Gee
xx, n Gem

xy, n

Gme
yx, n Gmm

yy, n

)
=

(
Gee

xx, n Gem
xy, n

Gem
xy, n Gee

xx, n

)
, (3b)

where we have used the identities Gee
xx, n = Gmm

yy, n and Gem
xy, n =

Gme
yx, n [see Eqs. (B1)–(B3)]. We have also truncated α in the

same manner, α T = diag(αee,αmm). The modes supported by
the structure are the solutions of Eq. (2) with no external
forcing (Finc

n = 0 ∀ n). Using Floquet’s theorem with 	T =
[ε−1

0 px,η0my]T ,

�T ,n = �T ,0e
iβnd, (4)

and the dynamic equation reduces to the 2 × 2 system

M(α,Z)	T,0 = 0, (5a)

with

M(α,Z) =
[

(k3α T )−1 −
(

AT (Z) B(Z)
B(Z) AT (Z)

)]
. (5b)

AT (Z),B(Z) contain all the needed summations, given in
Eqs. (B5a)–(B5e) in Appendix B with Z = e−iβd . They
incorporate all dipole-dipole interactions in this system,
both short and long range. This physical fact is manifested
mathematically by the dependence of AT (Z),B(Z) on the
polylogarithm functions as detailed in the Appendix, rather
then on an inverse polynomial. 	T 0 is the two-elements
column vector (ε−1

0 p0x,η0m0y)T . To obtain the dispersion for
guided modes, we look the values of real β in the domain β >

k = ω/c (outside of the light cone) for which the determinant
of Eq. (5a) vanishes. For lossless particles, this condition
guarantees the existence of solutions to the dispersion equation
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FIG. 2. Dispersion for the transverse modes for kd = 0.2, where
k is the free-space wave number. Left-handed modes—the D−

dispersion curve—exist also for positive real polarizabilities.

with �[β] = 0. Using the properties pointed out by Eqs. (B6a)–
(B8b) in Appendix B, we note that the imaginary part of AT

cancels out with the α−1
T radiation damping factor (see also

analysis in [4]), and that in this domain B is pure real. The
dispersion equation can then be simplified into

[(k3αee)−1 − �{AT }][(k3αmm)−1 − �{AT }] − B2 = 0. (6)

For simplicity, we choose to focus on a case for which the
particles are balanced: αee = αmm = α. Balanced particles
have been considered for metasurface applications in many
previous publications (see Refs. [12–16]). The realization
of particles having both electric and magnetic response is
possible even if we use simple dielectric materials. Dielectric
spheres possess both electric and magnetic dipole resonances
in positive values of ε which can be used as a simple platform
to implement such systems, as reported in [23]. Tuning the
different electric and magnetic dipole resonances is possible
via various geometrical transformations of the inclusions, as
can be seen in [24], and can be utilized in the design of balanced
particles. This choice of particle simplifies our analysis and
allows further reduction of the dispersion into two simple and
distinct branches:

(k3α)−1 = �{AT } ± B, (7)

termed accordingly as D+ and D−. The dispersions are shown
in Fig. 2. The interparticle distance is chosen such that kd =
0.2. The dispersion is shown for positive β values, and since
the system is symmetric we will have the mirror image for
negative β (albeit the roles of D+ and D− are switched).

Formally, there are four eigenvector solutions to Eq. (5a).
Examining Eq. (5a) together with the dispersion condition in
Eq. (7), one finds that there are two doubly degenerate modes
(DDMs). Each DDM consists of two modes with the same
dispersion, as expected from the symmetry of the chain in the
x,y plane. The dipole structure of each DDM is given by [note
the definition of the vector 	 in Eq. (1a)]

p0 = (p0x,0)T , m0 = (0,γ cp0x)T (8a)

or

p0 = (0,p0y)T , m0 = (−γ cp0y,0)T , (8b)

where γ is given by

γ = B

(k3α)−1 − �{AT } = ±1 for D±. (9)

This degenerate mode is in fact the independent polarizations
described in points 3 and 4 in Sec. II. Clearly, there are also
two possible DDMs; the difference between them stems from
the different choices of γ above.

A. Right-handed and left-handed modes

From Eqs. (8a)–(9) it follows that

p0 × m∗
0 = ẑγ c

∣∣ p0

∣∣2
. (10)

Therefore along the dispersion branch D+ (γ = 1) the mode
possesses a conventional right-hand (RH) structure. However,
along D−, where γ = −1, the mode is left-handed (LH). As
pointed out above, the corresponding dispersion curves are
shown in Fig. 2, and it is evident that LH modes can exist also
for positive polarizability.

It is interesting to note that the RH mode dispersion (D+
in Fig. 2) possesses the well-known light-line branch that is
external and adjacent to the light-line cone. This is very similar
to the light-line transverse mode observed previously in, e.g.,
Ref. [4]. The corresponding electromagnetic wave interacts
very weakly with the chain. It is spatially wide and possesses
a plane-wave-like structure. The mode dispersion is β ≈ k =
ω/c, very close to that of a plane wave.

To contrast, the LH mode possesses the D− dispersion
curve. Due to its left-handedness, it cannot be matched to the
electromagnetic field supported by the surrounding vacuum.
Hence for this dispersion the light-line branch does not exist,
as can also be seen in Fig. 2. We emphasize again that the left-
handedness exists even when both polarizabilities (electric and
magnetic) are positive. This regime does not exist in regular,
electric particle chains and is the result of the field propagator
coupling between p and m.

It is instructive to examine the spatial width of the
electromagnetic field around the chain associated with each
of these modes. The electric field is given by

E(r) =
∞∑

n=−∞
[Gee(r,rn), Gem(r, rn)]�n, (11)

where rn = ẑnd is the location of the nth particle, r is any
location off the chain particles, and where pn,mn in �n satisfy
the eigenvector conditions of Eqs. (8a)–(9). This series can be
evaluated with the aid of the Poisson summation formula.
To estimate the mode width, it is sufficient to observe the
leading term in the formula, that yields for p0 = x̂p0x and for
r = ŷy + ẑz,

Ex = ip0x

k2 eiβz

4d

[(
1 + γ

β

k

)
H

(1)
0 (iζy) − iζ

k2y
H

(1)
0 (iζy)

]
,

(12)

where ζ =
√

β2 − k2. The electric field of the LHM or RHM
is obtained by using the corresponding β and γ . Recall that
for the guided mode β > k so ζ is real. For large y the
expression above decays essentially as e−ζy away from the
chain. Hence the characteristic width of the mode is ζ−1. From
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FIG. 3. Spatial width of the LHMs and RHMs under guiding
conditions, with the same parameters as in Fig. 2.

the dispersion curves of the LHM and RHM shown in Fig. 2
it is seen that always βLHM > βRHM. Hence, the LH mode is
always more confined to the chain. This is intuitively expected,
since the surrounding vacuum is a right-handed environment
and hence is more susceptive to RHM than to LHM. Figure 3
shows the characteristic widths of the LHM and RHM for
kd = 0.2. It is seen that the LHM confinement is better.

B. Asymmetries of the chain’s eigenstates

When our chain dynamics is expressed in terms of its
eigenstates, a significant asymmetric behavior is exposed. This
asymmetry stems from the nature of the LHM, RHM, and from
the specific way they may couple to each other. Let us consider
the propagator GT in Eq. (3b). This symmetric matrix has two
distinct eigenvectors:

v1 =
(

1
1

)
, v2 =

(
1

−1

)
. (13)

For simplicity, we again assume a balanced particle αee =
αmm = α. The system in Eq. (3a) can now be diagonalized by
using the transformation matrix T = (v1,v2). The result is two
decoupled and scalar difference equations,

	(q)
n = α

∑
m�=n

G
(q)
n−m	(q)

m + αF (q)
n (14a)

where q = 1,2, and

G

(
1
2

)

n = Gee
xx, n ± Gem

xy, n (14b)

where

	(q)
n = vT

q �T ,n, F (q)
n = vT

q Finc
T ,n. (14c)

The two problems q = 1 and q = 2 are completely decoupled;
each possesses its own dispersion. Furthermore, since v1 is
the eigenmode associated with q = 1, it determines the mode
structure for both propagation directions. Hence, this mode
is RH for propagations towards +z and LH for propagation
towards −z. The case of q = 2 is reversed. In fact, the
dispersion for q = 1 is given by the roots of Eq. (7) with the +
sign, i.e., it is nothing but D+ only. Likewise, the dispersion for
q = 2 is given by the roots of Eq. (7) with the − sign; hence it
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FIG. 4. The dispersions of the diagonalized problem in
Eqs. (14a)–(14c): (a) q = 1 yields the D+ curve only, and (b) q = 2
yields the D− curve only.

is nothing but D− only. These dispersions are shown in Fig. 4.
Clearly, each mode’s dispersion is uneven with respect to the
propagation wave number β. At frequencies corresponding
to −450 < (k3α)−1 < −350 it seems that there is only one-
way propagation for each of the modes. Nevertheless, the
chain itself is reciprocal. This apparent contradiction with the
Lorentz reciprocity theorem stems from the fact that each of
the decoupled formulations in Eqs. (14a)–(14c) represent only
a part, or a projection, of the chain dynamics and does not
expose the subtleties associated with the problem excitation.
This is further discussed in Appendix D.

This type of decomposition is useful in determining the
response to a general point source (p,m)T . We decompose the
source using Eq. (14c), then calculate the response to each of
the 1,2 components independently. The total response is given
by the superposition of these. Naturally, if both p and m are
present, we will still obtain an asymmetric response.

Our analysis can also be applied to the case of unbalanced
particles. This would lead to eigenmodes which are not purely
RHM or LHM but rather some mixture of the two. Further,
this will cause the dispersion of both eigenstates to have light
lines (a situation that in some sense resembles excitation by a
general source, as discussed). To elucidate this, we choose a
simple model where α−1

mm = α−1
ee + δ, which creates not only

unequal αee and αmm, but also a deviation in their resonance
frequencies (α−1

ee = 0 or α−1
mm = 0). For this case, Eq. (6) can

then be written as

α−1
ee = AT + −δ ± √

δ2 + 4B2

2
. (15)

Both branches are shown in Fig. 5. As we see, there is a light-
line branch for both D+ and D−, yet the strong asymmetry
is maintained, and all further conclusions still apply, with the
proper adjustments to the eigenmodes.

IV. EXCITATION THEORY

The excitation properties of each of the modes discussed
in previous sections, as well as of other wave constituents
that may be supported by the chain, are fully exposed by the
chain’s Green’s function matrix G n, defined as the response
to a δ dyad. Continuing our interest in the mixed modes,
we use the truncated dynamics equation, Eq. (3a). Under
this truncation, G n is a 2 × 2 matrix sequence whose first
[second] column describes the dipole chain response (px,my)T
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FIG. 5. Dispersion for a chain of unbalanced particles for δ = 100.

to Finc
n = δn(Einc

x ,0)T [δn(0,ηH inc
y )T ]. The response to any

incident field Finc
n = (Einc

nx ,ηH inc
ny )T is then obviously obtained

via the discrete convolution of the latter with G n.
To derive G n we use the double-sided Z transform

commonly applied to analyze discrete systems and difference
equations [25,26], and has been applied also to discrete
electromagnetic systems in [5,27–29]. The present study
follows essentially the same steps as in [5]. For convenience,
some details are provided in Appendix C.

The chain dynamics in Eq. (3a) can be presented as the
discrete convolution formula

∞∑
m=−∞

D n−m�m = Finc
n , (16a)

where

D n =
{
α−1

T n = 0
−GT ,n n �= 0.

(16b)

We apply the Z transform on the equation above, using the
notations

D̂(Z) =
∞∑

n=−∞
D nZ

−n (17)

and similarly to all other involved quantities. With the
convolution theorem Eq. (16a) reduces to

�̂(Z) = [D̂(Z)]−1 F̂(Z). (18)

Hence G n is given by the inverse Z transform (IZT)

G n = 1

2πi

∮
C±

Ĝ(Z) Zn−1dZ, (19a)

where

Ĝ(Z) = [D̂(Z)]−1. (19b)

By applying the ZT to Eq. (16b) we obtain (see Appendix B)

D̂(Z) = M(α,Z) (20)

from Eq. (5b). The inverse of the above yields

Ĝ(Z) = 1

|D̂| ×
[

(k3α)−1 − AT (Z) B(Z)
B(Z) (k3α)−1 − AT (Z)

]
,

(21)
where we have again assumed the use of a balanced particle
αee = αmm = α. While one may always apply the IZT on
the last expression numerically and obtain the exact Green’s
function, a good physical insight is gained by examining the
analytic properties of Ĝ(Z) in the complex Z plane. Each
and every singularity represents a distinct wave phenomena,
and its excitation is nothing but the corresponding residue.
We note that AT (Z),B(Z) mainly consists of summation
of polylogarithm functions Lin(eikdZ±1) [see Eqs. (B5b)–
(B6a), Appendix B]. Since Li1(z) = − ln(1 − z) and Li ′s(z) =
z−1Lis−1(z), then ∀ n > 0 Lin inherit the branch point and
branch cuts singularities of ln(1 − z) at z = 1, creating Rie-
mann sheets of infinite multiplicity. In the principal Riemann
sheet R0, AT (Z),B(Z), and Ĝ(Z) possess two branch points
at Zb 1,2 = e±ikd , with one cut that emerges from e−ikd and
extends to infinity and a second cut that emerges from
eikd and extends to the origin. Further details regarding the
discontinuity across the cuts can be found in [30] or in the
Appendix of Ref. [5].

Since the polylogarithm function has no poles and no zeros,
the pole singularities of Ĝ(Z) are only due to the zeros of
its denominator, namely, |D̂(Zp)| = 0. Due to the specific
structure of AT (Z),B(Z) [note Eq. (B5e)], it follows that all the
singular points must satisfy inversion symmetry. That is, if Zp �

is a pole, then Zp �′ = 1/Zp � must also be a pole. This is quite
general and holds also for the branch points and cuts discussed
above—a consequence of the chain’s reciprocity. Furthermore,
the pole equation is in fact a slight generalization of Eq. (7)
with AT = AT (Z) and B = B(Z),

(k3α)−1 = AT (Zp) ± B(Zp) ⇔ D±, (22a)

associating the pole singularities with the chain modes. There
are six roots to this equation, providing six poles. The modes’
dispersion are the solution of

eiβd = Zp�(α), � = 1, . . . 6. (22b)

The curves presented in Fig. 2 correspond to poles that
reside exactly on the unit circle in the complex Z plane
and consequently admit real β in the equation above, and
then the radiation damping in α precisely cancels out with
�{AT }. In the general case, however, depending on the values
of α the poles Zp may reside off the unit circle, yielding
leaky waves (and also lossy waves, if α consists of material
loss). Following the discussion of the IZT in Appendix C,
poles for which |Zp| ≷ 1 represent wave constituents of
G n that contribute to n ≶ 0, respectively (see Fig. 9 and
explanation therein). Finally, we note that since the guided
modes’ poles in the lossless chain satisfy |Zp| = 1, their
classification as singularities that contribute to n > 0 (n < 0)
encircled by C+ in Fig. 9 (encircled by C−) cannot be
done according to their locations inside (outside) the unit
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circle. In this case the classification is done according to
the group velocity vg = ∂ω/∂β = ideiβd [Z′

p(α) ∂α/∂ω]−1.
Alternatively, one may observe the shift of Zp off the unit circle
when loss is added to the system and classify accordingly.

Since there are six poles and they satisfy inversion sym-
metry, we denote by Zp 1,2,3 those that contribute to n > 0
(with |Zp 1,2,3| � 1) and by Zp 4,5,6 = 1/Zp 1,2,3 those that
contribute to n < 0. Likewise, the branch cut that emerges
from Zb 1 = eikd (Zb 2 = e−ikd ) and extends to the origin (to
infinity) contributes to n > 0 (n < 0). Thus, by applying the
residue theorem to Eq. (19a) for n > 0 we find

G n =
3∑

�=1

Gp�
n + Gb2

n , (23a)

where Gb2
n is the result of an integration around the branch

point no. 2 and the corresponding cut, and Gp�
n is the residue

of the �th pole. It is given by

Gp�
n =

−(±1 1
1 ±1

)
2[±A′

T (Zp�) + B ′(Zp�)]
Zn−1

p� , (23b)

where a prime indicates a derivative with respect to the
argument, and where we have used the fact that the poles satisfy
Eq. (22a). Using the corresponding expressions in Appendix B
and Eq. (B9), there we finally find for the pole residues

Gp�
n = R± kd

2

(±1 1
1 ±1

)
Zn

p�, for D±, (24a)

where R± is the amplitude

R± =
[

2Li0
(
eikdZ∓1

p�

) + 2i

kd
Li1

(
eikdZ∓1

p�

)

∓f −
2 (kd,Zp�)

]−1

. (24b)

Recall that for n > 0 the D+ dispersion represents RH modes
while the D− represents LH modes. For n < 0 their roles
interchange. As the pole approaches the branch point Zp� →
Zb 2 = eikd , we have R+ → 0. This is a manifestation of the
fact that the conventional light-line mode is hardly excited, as
has already been observed in previous studies [4,5]. However,
it is interesting to note that R− stays finite in this limit. Hence,
in contrast to the RH modes, the LH mode is practically
excitable when it approaches the light line. Figure 6 shows
the excitation amplitude (residues) of the RH and LH modes.

A. Mode selectivity and LHM excitation

An obvious way to excite the LH mode in the chain is to
place a dipole in the chain axis, whose frequency is in the
range where the RH mode does not possess real β. Referring
to Figs. 2 and 4, this corresponds to −450 � (k3α)−1 � −350.
Clearly, the particle’s dipole response is negative there. A
more interesting case is to work in the domain of positive
α, but as seen in Fig. 2, in this domain both LH and RH
modes can exist. An insight into the excitation possibilities is
provided by Eqs. (24a)–(24b). We emphasize that the upper
(+) sign and the lower (−) sign correspond, respectively, to
the RHMs and LHMs in the n > 0 domain. For n < 0 their

(k3α)−1
-500 -400 -300 -200 -100 0 100 200 300 400

R
±

10-10

10-5

100

Lightline modes

FIG. 6. Residue (excitation magnitude) of the LHM and RHM
under guiding conditions, with the same parameters as in Fig. 2.

roles interchange. In light of this fact and in light of the
analysis presented in Sec. III B, we now examine the mode
excitation when a Huygens source is placed in the chain. In
our context a Huygens source is a source composed of mutually
orthogonal electric and magnetic dipoles that share the same
center, oscillate at the same frequency, and possess the same
phase. The two options are summarized in Table I.

The observation summarized in Table I is a direct manifesta-
tion of the chain’s left-handedness: It may provide an inversion
of the radiation properties of Huygens sources, including the
wave handedness. If losses are present in the particles, of
course the guided wave would be attenuated due to dissipation.
However, the essential [a]symmetries are maintained, and can
be exploited, in the same manner. This fact is discussed and
demonstrated, for example, in [9].

Finally, we note that by placing a source of type (1,1) above,
in a chain with (k3α)−1 = −400 the RHM is leaky and does
not propagate in the chain. Then the guided mode excited by
the source is only the LHM, and it propagates only into the
n < 0 domain. This case is shown in Fig. 7.

B. Excitation of finite chains

Recall the discussion in Sec. III B. The diagonaliza-
tion procedure and the ensuing decoupled formulations in
Eqs. (14a)–(14c) hold also for finite or semi-infinite chains.
The only difference is in the summation limits, but not in
the diagonalizing transformations. Hence, chain termination
(e.g., semi-infinite chain, extending from n = 0 to infinity)
does not cause any mode mixing. For a Huygens source of
the type q = 1 [i.e., (ε−1

0 px,η0my) = (1,1)] located at some
n′ � 1, a LHM would propagate towards the chain termination

TABLE I. Summary of Huygens source excitation properties.

(ε−1
0 px,η0my) = (1,1) (1,−1)

Free-space radiation ẑ − ẑ
Chain excitation RH to n > 0 LH to n > 0

LH to n < 0 RH to n < 0
Chain eigenstates q = 1 only q = 2 only
Mode dispersion Fig. 4(a) Fig. 4(b)
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z/λ
-30 -20 -10 0 10 20 30

|p
x|

10-5

100

Chain
Free space

FIG. 7. Response to a (1,1) Huygens source. The chain inverts
it’s properties.

at n = 0. When this mode hits the termination, it can only be
reflected into a RHM. Thus, if the frequency is in the domain
−450 � (k3α)−1 � −350, where the RHM is in fact a leaky
wave, there would be no guided reflection. Figure 8 shows
the response of a finite chain for a Huygens source (1,1) with
(k3α)−1 = −400. The mode leaks to free space with practically
zero reflection into the chain.

V. CONCLUSION

In this work we have formulated the equations governing the
dipolar wave propagation in magnetodielectric particle chains.
The modal properties were extracted. It was shown that these
structures can support simultaneously left-handed and right-
handed modes (LHM and RHM, respectively) and that the
LHM are narrower then their right-handed counterparts. LHM
dispersion presents no light line, a consequence of their poor
matching to free-space field propagation. Modal asymmetry
was studied, and the asymmetric excitation of the LHMs
and RHMs by Huygens sources was demonstrated. Complete
excitation theory was developed for the propagating and leaky
modes, and an explicit form of the chain Green’s function
was obtained. It has been shown that the modal asymmetry
can be exploited to eliminate guided parasitic reflections from
the termination of finite or semi-infinite chains, thus enabling
the use of these chains as matched leaky-wave antennas. For
simplicity of derivations we have assumed throughout the work
that the particle is balanced, i.e., αee = αmm. Balanced scalar
and bianisotropic particles were used previously in a number of
publications [12–16], and realization using dielectric material
has been suggested in [24]. The same analysis techniques

z/λ
-30 -20 -10 0 10 20 30

|p
x|

10-15

10-10

10-5

100

Huygens source

FIG. 8. Response to a Huygens source (1,1) with (k3α)−1 =
−400 located near the termination of a finite chain. There is no
reflection from the chain end.

that are used here can be applied also to explore the case
of nonbalanced (and even bianisotropic) particles.

APPENDIX A: UNIFIED NOTATIONS

In SI units, the dipole moments p and m possess the
physical dimensions of C×m and A×m2, respectively (here C,
m, and A denote Coulomb, meter, and Ampere, respectively).
Hence all the entries of the six-element column vector � have
units of volt × m2. For an isotropic particle, we denote the
scalar αSI

ee (αSI
mm) as the polarizability in SI units representing

the electric (magnetic) dipole response due to a unit electric
(magnetic) local field. Then the entries in Eq. (1b) are given
by

αee = αSI
ee/(4πε0), αmm = αSI

mm/(4π ) (A1)

and both possess the dimensions of m3. Finally, we note that αee

and αmm above are the static polarizabilities. The expression
in Eq. (1b) provides the quasistatic approximation where the
imaginary additive part accounts for the particle radiation
damping.

APPENDIX B: THE GREEN’S FUNCTION DYAD

Clearly, a time-varying electric dipole generates both E and
H fields. The same holds for a time-varying magnetic dipole.
If the particles possess only electric response then H can be
ignored, as is usually the case in most of the previous studies of
particle chains. However, in our case the particles are assumed
to possess both electric and magnetic dipole responses; hence
it is crucial to take into account both fields for each dipole.
Towards this end, we use the expressions given, e.g., in [31]
and define the 6 × 6 dyadic Green’s function matrix via the
relation

4π

(
E(r)

ηH(r)

)
= G(r,r ′) � =

(
Gee(r,r ′) Gem(r,r ′)
Gme(r,r ′) Gmm(r,r ′)

)
�,

(B1)
where E(r),H(r) are the fields at r due to the electric and
magnetic dipoles p and m located at r ′, and where � is defined
in Eq. (1a). Generally we have Gee = Gmm, Gem = −Gme.
Since the chain coincides with the z axes, we are interested
only in the case (r,r ′) = (nd ẑ,n′d ẑ). Then, these 3 × 3 dyads
can be rewritten as Gee(r,r ′) → Gee

n−n′ etc., with

Gee
n =

[
k2A 1 −

(
1

(nd)2
+ ik

|n|d
)

A 2

]
eikd|n|

|n|d , (B2a)

where A 1,2 are the matrices A 1 = diag(1,1,0), A 2 =
diag(−1,−1,2), and where

Gem
n = −k2

(
1 + i

|n|kd

)⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ eikd|n|

|n|d sgn(n).

(B2b)
The Green’s dyad in Eq. (2) consists of the four 3 × 3 matrices
Gee

n , Gem
n , Gme

n = −Gem
n , and Gmm

n = Gee
n .
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Anticipating the use of Floquet’s theorem for
modal analysis, and further the use of the Z

transform to study the excitation properties of the chain, we
now look for the matrix summation

G̃(Z) =
∞∑

n = −∞
n �= 0

G nZ
−n, (B3)

where, for the application of Floquet’s theorem one merely
substitutes the special case Z = e−iβd . The Z transform above
can be expressed in terms of the polylogarithm functions

Lis(z) [30] defined as

Lis(z) =
∞∑

n=1

zn

ns
⇒ Li ′s(z) = z−1Lis−1(z). (B4)

Strictly speaking, the sum converges only for �z � 1, but it
can be analytically continued into the entire complex z plane
by noting that Li0(z) = z/(1 − z), Li1(z) = − ln(1 − z) and
by integrating over the second identity in Eq. (B4). Further
details and properties of the polylogarithm functions can be
found in Ref. [30].

With the use of Lis(·) the 6 × 6 matrix G̃(Z) can be
expressed as

G̃(Z) = k3

⎛
⎜⎜⎜⎜⎜⎝

AT (Z) 0 0 0 B(Z) 0
0 AT (Z) 0 −B(Z) 0 0
0 0 AL(Z) 0 0 0
0 −B(Z) 0 AT (Z) 0 0

B(Z) 0 0 0 AT (Z) 0
0 0 0 0 0 AL(Z)

⎞
⎟⎟⎟⎟⎟⎠

, (B5a)

where

AT (Z) = f +
1 (kd,Z) + if +

2 (kd,Z) − f +
3 (kd,Z), (B5b)

AL(Z) = 2[f +
3 (kd,Z) − if +

2 (kd,Z)], (B5c)

B(Z) = f −
1 (kd,Z) + if −

2 (kd,Z), (B5d)

and where

f ±
s (x,Z) ≡ x−s[Lis(e

ixZ−1) ± Lis(e
ixZ)]. (B5e)

Some properties of the functions above are worth pointing
out. First, we note that on the unit circle in the complex Z

plane, i.e., for Z = eiθ with θ real,

Lin(e±iθ ) = Cn(θ ) ± iSn(θ ), (B6a)

where Cn(θ ) and Sn(θ ) are the generalized Clausen functions:

Cn(θ ) =
∞∑

k=1

cos(kθ )

kn
, (B6b)

Sn(θ ) =
∞∑

k=1

sin(kθ )

kn
. (B6c)

These functions are real and 2π periodic. Furthermore, for
0 � θ � 2π ,

S1(θ ) = 1

2
(π − θ ), (B7a)

C2(θ ) = π2

6
+ θ

4
(θ − 2π ), (B7b)

S3(θ ) = θ

12
(2π2 − 3πθ + θ2). (B7c)

Using these identities, it is straightforward to show that for
Z = eiθ with θ real and θ > kd,

�{B(eiθ )} = 0, (B8a)

�{AT (eiθ )} = 2/3. (B8b)

We note that the second equality has been pointed out already
in [4].

Finally, we note that the derivatives of f ±
s with respect to Z

are needed for residue estimation in the chain’s Green function
derivation. We have

∂

∂Z
f ±

s (x,Z) = −(xZ)−1f ∓
s−1(x,Z). (B9)

APPENDIX C: THE DOUBLE-SIDED Z TRANSFORM

The double-sided Z transform (ZT) of a bounded vector or
matrix series, say qn, is obtained by applying the conventional
(scalar series) Z transform to each of the entries. Hence,

q̂(Z) =
∞∑
n

qn Z−n (C1)

and the transform of a matrix D n is obtained similarly. The
series region of convergence (ROC) is a ring that contains the
unit circle C1 : |Z| = 1. The inverse ZT (IZT) is given by

qn = 1

2πi

∮
C±

q̂(Z) Zn−1dZ. (C2)

The original integration contour should reside within the ROC
and encircle the origin in a counterclockwise direction; C1 is an
appropriate path, as shown in Fig. 9. For detailed mathematical
discussion the reader is referred, e.g., to Ref. [25], where it is
termed as the two-sided transform.

To enhance physical insight, however, we shall replace the
original contour with integrations around singularities (poles
and branch cuts) of the inverse transform kernel. Thus, C1 is
replaced with C±. For observation points located at n � 0, the
integration contour C± = C+ encircles all the singularities
within C1 in the complex Z plane in a counterclockwise
direction. The contour C± = C− used for n < 0 encircles all
the singularities external to C1 in the complex Z plane in a
clockwise direction. The contours are shown in Fig. 9. The
contributions of the different singularities may readily be used
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FIG. 9. The integration contours for the IZT. Poles are marked by
×, branch points by •, and branch cuts by wiggly lines. Singularities
inside (outside) the unit circle contribute to n � 0 (n < 0).

to discern between various wave species. Poles located on (off)
the unit circle correspond to propagating (radiation) modes,
whereas branch points and cuts correspond to continuous
spectrum (CS) waves. A detailed discussion of the application
of the ZT to propagation in chains of dielectric particles and
the aforementioned association of physical phenomena (chain
waves) with mathematical singularities can be found in [5].

APPENDIX D: RECIPROCITY

To discuss reciprocity, it is best if we start from the general
statement of the reciprocity theorem [32]:∫

V

(E1 · J2 − H1 · Jm2) =
∫

V

(E2 · J1 − H2 · Jm1), (D1)

where E1,2 and H1,2 are the fields generated by electric and
magnetic sources J1,2 and Jm1,m2, and all vectors are regarded
as column vectors. We use the predefined unified notations and
obtain

∫
V

[
JT

2 ,−JT
m2/η

]
F1 =

∫
V

[
JT

1 ,−JT
m1/η

]
F2. (D2)

We would like to examine this relation for the point sources

J = −iω pδ(r − r ′), Jm = −iωmδ(r − r ′), (D3)

which yields the equation

[
pT

2 ,−mT
2

]
G(r − r ′)

[
p1
m1

]
= [

pT
1 ,−mT

1

]
G(r ′ − r)

[
p2
m2

]
.

(D4)

Other then stating the condition for reciprocity (which can be
translated to properties for G, for example [33], Eqs. 2.143–
2.145), this states another important fact: when switching the
role of a general Huygens point dipole from source to observer,
one must flip the direction of the magnetic dipole. This is
because the electric current is a vector, whereas the magnetic
current is a pseudovector [31].

In the context of our problem, the switching Jm �→ −Jm

accounts precisely for the passage from the chain’s eigenstate
q = 1 to q = 2 (see Table I); hence reciprocity is satisfied.
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