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The paramagnetic metallic phase of the Anderson-Hubbard model (AHM) is investigated using a nonpertur-
bative local moment approach within the framework of dynamical mean-field theory with a typical medium. Our
focus is on the breakdown of the metallic phase near the metal-insulators transition as seen in the single-particle
spectra, scattering rates, and the associated distribution of Kondo scales. We demonstrate the emergence of a
universal, underlying low-energy scale, T

peak
K . This lies close to the peak of the distribution of Kondo scales

obtained within the metallic phase of the paramagnetic AHM. Spectral dynamics for energies ω � T
peak
K display

Fermi liquid universality crossing over to an incoherent universal dynamics for ω � T
peak
K in the scaling regime.

Such universal dynamics indicate that within a local theory the low to moderately low-energy physics is governed
by an effective, disorder renormalized Kondo screening.
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I. INTRODUCTION

Disorder is ubiquitous in real materials, strongly influenc-
ing their properties [1–3]. Another aspect of several condensed
matter systems like the heavy fermions or transition metal
oxides is the presence of strong electron-electron interac-
tions [4,5]. In particular, Coulomb correlations and disorder
may individually drive a system towards a metal-insulator
transition. While the Anderson metal-insulator transition [6]
is caused by quenched disorder, the Mott-Hubbard metal-
insulator transition emerges from strong Coulomb repul-
sion [5]. The simultaneous presence of disorder (W ) and inter-
action (U ) effects is known to influence material properties in
subtle ways. Over the last few decades, several experimental
works on a range of systems [1,7–14] have highlighted the
importance of the interplay of disorder and interactions. The
early theoretical studies of such systems [15] mainly focused
on the weak disorder limit, perturbing around Fermi liquid
theory. It is now known that the subtle interplay of disorder
and interactions may lead to non-Fermi-liquid-like responses
in the thermodynamic quantities, as observed in several experi-
ments [8]; therefore one requires a nonperturbative framework
that can deal with interactions and disorder on an equal footing.

One of the most intriguing aspects of strongly correlated
electron systems is the appearance of low-energy scales
[16–18]. For metals with strong electronic correlations, a fre-
quently observed scenario is the presence of long-lived quasi-
particles representing a coherent Fermi liquid picture at the
lowest temperatures (T ) and energy scales. A universal low-
energy scale, T ∗, lies at the heart of all strongly correlated elec-
tron systems that manifests in the universal transport properties
of these materials [18]. Over the past few decades, the dynami-
cal mean-field theory (DMFT) has stood out as a very success-
ful theoretical framework for understanding several aspects
of the low-energy physics of strongly correlated electron sys-
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tems [5]. Since, in DMFT, any lattice-fermion model reduces
to a local quantum impurity model, the involvement of Kondo
physics is inevitable. Thus universal behavior due to the emer-
gence of a universal low-energy scale is generally attributed
to the underlying Kondo effect. For example, in the DMFT
picture of the metallic phase of the Hubbard model [5,19],
the Kondo effect leads to full quenching of the electron spin
degrees of freedom resulting in a nondegenerate Fermi liquid
ground state characterized by a low-energy Fermi liquid scale.
In the vicinity of the Mott transition, the strongly correlated
metal is therefore characterized by a low-energy scale corre-
sponding to the coherence temperature of a Fermi liquid [5,19].

The emergence of a single low-energy/temperature scale
may not be restricted to clean strongly correlated electron sys-
tems, but has also been predicted in the context of diluted two-
dimensional electron gases (2DEGs) [20]. Phenomenological
theories, based on experimental observations in 2DEGs [7,21],
established a similarity between the metal-insulator transitions
in such disordered systems and the conventional Mott-
Hubbard metal-insulator transition. Studies in these directions
are important for understanding the true driving force behind
metal-insulator transitions observed in disordered interacting
systems. A finite temperature study of the effects of disorder
on the nonzero temperature Mott transition [22] also revealed
the prevalence of a single parameter scaling of the distribution
of quasiparticle weights in the vicinity of a disordered Mott
transition.

A natural question that follows from these studies is whether
such scaling with respect to a single low-energy scale also
manifests in the dynamics of the microscopic quantities like
the single particle spectra or the disorder averaged scattering
rate in a disordered interacting system at zero temperature.
And if such universal dynamics exists, then how general is
this observation across the W -U phase diagram? The origin
and evolution of such low-energy scales with respect to W

and/or U would then reflect upon the driving force behind the
localization of the electrons.

The understanding of the behavior of the low-energy
scales in a strongly correlated system thus stand out as a key
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prerequisite irrespective of the presence or absence of disorder.
Several theoretical frameworks have attempted to understand
the interplay of disorder and strong correlations [23–25].
However, the study of emergent low-energy scales in the
simultaneous presence of disorder and electron-electron
interactions require nonperturbative frameworks. Studies
using the framework of the DMFT have provided several
insights in these directions. A computationally inexpensive
approach involves the framework of DMFT and utilization
of the “typical” density of states (TDoS, ρtyp) [26,27] for
self-consistently obtaining the effectively local hybridizing
medium, �(ω) [28–32], in which the single impurities are
embedded. This construction of the DMFT bath utilizing the
ρtyp(ω) is known as the TMT-DMFT framework [31]. The
TDoS is most appropriately approximated as the geometric
average of the local density of states (LDoS), 〈ρ(ω)〉geom =
ρtyp(ω) = exp〈ln ρi(ω)〉 with ρi(ω) being the local density
of states. Another way of representing this is ρtyp =
exp

∫
dViP (Vi) ln ρi(ω), where Vi represents the bare random

potential and P (Vi), the probability distribution followed by
these bare site energies. While, ρtyp(0) is critical at the Ander-
son transition [26,33], the average density of states (ADoS)
given by ρarith(ω) = ∫

dViP (Vi)ρi(ω) is not critical. The
TDoS behaves like an order parameter for the metal-insulator
transition originating in the metallic phase; in the insulating
phase it is trivially zero at all frequencies. Thus, in principle,
the TMT framework is designed to capture the physics of the
metal-insulator transition approaching from the metallic phase.

The TMT-DMFT method was first applied to the Anderson-
Hubbard model by Byczuk et al. [28] who explored the W -U
paramagnetic phase diagram using numerical renormalization
group (NRG) as the impurity solver. Three distinct phases
were identified namely, a correlated metallic phase, a Mott
insulating phase and an Anderson insulating phase. Addition-
ally, a coexistent regime of the metal-Mott insulating phase
was reported. The Mott and Anderson insulator phases were
found to be continuously connected. The characterization of
these phases were based on the behavior of the band center
of the TDoS [ρtyp(0)] and the ADoS [ρarith(0)]. The metallic
phase featured a nonzero ρtyp(0) and ρarith(0). For weak to
moderate W , a sharp transition from the metallic to a gapped
insulating phase was observed where both ρtyp(0) = 0 and
ρarith(0) = 0. This metal-insulator transition was similar in
characteristics with the conventional single-band Hubbard
model and hence this insulating phase was termed as the Mott
insulator. Moreover, the density of states in this phase featured
prominent Hubbard subbands. Additionally, a metal-Mott
insulator coexistence regime similar to the p-h symmetric
single-band Hubbard model was identified in the W -U plane
that terminated at a single W . The Anderson insulator was char-
acterized as a phase that featured ρtyp(0) = 0 and ρarith(0) �= 0.
Additionally, the Hubbard bands were broad and diffused.

Although, the NRG is highly efficient in capturing the
Kondo effect, the distribution of Kondo scales, a natural
occurrence in interacting disordered systems, was not explored
in Ref. [28]. Thus the role of the local Kondo scales could not
be deduced from the above calculation. Such a direction was
however explored using slave-boson mean-field theory calcu-
lations [30], highlighting the role of the local quasiparticle
weights, Zi , that may also serve as an order parameter for the

localization physics in the Anderson-Hubbard model. Close to
the disorder driven metal-insulator transition at U/W < 1 a
two-fluid picture was proposed. Through TMT-DMFT calcula-
tions they proposed a spatially inhomogeneous picture where
in certain regions there existed Mott fluid droplets with Zi → 0
and at other regions Zi → 1 representing Anderson localized
particles. Irrespective of the spatially inhomogeneous picture,
one would expect a metal-insulator transition to occur at a
critical disorder strength Wc, when the U is fixed, and this
would coincide with the vanishing of the impurity hybridiza-
tion obtained from the TDoS. A conventional Mott-like picture
was proposed to prevail for the U driven metal-insulator
transition at sufficiently small disorder strengths. A similar
line of reasoning based on the behavior of the impurity
hybridization would lead us to expect that the Mott upper
critical interaction Uc2 would coincide with the vanishing of
the impurity hybridization obtained from the TDoS.

However, it is also well known that slave-boson based
solvers fail to account for inelastic scattering and thus fail to
predict the correct lineshape of spectral functions and scatter-
ing rates [34,35]. Moreover, the physics at low energies, may be
highly affected by the physics at higher energy scales. Thus, in
order to have a precise understanding of the spectral/dynamical
properties in a correlated system, we require all energy scales
and interaction strengths, from weak to strong coupling, to
be handled within a unified theoretical framework. In this
work, we revisit the metallic phase of the Anderson-Hubbard
model using the local moment approach (LMA) [36] as an
impurity solver within the TMT-DMFT. The LMA has been
successfully applied for several impurity [36–38] and lattice
models [16,39–41] (within DMFT). The LMA is known to
capture the Kondo effect correctly while also capturing the
correct line shape of the spectral functions. With this setup,
we look into the evolution of the distribution of Kondo scales as
a function of W and U . Additionally, we explore the scattering
dynamics within the current nonperturbative local framework,
and identify universal dynamics and scaling similar to the clean
interacting scenario. It should be noted that all the calculations
presented in this work pertain to the metallic phase and an
exploration of the insulating phases is beyond the scope of
the current work. These results are therefore relevant in the
context of the breakdown of the metallic phase towards Mott
or Anderson localization.

II. MODEL

The Anderson-Hubbard model is considered as a paradig-
matic model for looking into the interplay of strong electron
interactions and disorder. It is given by

Ĥ = −
∑
〈ij〉,σ

tij (c†iσ cjσ + H.c.) +
∑
i,σ

(Vi − μ)n̂iσ

+ U
∑

i

n̂i↑n̂i↓, (1)

where, c
†
iσ (ciσ ) is the fermionic creation (annihilation)

operator for an electron with spin σ at site i, and n̂iσ = c
†
iσ ciσ ,

tij is the nearest neighbor site to site hopping amplitude
considered to be constant in this work, U is the onsite
Coulomb interaction energy. The lattice is represented by a
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three-dimensional cubic DoS with full bandwidth, D = 3.
The random local potential Vi follows a “box” distribution
P (Vi) such that P (Vi) = 1

2W
�(W − |Vi |), where �(x) is the

Heaviside step function. A global particle-hole symmetry is
imposed by μ = U/2. At W = 0, this model reduces to the
particle-hole (p-h) symmetric single-band Hubbard model,
which displays a first order Mott transition at zero temperature,
T = 0, as a function of U . On approaching this transition from
the Fermi liquid (FL) side, the Kondo scale, T 0

K vanishes at a
critical point, Uc2, marking the transition to the Mott insulating
state. On approaching from the Mott insulating side, the Mott
gap vanishes at a critical point, Uc1, where, Uc1 < Uc2. This
scenario in the W = 0 case motivates us to look at the regimes,
U < Uc2 and U > Uc2 distinctly. For a three-dimensional
simple cubic DoS, within the LMA, we have found out that
the Mott MIT occurs at Uc2/D ∼ 0.8 which corresponds to
Uc2 ≈ 2.3, the bandwidth (D) being equal to 3. This result
compares well with the value predicted by NRG calculations
(∼1.1D) [42].

For treating nonzero disorder in the presence of interactions
[Eq. (1)] we employ the TMT-DMFT framework where
we map the disordered lattice model on to an ensemble
of single impurity Anderson models, each embedded in a
self-consistently determined effective medium, �(ω), which
is obtained from ρtyp(ω), as described in Appendix B. The
reader is also referred to several previous works [28–30,32,33]
for the details of the formalism. In Appendices A and B,
we also describe the implementation of the LMA within the
TMT-DMFT framework. We typically solve for ∼105 disorder
realizations each of which involves the calculation of the local
interaction self-energy, �i(ω).

III. RESULTS AND DISCUSSIONS

In the absence of interactions, Eq. (1) reduces to the Ander-
son model of noninteracting electrons [6]. Here, the metal to
insulator transition is not characterized by the vanishing of the
DoS. Instead, the hybridization paths get canceled accompa-
nied by weak localization of the wave functions due to coherent
backscattering from impurities or exponential localization of
the wave functions in deep-trapped states [2,18,43]. As a result,
the electrons occupying such exponentially localized states are
confined to limited regions in the space and cannot contribute
to the transport. As the disorder potential, W , is increased,
more and more regions in space become exponentially lo-
calized and the system undergoes a metal-insulator transition
as a function of W . At the Anderson localization transition
the average DoS given by, ρarith(ω) = ∫

dViP (Vi)ρi(ω), with
ρi(ω) being the LDoS, is not critical. However, the geometrical
mean of the LDoS, ρtyp = exp

∫
dViP (Vi) ln ρi(ω), better

approximates the critical nature of the Anderson localization
transition. The local TMT framework adopted here reproduces
some of the expected features of the Anderson localization
transition, but underestimates the critical disorder strength
Wc [26]. Although by construction the local TMT framework is
able to describe qualitatively the effects of strong localization
due to disorder, all nonlocal coherent backscattering effects are
lost. The localization mechanism explicitly contained within
the TMT is essentially the physics due to deep-trapped states
where the states initially above and below the bare band edge

become localized in deeply trapped states [2,43,44]. This effect
is subsequently fed back into the hybridizing medium so that
the band center also localizes. Within TMT, the band edge
of ρtyp(ω) then monotonically moves towards the band center
such that at the critical disorder strength even states at the band
center are exponentially localized.

Perturbative studies on the weakly interacting disordered
electron gas dates back to the seminal work of Altshuler and
Aronov [23]. Later extensions include the two-loop large-N re-
ormalization group analysis of Punnoose and Finkelstein [24]
that could describe a metal-insulator transition in a two-
dimensional electron gas. However, in disordered interacting
systems there also exists a number of relevant phenomena that
are beyond the reach of perturbative methods. For example,
the work by Milanović, Sachdev, and Bhatt [45] and later
by Bhatt and Fisher [46] showed the importance of disorder
in describing the instability of a disordered, interacting
Fermi liquid towards the formation of local moments. The
treatment of interactions within the nonpertubative framework
of DMFT [5] can naturally incorporate the tendency towards
the formation of local moments [30]. In this work, we revisit
the paramagnetic phase of the AHM and try to elucidate the
mechanism that could lead to the formation of such local
moments in a disordered, interacting system. In particular,
we look into the single particle quantities across a broad range
of U and W parameters, putting particular emphasis on the
scattering rate and the evolution of the distribution of Kondo
scales with respect to U and W .

A. Distribution of Kondo scales

It is well known that the metallic DoS of the particle-
hole symmetric single-band Hubbard model exhibits a three
peak structure, with a well defined Abrikosov-Suhl resonance
centered around the Fermi energy, that signifies the low-energy
quasiparticle coherence present in the system, symptomatic
of an underlying coherence scale T 0

K [5]. The full width
at half maximum of this resonance is one measure of the
low-energy Kondo coherence scale T 0

K , present in the Fermi

liquid. The local quasiparticle weight, Z = (1 − ∂Re�(ω)
∂ω

)
−1

provides another measurement of this energy scale. Above
this coherence scale, physical properties are dominated by
incoherent electron-electron scattering effects and Fermi liquid
theory loses its validity although, recent state-of-art DMFT
calculations indicate a resilient quasiparticle regime before
the system crosses over to a bad metal regime [47]. In the
presence of disorder, the translational invariance is broken,
so the screening of the local moments by mobile electrons
should be spatially nonuniform. While some sites may be
strongly hybridized with the local medium, others may be
weakly hybridized. For sites that are weakly hybridized with
the local surroundings, charge fluctuations are suppressed, thus
representing a reduced screening in comparison to the sites that
strongly hybridize with the surrounding medium. Therefore,
in a strongly correlated disordered system, the coherence scale
is a random quantity with an associated distribution.

Within the TMT-DMFT implementation we solve an en-
semble of impurity problems embedded in an effective disorder
averaged medium. We use the LMA as our impurity solver. The
LMA is designed to capture the dynamical spin flip scattering
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FIG. 1. Distribution of Kondo scales. In the main panel, the
evolution of the TK distribution as a function of W for U = 1.2 is
shown on a linear-log scale. The distributions are peaked and (sharply)
bounded from below by T

peak
K , the scale associated with the respective

particle-hole symmetric limit of the effective impurity problem
embedded in the typical medium. The shaded region highlights the
narrow range of TK ’s spanned by small W in contrast to the higher
TK long tails spanned by larger W ’s. (inset) T

peak
K is plotted as a

function of W for U = 1.2, 1.8, 2.7. While, U = 1.2, 1.8 correspond
to U < Uc2, U = 2.7 > Uc2. Hence, in the W = 0 limit, U = 1.2
and 1.8 correspond to Fermi liquids with T 0

K = T
peak
K ≈ 0.025 and

0.007, respectively. On the other hand, U = 2.7 corresponds to a
Mott insulator with T 0

K = T
peak
K = 0.

processes encountered by an ↑/↓ spin occupied impurity.
These processes lie at the heart of the physics associated with
the Kondo effect [36], and their energy scale is on the order
of the Kondo scale. The LMA can capture such extremely
low-energy scales efficiently. Within the LMA, a measure of
the Kondo scale is provided by the position of the resonance in
the transverse spin polarization propagator [36]. We therefore
end up with a self-consistently determined distribution of such
spin-flip scattering energy scales that represent the energies
associated with the Kondo screening of the impurities by the
disorder averaged effective noninteracting host.

In Fig. 1, we show the distributions of Kondo scales, TK , for
various disorder strengths, W , at a fixed U = 1.2. The local
nature of the framework renders the distributions to be peaked
and bounded from below (also observed in earlier works at
nonzero temperature [22] and square lattice [48]). This peak,
T

peak
K , is associated with the particle-hole (p-h) symmetric limit

of the effective impurity problem embedded in the disorder
averaged medium that is also p-h symmetric and is identical
for all such single-impurity sites. Due to the local nature of
the solution, the effective Kondo screening experienced by any
impurity moment could thus be only dependent on the Vi of the
respective impurity. Therefore sites which are at or close to the
p-h symmetric limit will experience the least Kondo screening
and hence will have the lowest TK . The shaded region in Fig. 1
demonstrates the narrow area under the curves corresponding
to the low disorder limit of W = 0.4 for U = 1.2, in contrast to
the long tails in the distributions corresponding to the higher
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FIG. 2. Distribution of the renormalized site energy, ε∗
i =

εi + Re�i(0), with εi = Vi − U/2, plotted for U = 1.2 and W =
1.8, 2.1, 2.575, and 2.625. A pronounced weight is observed around
ε∗
i = 0 that represents the particle-hole symmetric limit. The initially

broad peak becomes narrower and grows in intensity as W is
increased. Such an evolution of ε∗

i as a function of increasing W

indicates that a majority of sites tend to attain a TK close to that of the
particle-hole symmetric limit. This can be correlated with the skewed
nature of P (TK ) in Fig. 1 as W is increased. Note that the entire range
is not shown.

values of W . The initial effect of increasing W is to screen
the effects of U even at the lowest energy scales, such that
T

peak
K is pushed to higher values; subsequently, with increasing

W , T
peak
K decreases monotonically, signifying the onset of

disorder induced scattering cooperating with interaction driven
scattering in the low-frequency region, and tending to localize
the system.

In the inset of Fig. 1, we plot T
peak
K as a function of W for

different interaction strengths, U . When W = 0, the systems
with U = 1.2 and 1.8 are Fermi liquids with Kondo scales
T 0

K = T
peak
K ≈ 0.025 and 0.007, respectively. For U = 2.7,

the system is a Mott insulator with T 0
K = T

peak
K = 0. As

shown in the inset of Fig. 1, for U = 2.7 (U > Uc2), the
T

peak
K evolves from being zero at low W � U , and then at

W = Wc1 a nonzero T
peak
K emerges that subsequently increases

with increasing disorder signifying a regime where disorder
screens the effects of strong interactions. This initial screening
of electron-electron interactions due to disorder is true even
for smaller U = 1.2 or 1.8 (U < Uc2) as discussed earlier.
Subsequently, T

peak
K → 0 as W is increased, an observation

that holds true for both U = 1.2 and 1.8.
Particular insight about the respective behavior of P (TK )

may be obtained by looking at the evolution of the effective
site potential energy (ε∗

i ) as a function of increasing W . In
Fig. 2, we show the distribution of the disorder renormalised
site energy, P (ε∗

i ), for W = 1.8, 2.1, 2.575, 2.625 at U = 1.2,
with ε∗

i = Vi − U/2 + Re�i(0). The distribution is marked by
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FIG. 3. A schematic of the surface formed by the T
peak
K as a

function of U and W .

a peak around ε∗
i = 0, indicating that a majority of sites tend

to attain a disorder renormalized site potential energy close
to the p-h symmetric limit. This explains why the T

peak
K is

determined by the Kondo scales corresponding to the sites
that are at or close to half-filling. This peak is initially broad
for a relatively low W (W = 1.8) and becomes sharper as the
W is increased. This shows that as the disorder is increased
more number of sites experience a reduced Kondo screening.
In other words, for stronger W ’s, the distribution of Kondo
scales become more and more skewed such that even sites that
are quite far away from half filling may experience a reduced
Kondo screening resulting in a Kondo energy scale close to
that corresponding to the p-h symmetric limit.

It is to be noted that such a behavior of P (ε∗
i ) has been

shown to exist close to an interaction driven transition at
a fixed W [49,50], where such a behavior of P (ε∗

i ) has
been dubbed as perfect disorder screening. In other words,
similar observations were shown to be prevalent close to
the metal-Mott insulator phase boundary of the symmetric,
paramagnetic AHM [49,50]. In this work, we show that this
behavior of P (ε∗

i ) and P (TK ) is generic to a broader parameter
regime. These observations are not just restricted to U driven
metal-insulator transition at low W , but applies to W driven
transitions also even if the bare interaction strength is small.
The physical picture underlying the above observation is the
following: for strong disorder potential, as we approach a
disorder driven metal-insulator transition, the �typ(0) between
any site and its host becomes sufficiently small such that
the ratio, U/π Im(�typ(0)) � 1, and these sites with ε∗

i ∼ 0
experience stronger interaction effects, pushing T

peak
K towards

zero, even though the bare interaction strength is small. In
Fig. 3, we summarize the above analysis by representing the
surface of T

peak
K scales as a function of both U and W . Since

T
peak
K represents the most probable value of the underlying

Kondo scale, we now ask the question whether this can be
related to the scattering dynamics of the system close to
the metal-insulator transitions observed in the AHM. In the

following section, we therefore explore the imaginary part of
the disorder averaged self-energy, −Im�ave(ω).

B. Scattering dynamics

In a strongly correlated system, the imaginary part of the
interaction self-energy, −Im�(ω), relates to the scattering rate.
Thus the −Im�(ω) is a mirror of the underlying scattering
dynamics present. In a disordered interacting system we need
to look at the average self-energy, −Im�ave(ω), obtained
from the arithmetically averaged Green’s function, 〈G(ω)〉arith,
where 〈. . . 〉arith denotes arithmetic averaging with respect to
P (Vi). It is this average quantity that represents the physical
Green’s function of the system. The quantity, 〈G(ω)〉arith

may be obtained from the Hilbert transform of ρarith(ω),
given by 〈G(ω)〉arith = ∫

ρarith(ω′)dω′
ω−ω′ . Accordingly, the average

self-energy, that represents the scattering dynamics, is obtained
from the Dyson’s equation given by �ave(ω) = G(ω)−1 −
〈G(ω)〉−1

arith. The host Green’s function G(ω) embodies the
typical nature of the disorder-averaged medium.

In a clean Fermi liquid, the −Im�ave(ω) = −Im�(ω) ∼
|ω|2 for ω < T 0

K (where T 0
K is the lattice-coherence scale or

the Kondo scale in a clean lattice). With this background we
look at the low-frequency region of −Im�ave(ω). In Fig. 4,
we subtract the static contribution of the impurity scattering,
a0 = −Im�ave(0) and plot the quantity, −Im�ave(ω) − a0

for various disorder strengths at fixed interaction strengths,
U = 1.2 (left panel) U = 2.7 (right panel). The parameters
presented are close to the disorder driven metal-insulator
transition boundary. In the main panels, we plot this quantity
on a frequency rescaled, ω′ = ω/T

peak
K axis, relating T

peak
K

to the inverse scattering rate of the particles. The insets to
these figures show the low-frequency part of the self-energy
spectrum, −Im�ave(ω) − a0, on an absolute scale, i.e., versus
ω. In either case (U = 1.2 or U = 2.7) of Fig. 4 the self-energy
spectrum for various W ’s look quite distinct on the bare energy
scale being dependent on the disorder strength, W . These plots
also reflect upon the diminution of the effective Kondo scale as
W is increased, thus relating to Fig. 1. In contrast to the insets
of Fig. 4, the main panels of Fig. 4 illustrate the self-energy
spectrum on a rescaled axis, with the rescaled frequency,
ω′ = ω/T

peak
K . It is also observed that the low-energy spectral

dynamics of −Im�ave(ω) − a0 ∼ ω′2 for ω′ < 1. At higher
energy scales, a clear departure from ∼ω′2 is evident as
anticipated. A universal scaling collapse of the single-particle
self-energy, with respect to T

peak
K is observed reminiscent of

the conventional correlated lattice scenario [19,51]. The clear
collapse due to this rescaling suggests that, within a local
theory, even in presence of a random potential, an energy scale
∼T

peak
K serves as a Fermi liquid scale, just as in the clean case.

Moreover, as seen from the main panel of Fig. 4, although the
coherent Fermi liquid scattering regime is restricted for ω′ � 1,
a universal scattering dynamics is significantly observed until
much higher-energy scales. In other words, this signifies that
within a local theory for interacting disordered systems, the
quasiparticle excitations are in fact determined by a disorder
renormalized single impurity Kondo scale, T

peak
K . Let us now

comment on the parameter regime where this collapse is most
significantly observed. The scaling collapse for U = 1.2 holds
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FIG. 4. Universal scaling of −Im�ave(ω). (Left) The −Im�ave(ω) with the static part [a0 = −Im�ave(0)] subtracted is plotted for U = 1.2,
on an energy scale, ω′, with the bare frequency, ω rescaled by T

peak
K that has been obtained from the respective P (TK ) plots. (Left inset) The

same sets of data are plotted on a bare energy scale, ω. (Right) The −Im�ave(ω) with the static part [a0 = −Im�ave(0)] subtracted is plotted
for U = 2.7 on the rescaled energy scale, ω′. (Right inset) The same sets of data are plotted on a bare energy scale.

true for higher disorders and very close to the transition where
the T

peak
K itself is exponentially small. Note that the values

of W = 2.575, 2.6, and 2.625 in Fig. 4 correspond to very
small scales in Fig. 1. So, in Fig. 4(left panel) representing
U = 1.2, the W ’s represent values close to the metal to a
disorder driven Mott-Anderson insulator transition. A similar
scenario is observed for U = 2.7, as shown in the right panel
of Fig. 4. If we now locate W = 1.2, 1.25, 1.4 in Fig. 1
(violet curve), these values would approximately correspond to
T

peak
K ∼ 0.00009, 0.0005, 0.001, respectively, and would thus

represent W ’s close to a metal-insulator transition resembling
a clean Mott transition. Note that according to Ref. [28], at the
critical disorder strength where this metal-insulator transition
would occur the ρtyp(0), ρarith(0) would vanish simultaneously,
“on the spot.” In Ref. [28], the insulating phase resulting from
this transition was termed as the disordered Mott insulator
phase. In accordance with the observations of Ref. [30], we
also speculate that the T

peak
K would continuously vanish to zero

at the critical W . So, as observed in Fig. 4, universal scaling,
until ω � T

peak
K is observed from W = 1.2 and W = 1.25,

representing parameters very close to the disordered Mott
transition. Note that since we could not reach such low-energy
scales for the metal to Mott-Anderson insulator transition at
higher W for U = 2.7, demonstrating such a scenario in this
regime was beyond the scope of the current work.

We note in passing, that such a universal scaling collapse
scenario could already be anticipated from Fig. 2 where
we demonstrated the evolution of the distribution of the
renormalized site energies, ε∗

i as a function of increasing
disorder. As W is increased in presence of a fixed U , the
pronounced tendency of an appreciable number of sites to
acquire a renormalized site potential, ε∗

i = 0, already reflect
upon the possible emergence of a universal low-energy scale
close to the disorder driven metal-insulator transition. This in
turn manifests as a universal scaling collapse in the spectral
dynamics of −Im�ave(ω) − a0. This renormalized single-
particle dynamics is summarized in Fig. 5 as a schematic.
Such universal physics determined by a single energy scale,
even in the presence of strong disorder, suggests that the local

effect of disorder is to only renormalize the onsite interaction
between the electrons, such that the underlying low-energy
quasiparticle excitations are still determined by Fermi liquid
dynamics, similar to a conventional Mott transition scenario.
This is possibly a consequence of the underlying scattering
mechanism due to deep-trapped states prevalent within a local
theory and its resulting feedback to the low-energy sector
of the (local) hybridizing medium. It is worth mentioning
that a similar universal scaling scenario of the single particle
density of states was hinted at in an earlier study by Aguiar
et al. in Ref. [29]. They considered an ensemble of single
impurity Anderson models embedded in a model bath. The
model bath was manually chosen, and the typical nature of the
hybridization function was parametrized in order to mimic
a disorder driven metal-insulator transition. In this work,
we elucidate and demonstrate a universal scaling picture of

FIG. 5. A schematic demonstrating the self-energy scattering
dynamics corresponding to different energy regimes as a function
of disorder, W within the metallic phase. It should be noted that the
quantity ξ separating the “incoherent universal” and the “incoherent
nonuniversal” regimes is just symptomatic of the proximity to the
metal-insulator transition. In strong coupling as W → Wc, where Wc

is the critical disorder strength for the metal-insulator transition when
approached from the metallic side, ξ → ∞ in the scaling regime.
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FIG. 6. Evolution of the density of states. The arithmetic mean of the density of states (DoS) also known as the average DoS (ADoS) (solid
red line, green shaded region) and the geometric mean of the DoS also known as the typical DoS (TDoS) (solid black line, turquoise shaded
region) at various W for (a) U = 1.2 and (b) 2.7. Similar to the U = 0 scenario, when the disorder W is small, both the ADoS and the TDoS
produce almost the same density of states and as W increases the TDoS gets suppressed over all energy scales.

scattering dynamics within a self-consistent scheme, where the
typical medium is determined self-consistently and depends on
the amount of disorder present.

C. Density of states

The arithmetically averaged DoS (ADoS) is defined
as ρarith(ω) = ∫

P (Vi)ρi(ω) dVi , where, ρi(ω) is the local
DoS (LDoS). The typical DoS is obtained via geomet-
ric averaging of the LDoS and is defined as ρtyp(ω) =
exp

∫
P (Vi) ln ρi(ω) dVi . As mentioned earlier, P (Vi) repre-

sents the distribution followed by the random site potential
energies, that in this paper is chosen to be a box distribution.
In Fig. 6(a), we plot the arithmetically averaged DoS (ADoS)
and the typical DoS (TDoS) for various W = 0.4, 1.2, 2.5 at
a fixed interaction strength U = 1.2 < Uc2. In agreement with
the U = 0 scenario, when the disorder, W , is small, both the
ADoS and the TDoS produce almost the same density of states.
With increasing disorder, the TDoS gets suppressed over all
energy scales (note that this is not spectral weight transfer, as
the TDoS is not normalized). As seen from Fig. 6(a), there
exists remnants of the W = 0 limit Kondo resonance cen-
tered around ω = 0. With increasing disorder, this resonance
initially broadens but then progressively narrows down. In
Fig. 6(b), we plot the same as above but for U = 2.7 > Uc2

that represents a Mott insulator in the W = 0 limit of the p-h
symmetric AHM. The introduction of randomness allows for
local charge fluctuations that in turn leads to delocalization
of the otherwise localized moments, beyond a certain critical
disorder strength, Wc1. This picture is in agreement with the
NRG calculations of Ref. [28]. This naturally manifests as
the emergence of a finite density of states at the Fermi level
(ω = 0). In other words, a sharp Kondo resonance reappears
in the middle of a prominent gap, with the inclusion of a
finite amount of disorder, Wc1; this gap reminds us of the
Mott insulating gap in the W = 0 limit. Based on the spectral
fingerprints, we may speculate the following: if we start from
W = 1.1 at U = 2.7 and decrease W we should expect a metal-
insulator transition at Wc1. This transition is similar to the Mott

metal-insulator transition obtained in the conventional single
band Hubbard model. This should be reflected as the narrowing
of [P (TK ) (not shown here for U = 2.7] and an associated
decrease in T

peak
K as W is pushed towards Wc1. The latter is

illustrated in the inset of Fig. 1. For both Figs. 6(a) and 6(b),
the high-energy Hubbard bands broaden and acquire reduced
spectral intensities. This broadening that is also manifested in
the self-consistently determined hybridization function (not
shown here) highlight the fact that presence of disorder
introduces additional scattering pathways. In the context of
DMFT, this increases the rate at which these high-energy
electrons hop off from the impurity site into the embedding
host, thus reducing its lifetime and hence broadening the
spectra at such energy scales.

To conclude this section, we compare the decay of the
ρtyp(0) and the ρarith(0) for the two regimes of interaction dis-
cussed above, namely, U = 1.2(<Uc2) and U = 2.7(>Uc2).
From Fig. 7, ρtyp(0) appears to be monotonically vanishing
as W is increased while ρarith(0) appears to saturate. If

FIG. 7. Comparison of the band center (ω = 0) value of the TDoS
and the ADoS as a function of W .
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FIG. 8. A qualitative phase diagram of the Anderson-Hubbard
model, within the TMT-DMFT framework. We approach from the
metallic side and identify the phase boundary based on the behavior
of the peak T

peak
K of the distribution of Kondo scales and/or the band

center value of the typical density of states, ρtyp(0). For example, both
ρtyp(0) → 0 and T

peak
K → 0 as the Mott-Anderson phase boundary is

approached from the metallic side. On the other hand, only T
peak
K → 0

as the Mott phase boundary is approached from the metallic side.

the metal-insulator transition encountered at large W is
continuous, as expected for small values of U , then these
results suggest that the ρarith(0) remains finite even in the
insulating phase such that the Anderson-Mott insulator phase
is gapless [28]. A true characterization of the phases would
require numerical simulations very close to the metal-insulator
transitions. The numerical calculations become very unstable
as one approaches this limit and hence is beyond the scope of
the current work. Nevertheless, based on the above discussion,
we demonstrate a qualitative picture of the different phase
boundaries in Fig. 8. The different boundaries are all based
on the approach from the metallic side. The phase boundary
between the metal and the Mott-Anderson insulator phase is
obtained by extrapolating ρtyp(0) to zero and the metal-Mott
insulator phase boundary is obtained by extrapolating T

peak
K (0)

to zero. It is worth noting that for U = 2.7, both T
peak
K (as

shown in the inset of Fig. 1) and ρtyp(0) (as shown in the inset
of Fig. 7) appear to decay much more gradually than those
for U = 1.2. In Ref. [28], indeed a slow decay of ρtyp(0) was
attributed to the observation of a “crossover” regime, where
a sharp metal-insulator transition could not be rigorously
identified. They reported it as a smooth crossover from the
metallic to the insulating phase. It is true that, for U = 2.7
(U > Uc2) our observations are similar, in terms of the slow
decay of ρtyp(0); however, we believe prediction of a crossover
instead of a “sharp transition” is difficult within the current
implementation, unless we probe deeper into the metallic
regime and explore the insulating phase as well. It should also
be noted that the presence of a preformed gap in the density
of states shown in Fig. 6 in the regime where W � U and
U > Uc2 perhaps indicate the presence of a first-order Mott
transition in this regime. While we obtain a similar trend as
that obtained by Byczuk et al. in Ref. [28] or by Aguiar et al.
in Ref. [30], since our current formulation lacks the ability
of approach from the insulating side we cannot make any

assertive statement about the metal-Mott insulator coexistence
regime or the crossover regime observed in Ref. [28].

IV. CONCLUSIONS

We employed the dynamical mean-field theory framework
with a typical medium, to look into the interplay of disorder
and strong correlations in the paramagnetic metallic phase of
the particle-hole symmetric Anderson-Hubbard model using
the local moment approach. Particularly, we explored the
single particle dynamics by analyzing the disorder averaged
self-energy and identified the existence of a universal “Kondo”
scale within such a local theoretical framework that considers
the strong correlation physics in presence of disorder scattering
only due to deep trapped states. Additionally, we showed
that this scale could be represented by the peak (T peak

K ) in
the distribution function of the Kondo scales. Moreover, the
universal regime is shown to exist up to significantly high
energies, although a strict Fermi liquid scattering dynamics
holds true for ω � T

peak
K . While such universal dynamics

similar to that observed in the strong coupling limit of the con-
ventional single-band Hubbard model [19,51] is anticipated
in the low-disorder regime [22], the same is surprising in the
proximity of a Anderson-Mott transition, where the disorder is
much stronger in comparison to the interaction. But then, such
an observation highlights the incipient disorder renormalized
Kondo screening of the local moments to be the dominant
mechanism determining the low-energy physics of the system.

As mentioned before, within the local framework of the
dynamical mean-field theory in combination within the typical
medium theory, the Anderson-Hubbard model is mapped onto
an ensemble of impurity problems, where the host for the
impurities is determined by the typical density of states.
The tendency of an impurity site to form a local moment
is governed by the impurity-host hybridization function that
is determined by the typical impurity density of states. Thus
the low-energy physics will be determined by the peak of
the distribution of the density of states and reinforced by this
self consistency since all the sites see the same hybridization
function. In this case, these sites are the ones with the lowest
Kondo scale, which are at the peak of the distribution. They
are the ones closest to Mott character. The inhibition of the
low-energy hybridization function would be felt by all the
impurities leading to a pronounced tendency towards forming
local moments.

Since the disorder, especially near an Anderson localization
transition, strongly suppresses the hybridization to the impu-
rity, our observations highlight that in a disordered interacting
system, Anderson and Mott mechanism of localization may not
be disentangled. It is worth noting that the behavior of the local
Kondo scales and the density of states are in agreement with the
previous works as in Refs. [28,30]. In our work, we perform a
detailed investigation of the spectra, and find that the broad
distribution of Kondo scales and the underlying universal
scattering dynamics corroborate the physical picture of the
emergence of the formation of local moments in the presence
of metallic droplets, as proposed in Refs. [30,52]. While
the emergent local moments would tend towards a common
Kondo scale, we speculate that the Kondo scales and hence
the low-energy physics associated with the metallic droplets
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could be inhomogeneous. These observations are particularly
relevant for understanding the underlying mechanisms that
lead to the breakdown of the metallic phase towards a Mott
or Mott-Anderson localization transition. However, in order to
assert the true nature of this spatial inhomogeneity we require
to go beyond the local framework and incorporate nonlocal
dynamical fluctuations.

The local moment approach is an inherently nonpertur-
bative impurity solver neither confined to low energies like
the slave-boson approach nor to weak coupling like the
iterated perturbation theory or modified perturbation theory
approaches. While for nondisordered correlated systems this
has clearly been demonstrated [36,53], our present calculations
show that it does capture the strong correlation physics in
accordance with the numerically exact NRG calculations for
disordered correlated systems [28]. With this setup established,
one then asks the question as to what happens if we
include short-range dynamical fluctuations due to disorder.
Such directions within the framework of the typical medium
dynamical cluster approximation [54] are currently under our
consideration.
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APPENDIX A: LOCAL MOMENT APPROACH (LMA)

1. Starting point: unrestricted Hartree-Fock state

In the following, we will discuss some of the basic concepts
of the zero temperature LMA formalism. A key physical
aspect of this method is the inclusion of low-energy spin-flip
excitations in the single-particle dynamics. This is facilitated
at the inception by starting from the unrestricted Hartree-Fock
(UHF) state: local moments μ̄ are introduced from the outset,
to get a direct handle on the low-energy spin-flip processes.
The solutions are built around simple symmetry broken static
mean-field, UHF, states, containing two degenerate states μ̄ =
±|μ̄|, where, |μ̄| = |〈n̂i↑ − n̂i↓〉|, the average being over the
UHF ground state. We label A and B for solutions μ̄ = +|μ̄|
or −|μ̄|, respectively [36]. For an understanding of the formal
details the reader is referred to Refs. [16,36,40,55,56]. Here,
we briefly recap the main equations. The single-particle UHF
Green’s functions for the paramagnetic case are given by

GUHF
↑ (ω) = 1

ω+ − ei + x − �(ω)
, (A1)

GUHF
↓ (ω) = 1

ω+ − ei − x − �(ω)
, (A2)

where, �(ω) is the hybridization function for the impurity-host
coupling, that, for the paramagnetic case, is spin independent;

x = 1
2 |μ̄|U and ei = εi + 1

2Un, where n is the mean-field
charge as described in the following. The density of the single-
particle excitations is given by, Dσ = − 1

π
ImGUHF

σ (ω), where,
σ = ↑/↓. The local moment, in general, would be given by,
|μ̃| = ∫ 0

−∞ dω(D↑(ω) − D↓(ω)), and has to be obtained self-
consistently. When we are away from particle-hole symmetry
then we also need the impurity occupancy to be given by,
ñ = ∫ 0

−∞ dω(D↑(ω) + D↓(ω)). For the pure mean-field UHF
solution, we have

μ̃ = μ̄, (A3)

ñ = n, (A4)

to be solved self-consistently. So, if we now fix x and ei (note
that they are not the bare parameters of the Hamiltonian),
then Eqs. (A3) and (A4) would provide the solution at one
shot and accordingly, the bare parameters may be inferred as
U = 2x/|μ| and εi = ei − Un/2. However, if U and εi are
fixed, then this has to be obtained by iterative cycling. The
UHF solution is severely deficient (see Refs. [36,40,55,57]),
for not capturing the Fermi liquid picture. In any case, being
a static approximation, one has to go beyond it to incorporate
dynamics.

2. Inclusion of spin-flip scattering dynamics

Within the LMA in practice, we approximate the dynamical
part of the self-energy by the (nonperturbative) class of
spin-flip diagrams shown in Fig. 9. Here, the bare propagators
are that of UHF and therefore the inclusion of all these
diagrams constitute the UHF+random phase approximation
(RPA) scheme. We thus build a two self-energy description, as
represented in Fig. 9 and mathematically represented as

�σ (ω) = U 2
∫ ∞

∞

dω′

2πi
GUHF

σ̄ (ω − ω′)�σ̄σ (ω′). (A5)

�σ̄σ (ω) is the transverse-spin polarization propagator
(with σ̄ = −σ ), which in the current RPA scheme
employed is expressed as �σ̄σ (ω) = 0�σ̄σ

1−U 0�σ̄σ . The bare

FIG. 9. Self-energy within the LMA for the single impurity
Anderson model. Diagrammatic representation of the dynamic self-
energy, �(ω) retained within the LMA in practice. The diagrams are
expressed in terms of the polarization bubble, �σ̄σ (ω). Wavy line:
interaction U , double line: renormalized host/medium propagator,
and hatched region: transverse spin polarization propagator bubble.
See Eq. (A5) and the associated text.
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polarization propagator, 0�σ̄σ (ω) is expressed in terms of
broken symmetry mean-field propagators as 0�σ̄σ (ω) =
i

2π

∫ ∞
−∞ dω′GUHF

↓ (ω′)GUHF
↑ (ω′ − ω).

The UHF propagators should result in a self-energy that
satisfies the basic criteria for a Fermi liquid. After some
detailed algebra [36], we can then arrive at self-consistency
equation for determining the exact local moment that satisfies
such constraints, so that the two self-energy description may
be written as ∑

σ

σ�σ (0; ei,x) = |μ̃(ei,x)|U. (A6)

The above equation is known as the symmetry-restoration
condition. Finally, the single self-energy may be obtained as

�(ω) = 1

2
[�̃↑(ω) + �̃↓(ω)]

+
1
2 (�̃↑(ω) − �̃↓(ω))2

g−1(ω) − 1
2 [�̃↑(ω) + �̃↓(ω)]

, (A7)

where

�̃σ (ω) = U

2
(ñ − σ |μ̃|) + �σ (ω), (A8)

with σ = ↑/↓ and the impurity Green’s function, Gimp =
1
2

∑
σ Gσ , with Gσ (ω) = [g−1(ω) − �̃σ (ω)]

−1
and g(ω) =

1
ω+−εi−�(ω) . Additionally, for p-h asymmetric situations [55]
one also needs to satisfy the Luttinger’s theorem given by

IL = Im
∫ 0

−∞

dω

π

∂�(ω)

∂ω
Gimp(ω) = 0. (A9)

The self-consistent imposition of Eq. (A6) amounts to a
self-consistency condition for the local moment |μ̄| that enters
Eqs. (A1) and (A2). A low-energy spin-flip scale, TK is
generated; this scale that manifests as a strong resonance in the
imaginary part of the transverse spin polarization propagator,
Im�σ̄σ (ω), is proportional to the Kondo scale [36,55]. If the
symmetry-restoration condition (A6) is not satisfied, then a
spin-flip scale occurs at TK = 0 signaling the breakdown of a
Fermi liquid.

A practical implementation of the LMA involves fixing
x = 1

2U |μ̄| and ei [16,36,40,41,55,58]. The current nature of
the problem, however, requires us to fix the bare parameters
of the single impurity Anderson model, namely, U and εi .
However, we should also note that if εi is fixed instead of
ei then, Eqs. (A6) and (A9) would have to be solved self-
consistently requiring several ∼20–30 symmetry-restoration
steps increasing the computation time enormously. Instead,
if we fix U and ei and tune μ̄, we can drastically reduce
this requirement again ending up in solving 5–6 symmetry-
restoration iterations, as in the fixed x, fixed ei algorithm.
The scheme is described as following. (1) We start with
an initial guess local moment, μ̄ with which we calculate
G↑/↓ and subsequently, μ̃ from UHF spectral functions. (2)
The calculation of 0�σ̄σ and �σ̄σ , and, �↑/↓ follows. (3)
Equation (A6) is checked and steps (1)–(3) are repeated until
a convergence of 10−6 or lower is achieved. With this step it
can be realized that the entire process involves calculations
of coupled equations for finding the root of Eq. (A6), for
which one therefore has to provide a judicious guess to

reach the solution correctly and efficiently. (4) Finally, with
proper guesses for the underlying self-consistency equations
a converged �(ω) is obtained. With this self-energy, we can
now satisfy Eq. (A9) by tuning εi .

In particular to the problem treated in this paper, we also
had to take care of the computation time required to be able to
sample sufficient number of disorder realizations. We achieved
this by bringing in some additional schemes which would be
discussed in detail in the following section.

APPENDIX B: NUMERICAL IMPLEMENTATION
OF TMT-DMFT

In this section, we provide technical details of our imple-
mentation of the LMA within the TMT-DMFT framework. For
the sake of completeness, we also outline the steps involved in
the TMT-DMFT implementation. As outlined in the previous
section, employing the LMA with the bare parameters U and
εi , would require a lot of computational time. This results
from the fact that, away from p-h symmetry the impurity
parameter ei that acts like a pseudochemical potential and
explicitly enters the UHF Green’s functions via Eqs. (A1)
and (A2), would have to be tuned so that the symmetry
restoration [Eq. (A6)] and the Luttinger’s theorem [Eq. (A9)]
are self-consistently satisfied. Recall that this would result in
repeating the symmetry restoration [Eq. (A6)] step described
in several times. Instead, the impurity self-energy may be
obtained at a much cheaper effort if the bare parameters U

and the impurity parameter ei is fixed. In that case, once the
symmetry restored impurity self-energy and Green’s functions
are obtained, one can tune the εi such that the the Luttinger’s
theorem [Eq. (A9)] is satisfied. This can be done without
having to repeat the impurity self-energy calculation. However,
in the current problem, the εi is a random quantity following
a particular distribution. So, in order to resort to the fixed U ,
fixed ei scheme discussed in the earlier section we have to
first build a database for the respective (ei,εi) pair with the
given hybridization. In other words, before going to the actual
calculation, we do the following.

Step 1. (1) Given a hybridization function �(ω) we
start from the particle-hole symmetric limit with ei = 0 and
εi = −U/2, for which the Luttinger’s theorem [Eq. (A9)] is
naturally satisfied. Note that in the main text, �(ω) has been
denoted as �typ(ω). So, in this step the LMA solver is provided
with (a) �(ω), (b) U , and (c) ei = 0.

(2) We now increment the ei by a small step, say 0.02.1 So,
in this step the LMA solver is provided with (a) �(ω), (b) U ,
and (c) ei = 0.02. Accordingly, the εi is derived by satisfying
the Luttinger’s theorem [Eq. (A9)] and an (ei,εi) pair for the
given �(ω) is generated.

(3) The above step (2) is continued until the εi obtained
overshoots the limit set by the disorder strength, W . Note
that, εi = −U/2 + Vi , where Vi is a random number between
−W � Vi � W . (4) For the actual random configuration Vi

and therefore, the εi , we now interpolate the corresponding
ei from the database and compute the local self-energy, �i .

1This is optimized by experience to minimize the number of steps
or (ei,εi) pairs required to obtain a good data base.

235104-10



LOCAL THEORY FOR MOTT-ANDERSON LOCALIZATION PHYSICAL REVIEW B 94, 235104 (2016)

Finally, we construct the local Green’s function Gi(ω,Vi),
using the equation, Gi(ω,Vi) = ([G]−1(ω) − �i(ω) − εi)

−1
,

where, G(ω) = 1
ω+−�(ω) . This would now be used to construct

ρtyp(ω).
Step 2. The output of step 1 comprises N local impurity

self-energies, �i(ω) that gives us N local impurity Green’s
function, Gi(ω). With the local spectral functions, ρi(ω) =
− 1

π
ImGi(ω), we construct the disorder averaged DoS, using

geometric averaging:

ρtyp(ω) = exp
∫

dViP (Vi) ln ρi(ω). (B1)

Using Eq. (B1), we can now construct the typical Green’s
function, Gtyp(ω), from the Hilbert transform of ρtyp:

Gtyp(ω) =
∫

ρtyp(ω′)dω′

ω − ω′ . (B2)

Step 3. We define the coarse-grained lattice Green’s
function as G(ω) given by

G(ω) =
∫

ρ0(ε) dε

[Gtyp(ω)]−1 + �(ω) − ε
, (B3)

where ρ0(ε) refers to the bare density of states, that in the
current problem is that of the three-dimensional cubic lattice.

Step 4. The new hybridization may be obtained as

�(ω)new = �old + ζ [(Gtyp)−1 − (G)−1], (B4)

where, ζ is a mixing parameter typically set to a value
of 0.5. With �new(ω) we can go back to step 1 and con-
tinue until −Im

∫ |(�new(ω) − �old(ω))|dω converges within
some tolerance, which in our implementation is chosen to
be ∼10−3.

Note that in order to look into the scattering dynamics, we
calculate the arithmetic average of the local density of states,
ρi(ω). As described in the main text, this is given by, ρarith =∫

dViP (Vi)ρi(ω) and it represents the average density of states
(ADoS) of the lattice. From the ADoS, we can then calculate
the arithmetic average of the local Green’s function 〈G(ω)〉arith

using the Hilbert transform relation 〈G(ω)〉arith = ∫
ρarith(ω′)dω′

ω−ω′ .
The disorder-averaged self-energy �(ω) that represents the
scattering dynamics is then calculated as �ave(ω) = G(ω)−1 −
〈G(ω)〉−1

arith.
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and S. Sarkar (Springer Netherlands, Dordrecht, 2001), pp. 381–
386.

[19] D. E. Logan and M. R. Galpin, J. Phys.: Condens. Matter 28,
025601 (2016).
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Kotliar, Phys. Rev. B 73, 115117 (2006).

[30] M. C. O. Aguiar, V. Dobrosavljević, E. Abrahams, and G.
Kotliar, Phys. Rev. Lett. 102, 156402 (2009).

[31] K. Byczuk, W. Hofstetter, and D. Vollhardt, in 50 years of
Anderson localization, edited by E. Abrahams (World Scientific,
2010), p. 473.

[32] M. C. O. Aguiar and V. Dobrosavljević, Phys. Rev. Lett. 110,
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