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Many-terminal Majorana island: From topological to multichannel Kondo model

Loı̈c Herviou,1,2 Karyn Le Hur,1 and Christophe Mora2

1Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
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We study Kondo screening obtained by coupling Majorana bound states, located on a topological
superconducting island, to interacting electronic reservoirs. At the charge degeneracy points of the island, we
formulate an exact mapping onto the spin-1/2 multichannel Kondo effect. The coupling to Majorana fermions
transforms the tunneling terms into effective fermionic bilinear contributions with a Luttinger parameter K

in the leads that is effectively doubled. For strong interactions K = 1/2, the intermediate fixed point of the
standard multichannel Kondo model is exactly recovered. It evolves with K and connects to strong coupling in
the noninteracting case K = 1, with maximum conductance between the leads and robustness against channel
asymmetries similarly to the topological Kondo effect. For a number of leads above four, there exists a window
of Luttinger parameters in which a quantum phase transition can occur between the strong coupling topological
Kondo state and the partially conducting multichannel Kondo state.
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I. INTRODUCTION

The realization and manipulation of Majorana bound states
in topological superconductors has been recently the focus
of numerous studies [1,2]. Such exotic quasiparticles appear
as many-body fermionic excitations at zero energy, and
can be topologically protected from decoherence and other
perturbations. Typical examples are the p + ip superconductor
in two dimensions [3] and the Kitaev p-wave superconducting
wire [4]. There have been numerous efforts [5–7] to realize
such a one-dimensional p-wave superconductor in InAs
quantum wires through a combination of spin-orbit coupling
and Zeeman effect. More recently, proposals were made to
realize mesoscopic geometries with such wires for further
applications in quantum computing [8]. Theoretically, some
recent works have also suggested to observe non-Abelian
statistics through gate engineering [9].

For a normal island without Majorana fermion, Matveev
formulated the charge Kondo effect [10,11] in which two
degenerate charge states play the role of an effective spin-1/2
and hybridize with electrons either in contacted reservoirs
or on the island, realizing the multichannel Kondo model
(M-CKM). Remarkably, in the two-channel Kondo model
emulated with two leads, an unscreened Majorana excitation
appears at low energy [12–16]. It is however an emergent
particle and differs from the proximity-induced Majorana
fermions considered in this paper. Recently the two-channel
charge Kondo model has been realized [17] in a GaAs setting
with an unprecedented control over the model parameters.
Two-channel Kondo screening has also been observed with a
real spin [18,19]. In all cases, it requires fine tuning which
makes its experimental characterization challenging.

Combining charging effects with Majorana fermions, or
Kondo physics with Majorana fermions [20–22], has already
been argued to lead to exotic transport dc [23–25] or ac
properties in quantum RC setting [26,27]. In this paper we
study a device proposed in the seminal works of Refs. [28,29]:
a single floating (not grounded) Majorana island connecting
with M � 3 reservoir leads, modeled by Luttinger liquids,

through separated Majorana zero modes. The “charge,” i.e.,
number of Cooper pairs plus number of fermions in the
zero energy Majorana manifold on the islands, can be
varied through a gate voltage coupled to the quantum box.
Progress in building such mesoscopic boxes have been made
recently [30,31]. In the nondegenerate case where transport
occurs through a single charge state, an unconventional
Kondo screening, named “topological Kondo model,” has
been theoretically explored [28,29,32–38] where the SO(M)
impurity “spin” is built from the Majorana excitations. The
corresponding low-energy theory exhibits non-Fermi liquid
exponents captured by a strong coupling quantum Brownian
motion (QBM) picture. In this analogy, the effective particle
is pinned at the minima of a triangular lattice connected
by instantons. Simple expressions for the leading irrelevant
operator dimensions can thus be derived in agreement with the
more involved conformal field theory approach [39].

In contrast with the topological Kondo effect, the mul-
tichannel Kondo model does not admit a simple QBM
description. The effective particle moves on a honeycomb
lattice and the low-energy fixed point is at intermediate (neither
weak or strong) coupling which excludes a full analytical
QBM analysis. In addition, this infrared intermediate fixed
point is not robust and requires fine tuning, whereas the
topological Kondo non-Fermi liquid fixed point is at strong
coupling and stable against perturbations such as asymmetric
lead couplings. This last point seems to favor the experimental
observation of the more robust topological Kondo effect over
the standard multichannel Kondo model.

In this work we focus on the charge degenerate case
where the two charge states n and n + 1 are energetically
equivalent and described by a pseudospin. We show that
the resulting QBM lattice is triangular with a pseudospin
texture characterized by a Berry phase. The corresponding
dual model is a honeycomb lattice. As a result, we recover
the multichannel Kondo model but with Luttinger parameters
in the leads that are doubled with respect to their bare
values. For noninteracting leads, the resulting multichannel
Kondo model has effectively strong interacting reservoirs, with
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the renormalized Luttinger parameter K = 2, and the strong
coupling QBM fixed point becomes stable in contrast with
the standard (noninteracting) Kondo fixed point. The standard
multichannel Kondo model is exactly recovered at the bare
value K = 1/2, i.e., for strong electronic repulsion in the
leads. Interestingly, we also show that for a large number
of channels, the model is characterized by two stable fixed
points in a certain window of Luttinger parameters, at strong
and finite coupling, separated by an unstable fixed point, and
thereby predicting a quantum phase transition as the electron
tunneling amplitude to the lead is varied. The finite coupling
fixed point is in fact analytically connected to the infrared fixed
point of the multichannel Kondo model, and we thus expect
similarly that it is not robust against channel asymmetries or
against lifting the charge degeneracy. Most of our perturbative
results are based on the QBM analysis of Kane and Yi [40,41]
which we revisit by focusing on the pseudospin wave function.
The same model at arbitrary charge degeneracy has been also
investigated in a very recent work [42] where the resonant
peak in the conductance was shown to be strongly enhanced
at degeneracy, and the strong coupling point was argued to be
robust. We reproduce their main results, except for the fact that
the renormalization group (RG) analysis in Ref. [42] is limited
to lowest order so that the coexistence of stable fixed points
for a number of channels above four is not discussed.

The paper is organized as follows. In Sec. II we introduce
the problem and its bosonization description. We discuss the
QBM picture in Sec. III and review its application to the
topological Kondo model. The charge degenerate point is
investigated in Sec. IV where a mapping onto the M-CKM is
formulated and in Sec. V where the evolution of the different
fixed points is determined. Section VI concludes.

II. MODEL AND BOSONIZATION

A. Model

We consider the device introduced in Refs. [28,29] and
depicted in Fig. 1 composed of a floating mesoscopic su-
perconductor onto which several topological semiconducting
nanowires have been deposited. Driven in its topologically
nontrivial state, each nanowire hosts a pair of zero-energy
Majorana bound states located at its extremities. The super-
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FIG. 1. Sketch of the Majorana island. A superconducting box is
connected through localized Majorana modes γj to M = 5 normal
leads. The Majorana modes are typically realized as boundary bound
states of topological nanowires deposited on the superconducting
box, and therefore come in pairs. Only the Majorana modes coupled
to electronic reservoirs are pictured here.

conducting island, also called topological Kondo box, is tunnel
coupled via their Majorana bound states to M normal leads of
spinless conduction electrons.

The Hamiltonian describing this device is given by H =
Hbox + Hleads + Ht . We focus on low energies, well below
the proximity gap induced by the superconducting island on
the nanowires, and keep only the state manifold generated by
the Majorana operators. The Hamiltonian for the box thus is
simply given by its charging energy

Hbox = EC(N̂ − ng)2 (1)

with the renormalized backgate voltage ng . Formally, ng is the
number of holes on the gate. EC is the charging energy of the
box. The number of charges on the box N̂ is written as a sum

N̂ = 2N̂c + n̂,

where N̂c counts the number of Cooper pairs and n̂ is the
number of fermions in the zero-energy Majorana manifold on
the island. N̂c is conjugate to the superconducting phase χ as
expressed by the commutation relation [χ,2N̂c] = i. Hence
e−2iχ is an operator shifting the number of Cooper pairs on the
island by −1, i.e., it annihilates a Cooper pair. The Majorana
operators satisfy the standard Clifford algebra

γj = γ
†
j , {γj ,γk} = 2δjk (2)

and can be paired to define fermionic operators dj = (γ2j−1 +
iγ2j )/2. In this fermionic basis, the Majorana occupation
number is simply given by n̂ = ∑N/2

j=1 d
†
j dj , where N (even) is

the total number of Majorana bound states on the island (we
consider N > M , see Appendix A). For convenience in the
notations but without loss of generality, we assume that the
first j = 1, . . . ,M Majorana are tunnel coupled to the leads.
We are mainly interested in M � 3, where the system is known
to present nontrivial Kondo properties.

The electrons in the mesoscopic box have been polarized
due to Zeeman effect [5–8]. We then assume that the incoming
electrons in the leads can penetrate in the box only if they have
the right spin polarization. This justifies the representation
as semi-infinite one-dimensional spinless fermions of the
electrons in each lead. At low energy, the electron field op-
erator in the lead j is ψj (x) = eikF xψ

†
R,j (x) + e−ikF xψ

†
L,j (x),

introducing right and left movers, where kF is the Fermi
momentum. The Hamiltonian has the form

Hleads = −ivF

M∑
j=1

∫ +∞

0
dx(ψ†

R,j ∂xψR,j − ψ
†
L,j ∂xψL,j )

+Hint, (3)

where vF is the Fermi velocity. Hint contains electron-electron
intrawire interactions and will be included as a Luttinger
parameter K in the bosonization procedure [43–45]. Finally,
the coupling between the Majorana bound states and the leads
are described by the tunneling Hamiltonian (see Appendix A
for a proper derivation)

Ht = −
M∑

j=1

tj e
−iχψ

†
j (0)γj + H.c., (4)
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tj are the tunneling amplitudes, all taken to be real and positive.
The symbol (0) refers to the position x = 0 of each wire
coupled to the island.

B. Bosonization and Majorana fermions

We take advantage of the one-dimensional character of
lead electrons and apply Abelian bosonization [43–45]. The
Klein factors introduced in the bosonization procedure can
be combined with the impurity Majorana fermions to derive
a purely bosonic Hamiltonian [34]. The ensuing technical
analysis is considerably simplified.

Introducing a short-distance length α, the Abelian
bosonization [44] formula expresses the fermion field operator
(for semi-infinite leads)

ψR/L,j = UR/L,j√
2πα

e−i(±φj −θj ) (5)

in terms of two conjugate boson fields

[φj (x),θk(x ′)] = i
π

2
sgn(x ′ − x)δj,k (6)

and Klein factors satisfying

{Uγ ,U
†
γ ′ } = 2δγ,γ ′ , γ = R/L,j. (7)

In the thermodynamic limit, Klein factors can be identified
with Majorana fermions Uγ � U †

γ . In this representation, the
lead Hamiltonian (3) is written as

Hleads =
∑

j

∫ +∞

0
dx

vF

2π

[
K(∂xθj )2 + 1

K
(∂xφj )2

]
(8)

=
∑

j

H0{φj ,θj ,K}. (9)

The Luttinger parameter accounts for the electron-electron
interactions in the leads. If they are repulsive, K < 1. The
leads stop at x = 0 in the vicinity of the island, imposing the
Dirichlet boundary condition ψR,j (0) = ψL,j (0). Hence there
is a single Klein factor per lead UR,j = UL,j , and φj (0) = 0.
This can also be understood the following way: instead of
considering a wire only from −∞ to 0, we separate the left-
and right-moving modes and consider only a single chiral
fermionic wire going from −∞ to ∞, with the box/impurity
at x = 0.

III. QUANTUM BROWNIAN MOTION AND
TOPOLOGICAL KONDO MODEL

A. Quantum Brownian motion

The quantum impurity model we derived in the previous
section is a boundary one-dimensional model. By integrating
all modes with x > 0 except the operator at x = 0 in the action
formalism, it can be formulated as a zero-dimensional spatial
problem with one temporal dimension. The integration of these
Gaussian bosonic modes [44] transforms the Euclidean action
into

S =
∑
ωm

∑
j

|ωm|K
2πβ

|θj (ωm)|2 +
∫ β

0
dτHP(τ ), (10)

where β is the inverse temperature and all bosonic fields θj (ωm)
are implicitly taken at x = 0, and

HP = Hbox + Ht. (11)

We have introduced the bosonic Matsubara frequencies ωm

over which the action is summed. The first term in this
expression ∼|ωm| describes dissipation caused by electron-
hole excitations in the leads. As we will show in the following,
the global mode (�,�), �/� = 1√

M

∑
j θj /φj , separates

from the other modes. In a general fashion, we introduce
the M − 1 dimensional bosonic modes r and k defined by
(r,�) = Rθ , (k,�) = Rφ, R being an orthogonal matrix (see
an example in Appendix B). Dropping the global mode, the
action can be rewritten as

S =
∑
ωm

M−1∑
j

|ωm|K
2πβ

|rj (ωm)|2 +
∫ β

0
dτHP(τ ). (12)

The action can be identified with the QBM model [40,41]
where a massless particle subject to dissipation moves in a
M − 1 dimensional space with coordinates r . The potential
HP seen by the particle depends not only on the coordinate
r but also on the charge configuration N̂ . Depending on the
gate voltage, we shall restrict the charge to a single value,
in which case we have a scalar potential, or two degenerate
values represented by a fictitious spin attached to the particle.
Following the seminal approaches of Refs. [40,41] with the
dual action of instanton tunneling [46,47], we shall use this
analogy to describe the low-energy properties of the model in
the strong coupling limit.

B. Far from charge degeneracy: The topological Kondo limit

Before discussing the degenerate case, let us shortly review
the topological Kondo model [28,29,32–38] and its QBM
solution. This will introduce concepts and notations that will
be useful in the analysis of the degenerate case.

We begin by assuming that the charging energy is the
dominant energy scale EC � T ,t2

j /vF such that only one or
two charge states are relevant for transport. We further assume
that ng is close to an integer value n and project the model
onto the charge quantized configuration N̂ = n. Given that
Ht changes the number of electrons on the island by ±1,
the Schrieffer-Wolff expansion allows us to take into account
virtual processes through the neighboring charge states n + 1
and n − 1. To second order, we obtain the exchange term

HSW =
M,M∑
j �=k

λ̃j,kψ
†
k (0)ψj (0)γjγk, (13)

with λ̃j,k = t̃j t̃k( 1
�E(n+1) − 1

�E(n−1) ) and

�E(n′) = EC(n′ − n)(n + n′ − 2ng) (14)

the difference in energy Hbox between the charge value n′ and
n. The Schrieffer-Wolff transformation also produces small
scattering potential terms ∼ψ

†
j ψj that do not change under

renormalization group and can be discarded. We note that the
tunneling amplitudes in the Schrieffer-Wolff Hamiltonian (13)
are in fact renormalized [24] by the RG process between the
short-time cut-off τc = α/vF and the charging energy EC
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where they increase with the scaling exponent 1 − 1/(2K)
such that t̃j = √

EC/τc tj (τc/EC)1−1/(2K).
In terms of our bosonized fields, the exchange term is

reexpressed as

HSW =
M,M∑
j �=k

λj,kUkUjγjγke
i(θj −θk ), (15)

with the notation θj ≡ θj (0) and λj,k = λ̃j,k

πα
. The product

pj = iγjUj is the parity operator associated with the Majorana
fermions γj and Uj . The different pj commute between
themselves and with the Hamiltonian, have eigenvalues ±1,
but do not conserve the full parity operator. However, the
M − 1 independent products pjpk = ±1 can be diagonalized
simultaneously. The sign of pjpk can be changed by shifting
the bosonic fields by π , we thus fix it arbitrarily to +1. With
these conventions and choice of gauge, the exchange term
assumes a fully bosonic form

HSW = −
M,M∑
j �=k

λj,k cos(θj − θk). (16)

The global mode (�,�), �/� = 1√
M

∑
φj/θj decouples

from HSW as announced.
One can compute the poor man’s scaling equations for this

problem [48], and the renormalization group (RG) analysis is
straightforward:

dλj,k

d�
=

(
1 − 1

K

)
λj,k + 2

M∑
m�=j,k

λj,mλm,k, (17)

with the flow parameter � = ln τc. Channel asymmetry be-
tween the different electron hopping terms λj,k is not relevant
and the RG flow points to a symmetric combination λj,k →
λ(1 − δj,k). Assuming channel symmetry reduces the RG
equation to

dλ

d�
=

(
1 − 1

K

)
λ + 2(M − 2)λ2, (18)

where three fixed points can be identified. First, the weak
coupling fixed point with λ = 0, noted (O), corresponding to
decoupled leads between which no electric current flows, or,
using the Kubo formula detailed in Appendix D,

G
(O)
j,k = 0, (19)

where Gj,k is the conductance between the leads j and k. This
is an attractive point for K < 1.

For K � 1, the growth of λ under renormalization suggests
to study a strong coupling limit λ = +∞ noted (S). In this
limit, the fields θj are pinned to one of the minima of the
potential described by HSW. Using the Kubo formula, the
conductance [40,41] Gj,k is now given by (Appendix D for
a derivation)

G
(S)
j,k = 2e2K

h

(
1

M
− δj,k

)
. (20)

In agreement with the physical picture of strong coupling, this
is the maximum conductance one can reach with the constraint
of charge conservation. It indeed corresponds to a perfect

symmetric transmission of incoming electrons. For M = 2,
we recover that the Majorana Kondo box maps onto a problem
of resonant tunneling, where the conductance is simply e2K

h
for

spinless fermions. The factor ( 1
M

− δj,k) can be understood in
the following way: due to the isometry of the fixed point, an
electron arriving on the impurity is scattered uniformly in all
leads, imposing

G
(S)
j,k = G − δj,kG0, (21)

where G0 = 2e2K/h. Conservation of the current leads
to

∑
j Gj,k = 0, that is to say G0/G = M , giving us the

aforementioned factor. We note that in practice the Luttinger
liquid wires are ultimately contacted to Fermi liquid reservoirs
which has the effect of renormalizing [49,50] the Luttinger
parameter to K = 1 in Eq. (20).

A third fixed point, noted (I), is identified for K < 1
corresponding to the intermediate coupling

λI = 1/K − 1

2(M − 2)
. (22)

It is unstable against both weak (O) and strong coupling (S)
fixed point. The perturbative RG equation (18) justifies the
existence of this intermediate unstable point only for K close
but below 1, such that λI remains small.

To check the stability of (S), one can perform an instanton
analysis. Given the simple structure of the potential, the
more relevant/less irrelevant operators at (S) are operators
translating one minimum of the potential described by HSW

to one of its neighbors. The variable � does not appear
in HSW and therefore has a free evolution reflecting charge
quantization [36] on the island. For clarity, we henceforth set
� = 0. In terms of the variable r , the minima of the potential
described by HSW form a (hyper)triangular lattice, and we
can explicitly construct the operators connecting them. For
simplicity, we write these minima in the θj basis. A minimum
R0, and all its nearest-neighbors Rk (k = 1, . . . ,M), are given
by

R0 : θj = 0 ∀j,

Rk : θk = 2π (M − 1)

M
, θj = −2π

M
∀j �= k. (23)

In a semiclassical analysis, quantum fluctuations around these
minima are neglected and the only low-energy processes are
instanton solutions connecting them. Introducing the variable
φk (the charge in lead k) canonically conjugated to θk/π ,

[φj ,θk] = iπδj,k, (24)

it is then possible to explicitly construct the instanton opera-
tors. The shift from R0 to Rk is thus realized by the translation
operator

Ôk = exp

[
2i

(
φk − 1√

M
�

)]
, (25)

where � = 1√
M

∑
k φk is the total charge field. Identifying

φk with the field φk(0), we obtain the following dual action
describing the vicinity of (S):

S =
∑
ωm

∑
j

|ωm|
2πKβ

|φj (ωm)|2 − v

∫ β

0
dτ

∑
k

Ôk(τ ), (26)
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FIG. 2. Phase diagram and flow for the single Majorana Kondo
box far from charge degeneracy. The mobility is defined by μ =
hGj,j

2e2
M

1−M
. Solid line describes stable fixed points while pointed lines

are unstable. The arrows depict the flow of the most relevant/less
irrelevant operators of the corresponding fixed point.

where v describes weak backscattering of electrons coming
from reservoirs.

The stability of (S) is controlled by the dimension of
the operators Ôk . Using the free part of the action (26),
one obtains the dimension 2K(M − 1)/M . This result can
also be understood in the QBM picture [40,41] where the
product between the dimension of the original perturbation
ei(θj −θk ) (here 1/K) and the leading irrelevant operator at strong
coupling is fixed to 2(M − 1)/M for a hypertriangular lattice
in M − 1 dimension. We therefore find that (S) is stable for
K > M

2(M−1) , and unstable towards (O) for smaller values of
K . Computing the one-loop RG equation, one obtains [41] that
the unstable fixed point (I ) departs from (S) for K > M

2(M−1)
and disappears below.

The whole phase diagram for the topological Kondo
model is summarized in Fig. 2. For M

2(M−1) < K < 1, a first
order transition between zero and maximum conductance is
predicted [28] to occur as the coupling to the reservoir is
varied. The Kondo temperature is evaluated from the RG
equation (18)

TK � Ece
− 1

2(M−2)νλ , (27)

where ν is the density of states in the wires, sets the crossover
energy scale between weak and strong coupling.

IV. CHARGE DEGENERACY POINT: AN EXACT
MAPPING TO THE MULTICHANNEL KONDO MODEL

We now turn to the charge degenerate case where the gate
voltage is fixed to a half-integer value ng = n + 1/2. The two
charge states n and n + 1 are energetically equivalent and
define a low-energy sector akin to a spin-1/2 Hilbert space.
Further assuming a large charging energy EC � T ,t2

j /vF ,
we project to this subspace and rewrite the full bosonized

Hamiltonian as

H = Hleads −
M∑

j=1

2tj√
2πα

(τ−Ujγj,re
−iθj + H.c.), (28)

with the pseudospin operator τ−|n + 1〉 = |n〉. Similarly to
Eq. (13), the hopping terms are renormalized when reducing
the charge sector to an effective pseudospin. In terms of the
original bare values of the tunneling, they can be reexpressed
as t̃j ≈ tj (τc/Ec)1− 1

2K . In the following, for simplicity, we drop
the tilde on tj .

We show in the following that this Hamiltonian can be
exactly mapped onto the M-CKM. First, one can rescale the
bosonic fields in order to obtain the correct dimension for the
operators coupled to the pseudospin, namely

K̃ = 2K, θ̃j = θj√
2
, φ̃j =

√
2φj . (29)

Second, we use the trick presented in the previous section to
fuse the Majorana fermions and the Klein factors. We introduce
the operators pj = iγjUj and fix them to 1. Shifting the θj

variables by π/2 to absorb an i factor, we obtain the bosonized
form

H = Hleads{φ̃,θ̃ ,K̃} −
M∑

j=1

(
J⊥,j

2
τ+ei

√
2θ̃j + H.c.

)

+ vF√
2
Jzτz

M∑
j=1

∂xφ̃j , (30)

where J⊥,j = 4tj√
2πα

and Jz = 0, corresponding to the spin
sector of the anisotropic M-CKM (the charge mode decouples
from the impurity spin). Alternatively, contact with the
M-CKM can be made from Eq. (28) with the analogy

Uj,↑ = Uj , Uj,↓ = γj . (31)

We note that the Luttinger parameter K̃ in Eq. (30) charac-
terizes the spin sector and requires in the M-CKM the SU(2)
spin symmetry to be broken in the leads to be different from
one. Here no such symmetry breaking is necessary as Eq. (30)
emerges as an effective model with K̃ �= 1 as a general case.
For noninteracting leads for example, where K = 1, one has
K̃ = 2.

The effective Kondo model (30) is strongly anisotropic
since Jz = 0. A finite Jz is nevertheless generated in the RG
process. We consider for simplicity the channel-isotropic case
J⊥,j = J⊥, and derive the corresponding RG equations follow-
ing Anderson, Yuval, and Hamman [51] (see Appendix C 2)
extended to the interacting case K̃ �= 1,

dJz

d�
= J 2

⊥

(
1

K̃
− M

2
Jz

)
, (32)

dJ⊥
d�

=
(

1 − 1

K̃

)
J⊥ + JzJ⊥

(
1 − MK̃

4
Jz

)
. (33)

These equations are perturbative in J⊥ and exact in Jz. Study-
ing these equations, one sees that the longitudinal coupling
Jz is attracted by the fixed point value Jz = 2

MK̃
at which Jz

ceases to be generated and the RG evolution of J⊥ decouples.
It corresponds in fact to the standard Emery-Kivelson [12] (or
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Toulouse [52]) limit in the M-CKM [40,41,53]. It is reached
by the RG flow even if the initial value of Jz is zero. Therefore,
it makes sense to start with the model (30) directly at Jz = 2

MK̃
and perform the unitary transformation

U = exp

(
i
K̃Jz

√
M√

2
�̃(0)τz

)
, (34)

to eliminate the Jz term from Eq. (30). The resulting Hamilto-
nian is

Û †HÛ = Hleads{φ,θ,K} −
M∑

j=1

(
J⊥,j

2
τ+e

i(θj − 1√
M

�) + H.c.

)

(35)

when written again in terms of the old fields, see Eq. (29). The
use of the unitary transformation is not only for mathematical
convenience but also possesses a physical significance. The
model (35) is now invariant under a global shift of all fields θj

which implies that the total mode � = 1√
M

∑
j θj decouples

as in the previous section. Although the present degenerate
case does not satisfy a strict charge quantization, the flow
of incoming electrons must exactly compensate the flow of
outgoing electrons since there can be no charge accumulation
in the floating quantum box. As a result, current conservation
also holds as reflected by the free mode �.

V. PHASE DIAGRAM AT CHARGE DEGENERACY

The perturbation operators in Eq. (35) have dimension M−1
2MK

after the unitary transformation. Hence, for K < M−1
2M

, the
system flows towards the uncoupled fixed point (O), with
J⊥ = 0, and the conductance is zero as in Eq. (19). For K >
M−1
2M

, (O) is unstable and the RG equations (32) and (33) must
be supplemented by the next order in J⊥. Equation (32) is
unchanged, whereas Eq. (33) becomes

dJ⊥
d�

=
(

1 − 1

2K

)
J⊥ + JzJ⊥

(
1 − MK

2
Jz

)
− CM (K)J 3

⊥,

(36)

where CM (K) = O(1) depends on K and the number of
channels M . The coefficient C∗

M = CM [(M − 1)/(2M)] can
be evaluated at the threshold for the instability of the uncoupled
point (O) and shown to be always positive [41], demonstrating
an intermediate RG-stable fixed point at J I

z = 1/(MK) and

J I
⊥ =

√
K − M−1

2M

KC∗
M

, (37)

valid for K close to M−1
2M

. At the fixed point (I ), the con-
ductance is nonvanishing, ∝ (J I

⊥)2 for small J I
⊥. It increases

continuously with the Luttinger parameter K . The way (I )
connects with the strong coupling fixed point (O) depends on
the value of M and shall be discussed below where the strong
coupling limit is investigated. At the specific point where
K = 1/2, then K̃ = 1 and Eq. (35) represents exactly the
noninteracting M-CKM. From conformal theory [39,54,55],

it is known that the conductance is given in that case by

Gj,k = 2e2K sin2
(

π
M+2

)
h

(
1

M
− δj,k

)
. (38)

The conductance for other values of K is not known analyti-
cally.

Let us study the model at strong coupling. In Ref. [41]
Eq. (35) was argued to be the dual model of a particle moving
in a hyperhoneycomb lattice formed by two interpenetrating
triangular lattices between which the operators τ± alternate.
We discuss here directly the strong coupling limit, noted
(0), J⊥,j = +∞ of Eq. (35) and construct explicitly its dual
action by taking into account the pseudospin wave function.
In the spirit of a semiclassical approach, we minimize Eq. (35)
(without the lead term) with respect to the fields θj and the
spin configuration, whereas the total field � factorizes (set to
zero for simplicity) and is free. In the channel-isotropic case,
J⊥,j = J⊥, the energy to minimize has the form

−J⊥

(
0 S
S∗ 0

)
, S =

∑
j

e
i(θj − 1√

M
�)

. (39)

Interestingly, the minima are located at exactly the same field
θj positions as in the topological Kondo model, R0 and its
neighbors Rk as given in Eq. (23), forming a triangular lattice
in a M − 1 dimensional space orthogonal to the total mode
(1,1, . . . ,1) direction. But the problem is nevertheless different
since there is an additional pseudospin degree of freedom, and
each minimum is characterized by a certain spin wave function,
(|+〉 + |−〉) for R0, and (e−iπ/M |+〉 + eiπ/M |−〉) for Rk . The
conductance at strong coupling is still given by Eq. (20).

Technically, moving from one minimum to its neighbor
rotates the spin direction by an angle 2π/M around the z axis.
Hence, performing a loop starting and ending at R0 exhausting
the different neighbor directions, one obtains a rotation of 2π

coming with an overall phase eiπ = −1 resulting from the
pseudospin Berry phase [56]. This sign is in fact responsible
for the change of sign of the second order term in the RG
flow for M = 3 (and the third order term for M = 4), leading
to differing phase diagrams for the triangular and honeycomb
lattices. The dual action, representing the instanton solutions
connecting the minima of Eq. (35), is constructed in the same
way as in Sec. III B. The leading irrelevant operators at low
energy are thus given by the translations

Ô
(h)
k = exp

[
2i

(
φk − 1√

M
�

)]
exp

(
− iπ

M
τz

)
, (40)

where the second part accounts for the spin rotation between
two consecutive minima, e.g., R0 and Rk . Its dimension
is the same as Ôk in Eq. (25), 2K(M − 1)/M . We note
that the minima of the potential Hdual = −v

∑
j Ô

(h)
k form

a hyperhoneycomb lattice for a given spin projection τz = +1
or −1. The RG analysis of the model at strong coupling, or
v � 1, depends on the dimension M [41]. For M = 3, the RG
equation is

dv

d�
= (1 − 4K/3)v − 2v2, (41)

where the last term sign has its origin in the pseudospin
Berry phase as discussed in Appendix C 2. As a result, the
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FIG. 3. Phase diagrams and flows for the single Majorana Kondo
box at charge degeneracy. The mobility is defined by μ = hGj,j

2e2
M

1−M
.

The first graph describes the simple case of M = 3,4 while the second
is a schematic of what happens for M � 5.

intermediate coupling fixed point (I ) occurs for K < 3/4,
with v(I ) = 1−4K/3

2 valid for 1 − 4K/3 � 1, and is stable. Its
is continuously connected to the intermediate fixed point (I )
found at weak coupling. For M = 4, one obtains

dv

d�
= (1 − 3K/2)v − (A4 − B4)v3, A4 > B4 (42)

leading to (I ) for K < 2/3 and v(I ) =
√

1−3K/2
A4−B4

. In both
situations, M = 3 and 4, the phase diagram has the form shown
in the upper panel of Fig. 3 and the stable intermediate point
(I ) connects the weak and strong coupling fixed points as K

is varied.
This is contrast with M � 5 where the RG equation takes

the form

dv

d�
=

(
1 − 2(M − 1)K

M

)
v + BMv3, (43)

with BM > 0. The intermediate fixed point exists for K >

2(M − 1)/M and is unstable. This suggests the phase diagram
represented in the lower panel of Fig. 3. Comparing with the
nondegenerate case, or topological Kondo model, one observes
that exactly the same RG equation (43) holds [41]. The first
reason is that the fields θj are pinned at the same positions
irrespective of charge degeneracy. Moreover, the spin wave
function, and the corresponding Berry phase, plays a role for a
product of at least M − 1 Ô

(0)
k operators such that perturbation

theory differs only for orders above M − 2. The result is
that the critical line (I ) is the same at high mobility in both
nondegenerate and degenerate cases for sufficiently large M ,
i.e., the departures of the dotted lines in Figs. 2 and 3 (lower
panel) from strong coupling (mobility μ = 1) are identical.
The two curves start to differ at larger v (or smaller mobility)
where the line (I ) at charge degeneracy is below the topological
Kondo case [57]. At even smaller mobility, the effect of
the pseudospin Berry phase becomes prominent: the line (I )
eventually turns over and connects with the stable fixed-point
line (I ) originating from weak coupling and containing the
multichannel Kondo fixed point at K = 1/2, see Fig. 3 (lower
panel).

The spin wave function also provides a physical picture to
understand the effect of a small charge degeneracy δ � 1, with

ng = n + 1/2 + δ. (44)

For example, at strong coupling, the semiclassical energy to
minimize is

−J⊥

(
2δEC S
S∗ −2δEC

)
, (45)

with eigenvalues ±
√

4(δEC)2 + |S|2. The fields θj are thus
pinned at the same positions R0,k but the spin wave function is
polarized by δ �= 0 along the z direction, thereby reducing the
impact of the Berry phase. Since δ is relevant on the (I ) critical
line, as we know from the M-CKM at K = 1/2, this implies
that the system flows at low energy towards the nondegenerate
case, or Fig. 2. At finite energy (temperature) we expect a
continuous crossover for the (I ) critical line between the two
limiting cases represented by Figs. 2 and 3.

Finally, from Eq. (36), one can evaluate the one-loop Kondo
temperature

TK ≈ νt
2K

2K−1 , (46)

where ν is the density of states and t is the typical bare value
of the tunneling term. For 1

2 < K < Kc, it corresponds to the
Kondo temperature of the MCKM intermediate fixed point,
while for K > Kc, it characterizes the strong coupling limit.
When the leads are noninteracting (K = 1), we obtain the
very physical expression TK ≈ νt2, characteristic of a resonant
tunneling transport through the superconducting island, in
agreement with Ref. [42].

Up to now we only considered flavor isotropic tunneling,
i.e., tj = t∀j . While flavor anisotropy was irrelevant in the
topological Kondo model, it is no longer the case at charge
degeneracy [58,59] where we are dealing with an intermediate
fixed point. Indeed, the critical model goes from M-CKM to
M′-CKM, where M′ is the number of channels with the largest
value of J⊥,j (generally M ′ = 1). Consequently, observing the
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fractional nontrivial conductance of M-CKM will require fine
tuning [60] and be experimentally more challenging than far
from charge degeneracy.

VI. CONCLUSION

In summary, we have demonstrated that the transport
behavior of a topological Kondo box hosting Majorana bound
states depends sensitively on the proximity to a charge
degeneracy point. Away from charge degeneracy, the box
exhibits the well-studied topological Kondo effect, flowing
to maximum conductance for noninteracting leads, and dis-
playing a quantum phase transition between strong coupling
and insulating regimes when the leads form Luttinger liquids.
The situation is markedly different when the system is tuned
to charge degeneracy. It also depends on the number of leads
connected to the topological box and we can identify two
situations:

(1) For three or four Luttinger liquid leads, the intermediate
Kondo fixed point is stable and exists for M−1

2M
< K < M

2(M−1) ,
connecting the weak and strong coupling limits. As a result,
the conductance between the leads takes the form

Gj,k = 2e2Kμ(K)

h

(
1

M
− δj,k

)
, (47)

where the mobility μ(K), shown in Fig. 3, varies between 0 and
1. We recover the multichannel Kondo fixed point at K = 1/2,
with the intermediate mobility μ(1/2) = sin2[π/(M + 2)].

(2) For more than four leads, we recover the critical
behavior of the topological Kondo model at high mobility,
which indicates that the pseudospin does not play a role if
the Majorana fermions are already strongly coupled to the
leads. A quantum phase transition thus occurs with maximum
conductance on one side. The location of the transition
is perturbatively the same as in the nondegenerate case,
improving with the number of channels M . The difference at
degeneracy is that the insulating phase is replaced by a weakly
transmitting phase where the conductance decreases with M .
This weak coupling regime is in fact analytically connected
to a special point at K = 1/2 where we recover exactly the
multichannel Kondo model.

Our QBM analysis has identified the pseudospin, represent-
ing the two-state charge degeneracy in the box, as the physical
ingredient explaining the difference in behavior between the
charge degenerate and nondegenerate cases. Detuning the
system away from charge degeneracy or increasing the number
of channels weakens the pseudospin component and thus
extends topological Kondo physics in the phase diagram.
Moreover, the intermediate fixed point (I ) is not robust against
channel asymmetries, and therefore requires fine tuning, in
contrast with the strong coupling fixed point as discussed in
Ref. [42].

We note that the point K = KC(M) at which the critical
line (I ) turns over is not known analytically and remains
a conjecture. A more precise study could be performed at
large M where the change of sign of CM (K) with K should
determine the location of KC . Numerical results [35] would
also nicely complement our work by discussing the phase
diagram more quantitatively, in particular for M � 5 with
Fig. 3.
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APPENDIX A: TUNNELING TERM

In this Appendix we detail a rigorous derivation of the
tunneling Hamiltonian (4).

First we consider that each lead is coupled to the extremity
of a different nanowire, leading to the existence of at least
2M Majoranas. N (even) is the total number of Majorana zero
modes on the island. Let γL/R,j be the Majorana fermions at
the extremity of each nanowire, and dj = 1

2 (γL,j + iγR,j ) the
corresponding delocalized fermion. The tunneling from the
lead to the superconducting island can be written

−tj (d†
j + dj e

2iχ )ψj (0) + H.c. (A1)

While the first term is the usual hopping term of a single
fermion, the second one describes an alternative process where
an electron of the lead and an electron on the nanowire combine
to create a Cooper pair in the bulk of the superconducting
island.

We wish to define a new operator eiχ̃ , verifying

[N̂,eiχ̃ ] = eiχ̃ , (A2)

where N̂ = 2N̂C + n̂ is the total number of particles in the box.
Let us emphasize an important idea. While the proof of the
existence of an actual operator χ̃ verifying these properties is
not trivial and in fact the operator may not be well-defined, the
construction of eiχ̃ is much simpler and sufficient in practice,
in analogy with the phase of a condensate. Similarly, e2iχ is
a well-defined operator, adding one Cooper pair to the island,
but eiχ and χ are not. Therefore eiχ and eiχ̃ cannot be blindly
identified since the first one is ill-defined.

One can actually explicitly construct the operator eiχ̃ with
the required properties

eiχ̃ = (d†
1 + d1e

2iχ )e
iπ

N/2∑
j=2

d
†
j dj

Pleads (A3)

= (d†
1 − d1e

2iχ )Ptot (A4)

where Pleads is the fermionic parity in all leads and Ptot is the
total fermionic parity. Their only use is to ensure commutation
with all fermionic operators in the leads. eiχ̃ is unitary (in
the limit where N̂c � 1) and verifies the desired commutation
relation (A2). From its expression, one checks that eiχ̃ e−2iχ =
e−iχ̃ and (eiχ̃ )2 = e2iχ . In addition,

[eiχ̃ ,dj ] = [eiχ̃ ,d
†
j ] = 0 ∀j > 1. (A5)

Hence, eiχ̃ satisfies all properties expected for the ill-defined
operator eiχ and it becomes legitimate to identify them in the
model.

From Eq. (A5), the tunneling term can be rewritten as

−tj γj e
iχ̃ψj (0) + H.c., (A6)
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where

γj = d
†
j e

−iχ̃ + dj e
iχ̃ ∀j > 1, (A7)

γ1 = e
iπ

N/2∑
j=2

d
†
j dj

Pleads. (A8)

The γj operators all commute with N̂ (and with the total
number of fermions in general), and consequently totally
decouple from the charge sector. They can essentially be
understood as involutions mapping the 2N/2−1-dimensional
subspace of the states

∏N/2
j=1 d

†νj

j |0〉, νj = 0/1 with even
number of fermions on the one with an odd number of
fermions, while modifying the number of Cooper pairs so that
the total number of electrons in the box is conserved. Finally,
they are indeed Majorana fermions as they are Hermitians and
verify the Clifford algebra

{γj ,γk} = 2δj,k. (A9)

They also anticommute with all fermionic operators in the
leads. Using the controlled identification eiχ̃ → eiχ , we indeed
recover the Hamiltonian (4).

This proof can be generalized to the case where we attach
leads at both extremities of wires, as long as N > M . To
do so, we choose the following convention for the tunneling
term:

−t2j (d†
j + e2iχdj )ψ2j (0) − t2j−1i(d

†
j − e2iχdj )ψ2j−1(0)

+H.c. ∀j � 1, (A10)

with t1 = 0 (i.e., we choose that an uncoupled Majorana is
in the lead 1). Then, the expression for the operator eiχ̃ is
unchanged.

For N = M , one can no longer find enough independent
Hermitian matrices in the 2M/2−1-dimensional subspace and
the γ matrices no longer verify the Clifford algebra: following
the previous convention, γ1 and γ2 commute.

APPENDIX B: CONVENTION FOR THE QBM

The transformation used to decouple the total mode
1√
M

∑
j θj must satisfy two criteria. First, it must be an or-

thogonal transformation to respect the commutation relations
of the bosonic fields. Second, it must generate the total mode
within the new coordinates. For M leads, a convenient matrix
R that we shall use is given by

Ri,j = 0 ∀i > j + 1, Ri,j = 1√
i(i + 1)

∀i � j < M,

(B1)

Ri,i+1 = −i√
i(i + 1)

, i < M, RM,i = 1√
M

. (B2)

While all matrices R lead to the same result, this choice
simplifies some evaluations. The vectors wj can directly be
read in R,

wj = (R1,j , . . . ,RM−1,j ). (B3)

APPENDIX C: RG FLOW

In this Appendix we recall the main steps of the derivation
the RG equations for the M-CKM and the topological Kondo
model. To do so, we use a systematic expansion of the partition
function, following Ref. [41].

1. RG equations for the topological Kondo model

a. Weak coupling

Let us start with the easier case of the Topological
Kondo model. We first consider the topological Kondo model
corresponding to the absence of charge degeneracy. We use the
QBM formalism for simplicity. We define the vectors wj such
that θj = wj .r + 1√

M
�. They verify wj · wk = δj,k − 1

M
.

Explicit expressions can be found in Appendix B. The action
governing the model at weak coupling is

S =
∑
ωm

M−1∑
j

|ωm|K
2πβ

|rj (ωm)|2

−
M,M∑
j �=k

λj,k

∫ β

0

dτ

τc

cos[(wj − wk) · r], (C1)

where τc is a short distance imaginary time cut-off. One can
then proceed to a systematic expansion of the partition function
using λj,k as a small parameter. At order n, we obtain the
contribution∫

τ1<···<τl

〈
n∏

l=1

dτl

τc

M,M∑
jl �=kl

λjl ,kl
cos[(wjl

− wkl
) · r(τl)]

〉
0

, (C2)

where 〈· · ·〉0 is the average value with the unperturbed action.
We proceed then to real-space renormalization in imaginary
time, i.e., we increase the cut-off τc to τ ′

c = τce
�, and fuse

operators closer than τ ′
c. Using the invariance of the action

upon renormalization of the cut-off, we derive the different
RG equations. We recall the correlation functions for the free
bosons (we include an infrared cut-off in the integrals):〈∏

j

e
iwkj

·r(τj )

〉
0

= δ∑
j

wkj
=0

∏
j<l

(
τ 2
c

(τj − τl)2

)−
wkj

·wkl

2K

. (C3)

A first contribution is generic: when τ2 − τ1 � τ ′
c,

λj,kλk,j

∫
τ1<τ2

dτ1dτ2

τ 2
c

×〈cos[(wj − wk) · r(τ1)] cos[(wk − wj ) · r(τ2)]〉0

= λj,kλk,j

∫
τ1<τ2

dτ1dτ2

τ 2
c

(
τ 2
c

(τ1 − τ2)2

) 1
K

.

This last expression must be cut-off independent, imposing
λj,k(�)λk,j (�) = e(2− 2

K
)�λj,kλk,j , or by symmetry, λj,k(�) =

e(1− 1
K

)�λj,k . When τ2 − τ1 < τ ′
c, the operators are no longer

taken separately and fuse together. In particular, if j1 =
k2,k1 �= j2, we generate additional terms cos[(wj2 − wk1 ) ·
r(τ1)] (alternatively for j2 = k1,k2 �= j1). To rigorously com-
pute the exact coefficient for this contribution, we use the third
order terms λj1,k1λk1,k2λk2,j1 , with τ3 − τ1 � τ ′

c. We need to
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evaluate, for j �= k �= l �= j :∫
τc<τ<τce�

〈
ei(wj −wk)·r(τ1)ei(wk−wl )·r(τ1+τ )ei(wl−wj )·r(τ3)

〉
0

=
(

τ 2
c

(τ3 − τ1)2

) 1
2K

∫
τc<τ<τce�

(
τ 2
c

τ 2

τ 2
c

(τ3 − τ1 − τ )2

) 1
2K

×
(

τ 2
c

(τ3 − τ1)2

) 1
K

� if � � 1. (C4)

We finally obtain for � � 1,

λj,k(�) = λj,k +
(

1 − 1

K

)
�λj,k + 2�

∑
m�=j,k

λj,mλm,k,

leading to the RG equation (17).

b. Strong coupling

At strong coupling, the action describing instanton excita-
tions is given by Eq. (26) reproduced here,

S =
∑
ωm

∑
j

|ωm|
2πKβ

|φj (ωm)|2 − v

∫ β

0
dτ

∑
k

Ôk(τ ), (C5)

with the operators Ôk = e
2i(φk− 1√

M
�) connecting the lattice

of minima. Proceeding with an expansion in powers of v,
the calculation is similar as at weak coupling except for the
replacement K → 1

K
.

For M = 3, we note that Ô1Ô2 = Ô
†
3. The computation of

the third order coefficient is identical to Eq. (C4) and the RG
equation is given by

dv

d�
=

(
1 − 4K

3

)
v + 2v2. (C6)

For M > 3, the first nonzero terms are at third order in v.
The two types contributions one has to take into account
are Ô1Ô2Ô

†
2 = Ô1 and, for M = 4 only, Ô1Ô2Ô3 = Ô

†
4.

The computation of the corresponding terms lead to the RG
equation [41]

dv

d�
=

(
1 − 2(M − 1)K

M

)
v + (BM + A4δM,4)v3, (C7)

where BM is a positive coefficient, see also Eq. (C17).
Equations (C6) and (C7) predict that for all M � 3, the strong
coupling fixed point is unstable for K � M

2(M−1) , while for

K > M
2(M−1) , an unstable fixed point (I ) emerges at finite v.

2. RG equations for the M-CKM

a. Weak coupling

The Hamiltonian obtained after the unitary transforma-
tion (34) is given Eq. (30), and can also be written as

Û †HÛ = Hleads{φ̃,θ̃ ,K̃}

−
M∑

j=1

(
J⊥,j

2
τ+e

i
√

2wj ·r̃j +
√

2( 1√
M

− K̃Jz
√

M

2 )�̃ + H.c.

)
.

(C8)

We introduce the notation Mz = 1√
M

− K̃Jz

√
M

2 and compute
the RG equations for both J⊥ and Mz.

We proceed with a similar expansion of the partition
function using J⊥ as a small parameter. The contribution of
order n is

(
J⊥
2

)n ∫
τ1<···<τn

dτ1 · · · dτn

τn
c

∑
n loops

exp

⎛
⎝ n,n∑

j<k

Vj,k

⎞
⎠ + H.c.,

(C9)
where

∑
n loops signify that we sum over all n-uplets (aj ) such

that
∑

(−1)jwaj
= 0 and [using Eq. (C3)]

Vj,k = 2
(−1)j+k

K̃

(
M2

z + waj
· wak

)
log

(
τk − τj

τc

)
. (C10)

The alternating signs take into account the spin operators.
Similarly, we increase the cut-off τc to τ ′

c = τce
�, and fuse the

operators when needed. To lowest order, only two consecutive
operators can fuse. The most relevant contribution appear when
these two contributions have the same waj

. Let us assume
that this happens for the lth and lth + 1 operators and define
τ = τl+1 − τl < τ ′

c and

Vd (τl,τ,al) =
∑
j<l

Vj,l + Vj,l+1 +
∑

j>l+1

Vl,j + Vl+1,j

≈ 2
∑

j �=l,l+1

(−1)j+l

K̃

(
M2

z + waj
· wal

)
τ∂τl

× log

( |τl − τj |
τc

)
.

Integrating over the two variables τl and τ reduces the n loop
to a n − 2 loop and consequently, at order n, we have an
additional contribution coming from the order n + 2,

(
J⊥
2

)2 n∑
j=0

∑
a

∫ τj+1

τj

dτ ′

τc

∫ τce
�

τc

dτ

τc

eVd (τ ′,τ,a)

≈
(

J⊥
2

)2 n∑
j=0

∑
a

∫ τj+1

τj

dτ ′

τc

∫ τce
�

τc

dτ

τc

1 + Vd (τ ′,τ,a)

≈
(

J⊥
2

)2[
Mβ(e� − 1)

τc

− 8M
M2

z (e� − 1)

K̃

∑
j<k

(−1)j+k log

(
τk − τj

τc

)⎤
⎦,

where τ0 = 0 and τn+1 = β. While the first term can be
ignored, as it corresponds to a rescaling of the ground state
energy, the second term indeed renormalizes the partition
function. Reexponentiation leads to a correction of Vp,q given
by

Vp,q → Vp,q − MJ 2
⊥(e� − 1)

K
M2

z (−1)p+q log

(
τq − τp

τc

)
.

(C11)

235102-10



MANY-TERMINAL MAJORANA ISLAND: FROM . . . PHYSICAL REVIEW B 94, 235102 (2016)

For small � we have

Mz(�)2 = M2
z − MJ 2

⊥M2
z � (C12)

or

dJz

dl
= J 2

⊥

(
1

K̃
− MJz

2

)
, (C13)

which is the first RG equation. To obtain the RG equations
for J⊥, we simply rescale τc in both the integrals and Vj,k and
extract the n dependency. We obtain

J n
⊥ = J n

⊥(�)e−n�e
−2�

∑
j<k

(−1)j+k

K̃
(M2

z +waj
·wak

)

= J n
⊥(�)e−n�e

n

K̃
�(M2

z + M−1
M

),

dJ⊥
d�

=
(

1 − M − 1

MK̃
− M2

z

K̃

)
J⊥

=
(

1 − 1

K̃
+ Jz[1 − K̃JzM

4
]

)
J⊥.

b. Strong coupling

In this case, the vicinity of the strong coupling fixed point
(S) is governed by the action

S =
∑
ωm

∑
j

|ωm|
2πKβ

|φj (ωm)|2 − v

∫ β

0
dτ

∑
k

Ô
(h)
k (τ ),

(C14)
where the Ô

(h)
k operators, with dimension 2K(M−1)

M
, are given in

Eq. (40). The difference with the operators Ôk encountered in
the topological Kondo model, see Eq. (C5), is in the pseudospin
rotation e−iπτz/M .

For M = 3, Ô
(h)
1 Ô

(h)
2 = −Ô

(h)†
3 , where the minus sign

stems from the Berry phase of the spin wave function e−iπτz =
−1. The calculation of the RG equation is almost identical
to (C4),

dv2

d�
= (1 − 4K/3)v − 2v2, (C15)

except for the sign change in the last term. In general for
M > 3, the first nonzero contribution to the RG equation (apart
from a linear term) is of third order in v. For M = 4, there
is a competition between two contributions, the contraction
Ô

(h)
1 Ô

(h)
2 Ô

(h)†
2 = Ô

(h)
1 in which the spin plays no role, leading

to the coefficient

B4 = 6
∫ 1

0
dx

[
x2/3 + x−2/3 − 2

(1 − x)2
+

(
x

1 − x

)2/3

− 1

]

(C16)

and the contribution Ô
(h)
1 Ô

(h)
2 Ô

(h)†
3 = −Ô

(h)†
4 , carrying the

spin Berry phase, associated with the coefficient

A4 = 6
∫ 1

0
dx

1

x2/3(1 − x)2/3
. (C17)

The RG equation takes the form

dv3

d�
=

(
1 − 3K

2

)
v − (A4 − B4)v3, (C18)

with A4 − B4 > 0 such that the spin wave function eventually
governs the transition. We obtain a phase diagram similar to
M = 4 as explained in the main text.

For M � 5, only Ô
(h)
1 Ô

(h)
2 Ô

(h)†
2 = Ô

(h)
1 contributes to third

order in v. The RG equation takes the form (43) in the main
text, exactly the same as in the charge nondegenerate case
Eq. (C7), and the phase diagram differs from M � 4.

APPENDIX D: KUBO APPROACH TO CONDUCTANCE

To compute the conductance in the Majorana island, we
will use Kubo formula. We present in this Appendix a short
derivation of the Kubo formula for our model, before an
example of application far from charge degeneracy (see for
example Ref. [35] for an alternative derivation). We express
the conductance as a correlation function of the initial bosonic
fields first, and then as a correlation function of the (k,�)
fields.

1. Kubo formula

We start from linear response theory. Given a small
perturbation H ′(t) switched on adiabatically, the change for
the average value of the observable A is

〈�A(t)〉 = −i

�

∫ t

−∞
e−η(t−t ′)〈[A(t),H ′(t ′)]〉dt ′, (D1)

with η → 0+. Let CR
A,B(t − t ′) = − i

�
θ (t − t ′)〈[A(t),B(t ′)]〉.

To compute CR
A,B(ω), we compute another correlation

function and do an analytic continuation. Let CA,B(τ ) =
−〈TτA(τ )B(0)〉. Starting with

A(τ ) = 1

β

n=+∞∑
n=−∞

e−iωnτA(iωn), (D2)

B(0) = 1

β

n=+∞∑
n=−∞

B(iωn), (D3)

we obtain

CA,B(iωn) = −
∫ β

0
dτeiωnτ

1

β2

∑
m,k

e−iωnτ 〈A(iωm)B(iωk)〉,

(D4)

CA,B(iωn) = − 1

β

∑
k

〈A(iωn)B(iωk)〉. (D5)

In particular,

CȦ,B(iωn) = − 1

β

∑
k

iωn〈A(iωn)B(iωk)〉. (D6)

The current operator for the wire j is given by e∂tNj , where
Nj is the total charge in the wire. The linear conductance Gj,k ,
corresponding to the current in the j th wire due to a potential
in the kth wire is ∂〈�e∂tNj 〉

∂Vk
, where Vk is the potential in the

wire k. Given A = eNj and B = eVkNk , we finally obtain the
conductance G(ω):

Gj,k(ω) = −e2

h

∫
dνω〈Nj (ω)Nk(ν)〉. (D7)
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Finally, as we are interested in the dc conductance, we obtain

G = −e2

h
lim
ω→0

∫
dνω〈Nj (ω)Nk(ν)〉. (D8)

As our action will be diagonal in the Matsubara frequencies,
it simplifies to

Gj,k = −e2

h
lim
ω→0

ω〈Nj (ω)Nk(ω)〉. (D9)

2. Application for the strong coupling limit far
from charge degeneracy

For semi-infinite LL wires, N = φ(x=0)
π

. We want to express
Nj as a function of (k,�), dual to (r,�):

Gj,k = − e2

π2h
lim
ω→0

ω〈φj (iω)φk(iω)〉, (D10)

Gj,k = − e2

π2h

M−1∑
l,m

wk(l)wj (m) lim
ω→0

ω〈kl(iω)km(iω)〉,

(D11)

where wk(l) is the lth component of wk . The global mode does
not intervene as it is pinned due to charge conservation. k
being the dual of r , when the latter are pinned in the strong
coupling limit, k is free and one obtains

lim
ω→0

ω〈kl(iω)km(iω)〉 = 2π2Kδl,m, (D12)

leading to the celebrated conductance

Gk,j = −2Ke2

h
wk · wj (D13)

= 2Ke2

h

(
1

M
− δk,j

)
. (D14)
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