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Nonlinear light–Higgs coupling in superconductors beyond BCS: Effects of the retarded
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We study the contribution of the Higgs amplitude mode on the nonlinear optical response of superconductors
beyond the BCS approximation by taking into account the retardation effect in the phonon-mediated attractive
interaction. To evaluate the vertex correction in nonlinear optical susceptibilities that contains the effect of
collective modes, we propose an efficient scheme which we call the “dotted DMFT” based on the nonequilibrium
dynamical mean-field theory (nonequilibrium DMFT), to get around the difficulty of solving the Bethe-Salpeter
equation and analytical continuation. The vertex correction is represented by the derivative of the self-energy
with respect to the external driving field, which is self-consistently determined by the differentiated (“dotted”)
DMFT equations. We apply the method to the Holstein model, a prototypical electron-phonon-coupled system,
to calculate the susceptibility for the third-harmonic generation including the vertex correction. The results show
that, in sharp contrast to the BCS theory, the Higgs mode can contribute to the third-harmonic generation for
general polarization of the laser field with an order of magnitude comparable to the contribution from the pair
breaking or charge density fluctuations. The physical origin is traced back to the nonlinear resonant light–Higgs
coupling, which has been absent in the BCS approximation.
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I. INTRODUCTION

Nonequilibrium dynamics of superconductors induced by
intense laser excitations opens various possibilities of con-
trolling emergent states of matter without destroying quantum
coherence [1–14]. Specifically, for relatively low frequencies
of the laser such as terahertz (THz) and mid-infrared, we can
expect to suppress the generation of quasiparticles having
high energies that might be quickly transformed into heat
through inelastic collisions causing a destruction of quantum
coherence. Recent experiments indeed report that a supercon-
ductinglike state can be generated from the normal state by
such low-energy excitations [1,5,10,11,13].

In superconductors, there exists a collective mode called
the Higgs amplitude mode, which plays an important role in
low-energy dynamics. The mode corresponds to the coherent
amplitude oscillation of the superfluid density, which has
a long history of theoretical studies [15–51]. Experimental
observation of the Higgs mode in superconductors has been
reported by Raman scattering [52,53] and THz pump-probe
experiments [9,12]. It has also been reported in a THz
pump experiment [12] that there emerges a third-harmonic
generation (THG) in the nonlinear optical response that is
resonantly enhanced when the doubled frequency (2�) of the
incident light equals the superconducting gap (2�), which
coincides with the energy of the collective Higgs mode
at long wavelength. On the other hand, there also exist
individual excitations (Cooper pair breaking or charge density
fluctuations), whose lower bound in the energy spectrum
resides at the same energy of 2� with a diverging density of
states. The question then is to what extent these two contribute
to the nonlinear optical response in superconductors and how
strongly the light is nonlinearly coupled to the Higgs mode
[44,49].

In the BCS mean-field theory (with the random phase
approximation), the contribution of pair breaking or charge
density fluctuation to the THG susceptibility is expressed in a
gauge invariant form (including the screening effect) as [49]

χBCS
0 (�) =

∑
k

(ε̈k)2χ33(k,�) −
[ ∑

k ε̈kχ33(k,�)
]2∑

k χ33(k,�)
. (1)

Here εk is the band dispersion, ε̈k = ∑
ij (∂2εk/∂ki∂kj )eiej , e

is the polarization vector of light, and

χ33(k,�) = − i

2

∫
dω

2π
Tr[τ3Ĝk(ω + 2�)τ3Ĝk(ω)]<, (2)

where τ3 is the third component of the Pauli matrix, Ĝk(ω) is
the Nambu-Gor’kov Green’s function, and < denotes the lesser
component based on the Langreth rule [54] (with the notation
defined in Appendix A). For s-wave superconductors, Ĝk(ω)
and χ33(k,ω) depend, respectively, on the momentum through
εk, which allows one to change the momentum sum into an
energy integral by inserting 1 = ∫

dε δ(ε − εk). Then we can
define expansions around the Fermi energy [44,50],∑

k

δ(ε − εk)ε̈k = D(εF )(c0 + c1ε + c2ε
2 + · · · ), (3)

∑
k

δ(ε − εk)(ε̈k)2 = D(εF )(c̃0 + c̃1ε + c̃2ε
2 + · · · ), (4)

where D(εF ) is the density of states at the Fermi energy. In
Ref. [44], it is assumed that the constant terms in the expan-
sions (3) and (4) can be removed by gauge transformations, so
that the pair breaking effect in THG is less dominant than the
Higgs mode. As pointed out in Ref. [49], however, this holds
in rather restricted situations, such as one-dimensional (1D)
lattices, two-dimensional (2D) square, and three-dimensional
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FIG. 1. Feyman diagrams for the nonresonant (a), mixed (b), and
resonant (c) contributions to the THG susceptibility containing the
effect of collective modes as vertex corrections. The solid (wavy)
lines represent the electron (photon) propagators, while the shaded
boxes represent the reducible four-point vertex function. Among the
four photon lines, one is outgoing with an energy 3�, and the other
three are incoming with an energy �.

(3D) simple cubic lattices with polarization e respectively
parallel to (1,1) and (1,1,1) directions, 3D body-centered-
cubic lattice with e parallel to (1,0,0), and so on. For a
general lattice with a general polarization, the constant terms
may survive, and the Higgs-mode contribution may be left
subleading.

Then the next question is, what will happen if one goes
beyond the BCS approximation? In fact, the superconductor
NbN used in the experiments [9,12] is known to have a
strong electron-phonon coupling (λ ∼ 1) [55–57], where it
is important to capture corrections from the BCS analysis.
Indeed the argument in the previous paragraph heavily relies
on the speciality of BCS: the (nonlinear) coupling to the
light occurs only in a nonresonant form ε̈kA(t)2 rather than
in a resonant form ε̇kA(t)ε̇kA(t ′), where A(t) = A(t)e is
the vector potential, and ε̇k = ∑

i(∂εk/∂ki)ei . The terminol-
ogy (“resonant” and “nonresonant”) is here borrowed from
literature on Raman scattering [58]. These forms can be
expressed as diagrams for the THG susceptibility [59] in
Fig. 1 (which, in fact, very much resemble Raman-scattering
diagrams [58]), where the effect of collective modes is
incorporated in the vertex correction, with the Higgs mode
represented by an infinite series of ring diagrams in the τ1

channel [22,24,41,44]. Two photon lines attached together to
electron lines represent the nonresonant coupling, while two
single-photon lines attached separately represent the resonant
coupling.

Within the BCS theory, there is only the nonresonant
coupling,1 and the mixed [Fig. 1(b)] and resonant [Fig. 1(c)]
contributions to THG exactly vanish. This is confirmed by
explicitly calculating the convolution of relevant three-electron
propagators,∫

dω

2π
Tr[τ1Ĝk(ω + 2�)Ĝk(ω + �)Ĝk(ω)]< = 0 (BCS).

(5)

However, this does not guarantee that these contributions
would remain small if one goes beyond the BCS approxi-
mation. For example, the real part of the optical conductivity
σ (�) vanishes for � �= 0 within the BCS theory, since∫

dω

2π
Tr[Ĝk(ω + �)Ĝk(ω)]< = 0 (BCS), (6)

in much the same way as in Eq. (5). In reality, however, the
real part of the optical conductivity is nonzero and not even
small [9,60]. They become nonzero when one takes account of
dynamical correlations such as the electron-phonon coupling
(producing retarded interactions) or impurity scattering. In
those situations, we can expect that the resonant and mixed
contributions to the THG response may also be nonzero.
Indeed, it has been shown in the study of Raman scattering
for correlated electron systems that the resonant contribution
can significantly enhance the nonresonant Raman response
[61,62].

This has motivated us to study here the nonlinear optical
response of superconductors for electron-phonon coupled
systems beyond the BCS approximation. Theoretically, it is
quite challenging to evaluate all of the nonresonant, mixed,
and resonant diagrams involving the four-point vertex on
an equal footing, since the vertex carries three independent
momenta and frequencies. Therefore, we employ the dy-
namical mean-field theory (DMFT) [63], which assumes the
momentum-independent self-energy and vertex function. Still,
the calculation is quite demanding if one tries to evaluate
the nonlinear response function by solving the Bethe-Salpeter
equation and performing multiple analytical continuations. In
higher dimensions in the thermodynamic limit, an analysis
including the vertex correction has so far been performed
only in exceptional cases, such as the Raman response of the
Falicov-Kimball model [61,62,64,65]. For the Hubbard model,
the nonlinear optical response has been analyzed by Hartree-
Fock approximation [66], by DMFT without considering
vertex corrections [67,68], and by exact diagonalization for
small finite-size systems [69,70]. For the Holstein model,
higher-harmonic generation has been studied by Migdal
approximation without considering vertex corrections [71].
For the 1D Hubbard-Holstein model, THG response has been
studied by the density-matrix renormalization group [72].

1This can be understood in Anderson’s pseudospin picture
[12,15,44]. The time-dependent BCS theory is equivalent to a
pseudospin dynamics described by ∂σ k/∂t = 2bk × σ k, where σ k is
the pseudospin, and bk = ( − Re�, − Im�,(εk+A(t) + εk−A(t))/2) is
the pseudomagnetic field. The coupling to the light is provided by the
z component of the pseudomagnetic field, εk + ε̈kA(t)2/2 + O(A4),
which is in a form of the nonresonant coupling.
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In this paper, we propose an efficient way to calculate
the vertex correction for nonlinear optical susceptibilities,
which we call the “dotted DMFT” [73], without directly
solving the Bethe-Salpeter equation and performing analytical
continuation. The idea is to let the nonequilibrium DMFT
equations [74] be differentiated (“dotted”) with respect to
the external field to deduce a self-consistent equation for
the vertex function represented by the dotted self-energy. We
then apply the method to the Holstein model, a prototypical
model for electrons interacting with local phonons giving
retarded interactions among electrons. The results indicate that
the resonant contribution from the Higgs mode to the THG
susceptibility can indeed be comparable to those from the pair
breaking or density fluctuations. In particular, the resonance of
THG at 2� = 2� can be enhanced by the nonlinear resonant
coupling between the light and Higgs mode.

The paper is organized as follows. In Sec. II, we describe the
model setup that we use throughout the paper for the analysis of
the nonlinear optical response in superconductors. In Sec. III,
we propose an efficient method (dotted DMFT) to evaluate
the vertex correction for dynamical susceptibilities based on
the nonequilibrium DMFT. Section IV describes the results
of the THG susceptibility obtained by the dotted DMFT for
the electron-phonon-coupled system. In Sec. V we summarize
the paper.

II. MODEL

We take the Holstein model as a typical model for electrons
interacting with local phonons,

H =
∑
ij,σ

tij (c†iσ cjσ + H.c.) − μ
∑

i

ni

+ ω0

∑
i

b
†
i bi + g

∑
i

(bi + b
†
i )(ni − 1). (7)

Here c
†
iσ (ciσ ) is the creation (annihilation) operator for an

electron at site i with spin σ = ↑,↓, tij is the hopping
amplitude, ni = ∑

σ c
†
iσ ciσ , μ is the chemical potential, b

†
i

(bi) is the creation (annihilation) operator for phonons having a
frequency ω0, and g is the electron-phonon coupling constant.
We then apply the DMFT to solve the model. Since DMFT
becomes exact for large spatial dimensions (d → ∞) [63,75],
we take the hypercubic lattice, whose energy dispersion is

εk = −2t

d∑
i=1

cos ki . (8)

As usually done, we scale the hopping as t = t∗/
√

2d

with a fixed t∗ to obtain a meaningful fixed point in the
large d limit, which results in a Gaussian density of states
D(ε) = e−ε2/2t∗2

/
√

2πt∗. We use t∗ as the unit of energy
(frequency) throughout the paper. We concentrate on the
half-filled electron system (μ = 0), in which the particle-hole
symmetry is fully respected. In the particle-hole symmetric
case, the Higgs amplitude mode is safely decoupled from the
phase mode, and the screening effect is absent. Away from
half filling, the amplitude mode can hybridize with the phase
mode in principle. However, we expect that the damping of
the amplitude mode into the phase mode is suppressed in

superconductors, since the phase mode is pushed to high
energies (approximately the plasma frequency) due to the
Anderson-Higgs mechanism [17–20].

If one integrates out the phonon degrees of freedom, the
electrons acquire an effective retarded interaction,

U (ω) = g2DR
0 (ω), (9)

where DR
0 (ω) is the noninteracting retarded phonon Green’s

function,

DR
0 (ω) = 2ω0

(ω + iγ )2 − ω2
0

. (10)

We introduce a parameter γ to regularize the phonon
Green’s function. In the static limit (ω → 0), the effective
interaction approaches U (ω = 0) = −2g2ω0/(ω2

0 + γ 2) < 0,
i.e., the attractive interaction. The strength of the attractive
interaction can be measured (within the unrenormalized
Migdal approximation as introduced later) by a dimensionless
parameter,

λ ≡ |U (ω = 0)|D(εF ) = 2g2ω0

ω2
0 + γ 2

D(εF ). (11)

When the attractive interaction is large enough and the tem-
perature is low enough, the model exhibits a phase transition
from the normal to superconducting states.

In this paper, instead of taking the infinitesimal limit
of γ (→ +0), we keep it nonzero and regard it as a
phenomenological parameter that represents the finite lifetime
(τ ∼ γ −1) of phonon oscillations. This is physically natural,
since the phonon oscillation should be damped to some extent
in real solids by various possible ways of scattering and energy
dissipation. The electron-phonon coupling itself can induce
the damping of phonons [76]. A finite γ is not necessarily
phenomenological, but can be actually modeled by phonons
coupled to a heat bath comprising many harmonic oscillators
(Caldeira-Leggett-type model [77]). In the application of the
dotted DMFT, which we shall introduce in the next section,
it turns out that it is important to take a nonzero γ (avoiding
infinitely long-lived phonons) to stabilize the convergence of
the dotted DMFT calculation.

In a similar manner, we introduce a small imaginary part
δ (broadening factor) in the noninteracting retarded electron
Green’s function,

GR
0k(ω) = 1

ω + iδ + μ − εk
, (12)

where δ can be considered as a decay rate of noninteracting
electrons. It can be modeled by electrons coupled to a
bath composed of free fermions [74,78]. Compared to γ ,
the stability of the dotted DMFT is less sensitive to δ,
so that we can take a much smaller value for δ than
for γ .

To study the third-harmonic generation, we apply an ac
electric field to the Holstein model. We use the temporal gauge
to represent the electric field with a vector potential A(t) =
eAe−i�t , where e is the polarization vector (‖e‖ = 1) and A

and � are the amplitude and frequency of the vector potential,
respectively. A is related to the amplitude of the electric field
E via A = E/(i�). The ac field is minimally coupled to the
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electrons through the Peierls phase. The resulting form of
the coupling is

∑
kσ εk+A(t)c

†
kσ ckσ in the kinetic term of the

Hamiltonian, where we have put the elementary charge e = 1.
The electron current is defined by

j (t) = −i
∑

k

vk+A(t)G
<
k (t,t), (13)

where vk = ∂εk/∂k is the group velocity. We measure the
current along the electric field,

j (t) = j (t) · e. (14)

The susceptibility for the third-harmonic generation χ (�)
is defined by the nonlinear current oscillating with the
frequency 3�,

j (3)(t) = χ (�)A3e−3i�t . (15)

To obtain the THG susceptibility, we take the third derivative
of Eq. (13) with respect to A and then set A = 0. This involves
the derivatives of G, which are evaluated by means of the
dotted DMFT, as will be explained in the next section.

Since our model is infinite dimensional, it is not obvious
how to choose the polarization. One convenient way is to take
the direction parallel to (1,1, . . . ,1), for which every direction
is equivalent. However, as mentioned in the Introduction, this
choice has a bias that the pair breaking effect is suppressed in
the THG response. Another simple choice is (1,0, . . . ,0). This,
on the other hand, is the direction that maximally enhances the
pair breaking contribution. To let the situation be as fair as
possible, we choose a general direction

e ∝ (

d︷ ︸︸ ︷
1,1, . . . ,1︸ ︷︷ ︸

m

,0, . . . ,0), (16)

where m is the number of dimensions along which the
polarization vector has nonzero components. It is a kind of gen-
eralization of the (1,1,0) direction for the three-dimensional
cubic lattice. We fix the ratio,

α = m

d
(0 � α � 1), (17)

and take the limit of d,m → ∞. The parameter α continuously
interpolates the two limits of (1,1, . . . ,1) and (1,0, . . . ,0).

The advantage of this setup is that it greatly simplifies
the momentum integral without putting a bias on the pair
breaking effect. We need a very fine grid for the momentum
integral to eliminate the finite-size effect, which is particularly
severe in the calculation of the THG spectrum, since one
has to resolve the superconducting gap structure in the very
vicinity of the Fermi energy. One might apply the DMFT to the
two-dimensional square lattice as an approximation (instead
of applying it to the hypercubic lattice), but our experience
indicates that the number of k points that has to be taken is so
huge that it is practically intractable.

To see how the momentum integral is simplified, we expand
εk+A(t) in A as

εk+A(t) = εk + ε̇kAe−i�t + 1
2 ε̈kA

2e−2i�t + · · · , (18)

where the dot denotes the derivative with respect to A, that is,

ε̇k =
d∑

i=1

∂εk

∂ki

ei, (19)

ε̈k =
d∑

i,j=1

∂2εk

∂ki∂kj

eiej , (20)

and so on. The THG susceptibility is expressed as a momentum
integral of a function of εk multiplied by some of ε̇k,ε̈k,

...
ε k,

and
....
ε k [with the total number of derivatives being always

four since vk in the definition of the current (13) contains one
derivative while the other three come from the external field].
For instance, let us consider a momentum integral of the form∑

k

ε̇k
...
ε kf (εk)

= 1

m2

∑
k

m∑
i=1

2t sin ki

m∑
j=1

(−2t) sin kjf (εk)

= −4t2

m2

∑
k

⎛
⎜⎜⎜⎝

m∑
i=1

sin2 ki +
m∑

i,j = 1
i �= j

sin ki sin kj

⎞
⎟⎟⎟⎠f (εk)

(21)

with a certain function f (ε). Since directions i = 1, . . . ,m

are equivalent and the second term in parentheses vanishes
due to a cancellation between ki and −ki , we can simplify
Eq. (21) as

= −4t2

m2

∑
k

m sin2 kxf (εk). (22)

We can symmetrize the momenta {ki} in the integrand due to
the cubic symmetry to have

= −4t2

m2

∑
k

m

d

d∑
i=1

sin2 kif (εk)

= −4t2

m2

∑
k

m

d

(
d∑

i=1

sin ki

)2

f (εk), (23)

where 4t2(
∑d

i=1 sin ki)2 can be replaced by t∗2 using the
joint density of states [79] D(ε,ε̄) = D(ε)D(ε̄) (with ε̄ =
2t

∑
i sin ki) and

∫
dε̄D(ε̄)ε̄2 = t∗2. Equation (21) is finally

reduced to ∑
k

ε̇k
...
ε kf (εk) = − t∗2

d2α

∑
k

f (εk) (24)

in the infinite-dimensional limit. The resulting form can be
expressed as a single integral of a function of ε = εk, which
can be evaluated analytically in terms of the local Green’s
function and self-energy. Similar simplifications apply to all
the possible terms in the THG susceptibility. In Appendix B
we summarize some useful formulas to simplify various types
of momentum integrals.
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Glat(ω) =
k

1

G−1
0k (ω) − Σlat(ω)

G̈ lat(ω; Ω) =
k

{Glat
k (ω + 2Ω)[¨k + Σ̈ lat(ω; Ω)]Glat

k (ω)

+ 2Glat
k (ω + 2Ω)˙kGlat

k (ω + Ω)˙kGlat
k (ω)}

G̈ lat(ω; Ω) = G̈ imp(ω; Ω)

Glat(ω) = Gimp(ω)

Σlat(ω) = Σimp(ω)

Σ̈ lat(ω; Ω) = Σ̈ imp(ω; Ω)

impurity solver

equilibrium DMFT

dotted DMFT (for each    )

dotted impurity solver

Ω

Calculation of susceptibility

χ(Ω) = χ[Σlat, Σ̈lat](Ω)

FIG. 2. A schematic picture for the dotted DMFT formalism for the third-harmonic generation. Each equation holds for the retarded,
advanced, lesser, and greater Green’s functions and self-energies, respectively. An analogous treatment can be generally applied to arbitrary
dynamical susceptibilities.

III. DOTTED DMFT

In this section, we propose an efficient way to calculate
the vertex correction for nonlinear dynamical susceptibilities,
which we call the “dotted DMFT” (Fig. 2). This is because the
method enables us to evaluate derivatives of Green’s function
and the self-energy with respect to the external field, which are
required to obtain nonlinear response functions. We explain the
formulation in the context of third-harmonic generation here,
but it can be generalized to arbitrary dynamical susceptibilities.

To start with, let us assume that the system reaches the
(time-periodic) nonequilibrium steady state in the long-time
limit in the presence of an ac electric field. The steady state
emerges due to the balance between continuous excitations by
the electric field and an energy dissipation to a heat bath, i.e.,
the system considered must be an open system.

In the time-periodic nonequilibrium steady state, the time
translational symmetry is partially recovered for Green’s
function, G(t + T ,t ′ + T ) = G(t,t ′) (with T = 2π/� being
the period of the driving field). In principle, one can determine
the interacting Green’s function within the nonequilibrium
steady-state DMFT, or Floquet DMFT [74,80], which is
capable of treating an arbitrarily large amplitude of the electric
field. For the present purpose, on the other hand, it is sufficient
to calculate the Green’s function up to the third order in the
driving field.

This motivates us to expand the Green’s function and the
self-energy with respect to the driving field,

G(t,t ′) = Geq(t,t ′) + Ġ(t,t ′; �)Ae−i�t ′

+ 1
2G̈(t,t ′; �)A2e−2i�t ′ + · · · , (25)

�(t,t ′) = �eq(t,t ′) + �̇(t,t ′; �)Ae−i�t ′

+ 1
2 �̈(t,t ′; �)A2e−2i�t ′ + · · · . (26)

Here Geq(t,t ′) and �eq(t,t ′) are the equilibrium Green’s
function and self-energy, respectively, and the external field
is assumed to be in the form of A(t) = eAe−i�t . If one
considers a real field such as A(t) = eA cos �t , one has to
extend the expansion including cross terms between e−i�t and
ei�t . There is an ambiguity in the definition of the expansion
coefficients: the factor e−in�t ′ in the nth order can be replaced
by e−in�[xt+(1−x)t ′] (x ∈ R). This is possible as long as the
condition G(t + T ,t ′ + T ) = G(t,t ′) holds. In this paper, we
adopt the convention with x = 0.

The advantage of expanding the Green’s function with
respect to A rather than directly treating the nonequilibrium
Green’s function is that the full time-translation symmetry is
available at each order in the expansion. To see this, let us
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write the expansion as

G(t,t ′) = Geq(t,t ′) + G(1)(t,t ′; �)A

+ 1
2G(2)(t,t ′; �)A2 + · · · . (27)

At the nth order, the term contains multiple of n ac fields, so
that it acquires the phase e−in�t̄ when time translation t →
t + t̄ is operated. For example, for n = 2 we have

G(2)(t + t̄ ,t ′ + t̄ ; �) = e−2i�t̄G(2)(t,t ′; �). (28)

Since G(2)(t,t ′) = G̈(t,t ′)e−2i�t ′ by definition, G̈ becomes
time-translation invariant:

G̈(t + t̄ ,t ′ + t̄ ; �) = G̈(t,t ′; �). (29)

The same applies to all orders. This allows us to write
G̈(t,t ′; �) as a single-time function G̈(t − t ′; �) ≡ G̈(t,t ′; �),
which can be Fourier transformed as

G̈(t − t ′; �) =
∫

dω

2π
e−iω(t−t ′)G̈(ω; �). (30)

This is a great advantage because it is no longer necessary
to treat the two-time Green’s function G(t,t ′) in favor of a
single-frequency function. The following formulation can be
implemented in the same way as in equilibrium which enjoys
the full time-translation symmetry.

Now the task is to evaluate the expansion coefficients order
by order. When the system has an inversion symmetry, the
local Green’s function and self-energy must be parity even,
while the electric field is parity odd. This implies that odd-
order expansion coefficients identically vanish. The leading
contribution then comes from the second order.

In order to determine the expansion coefficients, we dif-
ferentiate every DMFT self-consistency equation with respect
to A, and extract the second-order coefficients. Let us start
with the lattice Dyson equation, G = ∑

k(G−1
0k − �)−1. If we

take a double derivative with respect to A on both sides of the
equation (and use �̇ = 0), we end up with the “dotted lattice
Dyson equation,”

G̈R,A,<,>(ω; �)

=
∑

k

{
Gk(ω + 2�)[ε̈k + �̈(ω; �)]Gk(ω)

+2Gk(ω + 2�)ε̇kGk(ω + �)ε̇kGk(ω)
}R,A,<,>

, (31)

where R,A, <, and > denote the retarded, advanced, lesser,
and greater components of nonequilibrium Green’s func-
tions, respectively. For the detailed definition we refer to
Ref. [74]. For the notation of R,A, <, and > for products
of nonequilibrium Green’s functions, see Appendix A. Note
that when the Green’s function has a matrix form (as in
the superconducting state), ¨̂GA(ω; �) �= [ ¨̂GR(ω; �)]†, so that
the advanced component has to be calculated independently
of the retarded one.

Similarly, we differentiate the impurity Dyson equation,
G = (G−1

0 − �)−1 (with G0 being the Weiss Green’s function)
twice with respect to A to obtain the “dotted impurity Dyson
equation,”

G̈R,A,<,>(ω; �) = −{
G(ω + 2�)

[(
G̈−1

0

)
(ω; �)

− �̈(ω; �)
]
G(ω)

}R,A,<,>
. (32)

Here the double-dotted inverse of the Weiss Green’s function
reads(

G̈−1
0

)R,A,<,>
(ω; �)

= −[
G−1

0 (ω + 2�)G̈0(ω; �)G−1
0 (ω)

]R,A,<,>
. (33)

To close the equation for the dotted functions, we need an
explicit (diagrammatic) solution for the nonequilibrium impu-
rity problem. This depends on the model and approximation.
In the present case of the Holstein model, we employ the
(unrenormalized) Migdal approximation [42,48,51,81],

�<,>(t,t ′) = ig2D
<,>
0 (t,t ′)G<,>(t,t ′), (34)

which assumes that phonons stay in equilibrium. After
expanding � and G with respect to A as in Eqs. (25) and
(26), and comparing both sides of the equation at the order A2,
we obtain

�̈<,>(t ; �) = ig2D
<,>
0 (t)G̈<,>(t ; �). (35)

The corresponding retarded and advanced components are
given by

�̈R(t ; �) = θ (t)[�̈>(t ; �) − �̈<(t ; �)], (36)

�̈A(t ; �) = θ (−t)[�̈<(t ; �) − �̈>(t ; �)], (37)

where θ (t) = 1 for t � 0 and = 0 otherwise (step function).
In this way, the dotted DMFT naturally generates the impurity
solver that is consistent with the approximation used in
the equilibrium DMFT. The diagrammatic representation of
the dotted lattice Dyson equation (31) and dotted Migdal
approximation (35) are shown in Fig. 3. In particular, if we
expand the dotted self-energy only with G and D0, it has a
ladder structure, which represents the contribution from the
amplitude mode [48].

The technique can be applied to any models in principle, as
far as the diagrammatic expression for the impurity problem
is given. To see how it works further, let us take another
prototypical example, the Hubbard model,

H =
∑
ij

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓, (38)

where U is the on-site Coulomb interaction. The Hubbard
model is of particular interest in its own right from the point

(a)

G = + +

(b)

= G

FIG. 3. Diagrammatic representations of the dotted lattice Dyson
equation (31) (a) and the dotted Migdal approximation (35) (b). The
solid, wavy, and double-wavy lines represent the electron, photon,
and phonon propagators, respectively.
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of view of large nonlinear optical responses of Mott insulators
[82,83]. The diagrammatic approximation often used for the
nonequilibrium impurity problem is the iterative perturbation
theory (IPT) [63,84],

�<,>
σ (t,t ′) = U 2G<,>

0,σ (t,t ′)G>,<
0,−σ (t ′,t)G<,>

0,−σ (t,t ′), (39)

which is nothing but the bare second-order weak-coupling
perturbation theory. The dotted impurity solution derived from
IPT is given as

�̈<,>
σ (t ; �) = U 2G̈<,>

0,σ (t ; �)G>,<
0,−σ (−t)G<,>

0,−σ (t)

+ U 2e−2i�tG<,>
0,σ (t)G̈>,<

0,−σ (−t ; �)G<,>
0,−σ (t)

+ U 2G<,>
0,σ (t)G>,<

0,−σ (−t)G̈<,>
0,−σ (t ; �). (40)

Note that the second term in Eq. (40) acquires a phase factor
e−2i�t , since the definition of the dotted function [Eqs. (25)
and (26)] is asymmetric between t and t ′. In the symmetric
case (i.e., x = 1/2), the phase factor does not appear.

Combining the dotted impurity solution with the dotted
lattice and impurity Dyson equations, we can determine G̈

and �̈ self-consistently. We summarize the algorithm flow for
the dotted DMFT in Fig. 2. First, we solve the equilibrium
DMFT in the real-time (real-frequency) formalism (the upper
part of Fig. 2). Once the self-consistency loop is converged, we
move on to the second step of calculating the dotted functions
(the lower part of Fig. 2). We fix the external frequency �,
and iteratively solve the dotted DMFT self-consistency loop.
This process runs for every chosen �. Thus the computational
cost for the dotted DMFT is roughly N� times that for the
equilibrium DMFT, where N� is the number of � values taken.

After collecting the results for the set of �’s, we can
calculate the THG susceptibility (15), which is obtained from
the third derivative of the current (13) with respect to A. The
THG susceptibility is classified into the bare susceptibility χ0

and vertex correction χvc,

χTHG(�) = χ0(�) + χvc(�), (41)

according to whether it contains the derivative of the self-
energy (�̈). Each term is further decomposed, respectively, as
χ0(�) = ∑5

i=1 χ
(i)
0 (�) and χvc(�) = ∑2

i=1 χ (i)
vc (�), following

the topological classification of the corresponding Feynman
diagrams as displayed in Fig. 4. Combining Figs. 3 and 4, one
can see that χ (1)

vc contains the nonresonant [Fig. 1(a)] and mixed
[Fig. 1(b)] diagrams, while χ (2)

vc contains the mixed [Fig. 1(b)]
and resonant [Fig. 1(c)] ones. In the BCS approximation, only
χ

(1)
0 , χ

(3)
0 , and χ (1)

vc , which have the nonresonant coupling to the
light, are nonzero as explained in the Introduction, and the rest
vanish exactly. On the other hand, when one goes beyond the
BCS approximation all the terms are generally nonvanishing
and cannot be neglected, so that one has to evaluate all of them.

The explicit form of the bare susceptibilities are the
following:

χ
(1)
0 (�) = − i

6

∑
k

∫
dω

2π
[
....
ε kGk(ω)]<, (42)

χ
(2)
0 (�) = − i

2

∑
k

∫
dω

2π
[
...
ε kGk(ω + �)ε̇kGk(ω)]<

0
(1)= 0

(2)= 0
(3)=

0
(4)= 0

(5)=

vc
(1)= vc

(2)=

FIG. 4. Feynman diagrams for the susceptibility for the third-
harmonic generation. There are five (two) topologically different
diagrams for the bare susceptibility χ0 (vertex correction χvc). Solid
and wavy lines represent the electron and external photon propagators,
respectively, while the shaded box represents the vertex correction
�̈. Among the four photon lines, one is outgoing with an energy 3�,
while the other three are incoming with an energy �. The photon
lines attached directly to the vertex are incoming.

− i

6

∑
k

∫
dω

2π
[ε̇kGk(ω + 3�)

...
ε kGk(ω)]<, (43)

χ
(3)
0 (�) = − i

2

∑
k

∫
dω

2π
[ε̈kGk(ω + 2�)ε̈kGk(ω)]<, (44)

χ
(4)
0 (�) =−i

∑
k

∫
dω

2π
[ε̈kGk(ω+2�)

× ε̇kGk(ω+�)ε̇kGk(ω)]<

− i

2

∑
k

∫
dω

2π
[ε̇kGk(ω + 3�)

× ε̈kGk(ω + �)ε̇kGk(ω)

+ ε̇kGk(ω + 3�)ε̇kGk(ω + 2�)ε̈kGk(ω)]<,

(45)

χ
(5)
0 (�) = −i

∑
k

∫
dω

2π
[ε̇kGk(ω + 3�)ε̇kGk(ω + 2�)

× ε̇kGk(ω + �)ε̇kGk(ω)]<. (46)

For the notation of < for products of nonequilibrium Green’s
functions, see Appendix A. Note that χ

(i)
0 (i = 1, . . . ,5) do

not contain �̈, so that they can be computed independently of
the dotted DMFT. The vertex corrections are also explicitly
derived as

χ (1)
vc (�) = − i

2

∑
k

∫
dω

2π
[ε̈kGk(ω + 2�)�̈(ω; �)Gk(ω)]<,

(47)

χ (2)
vc (�) = − i

2

∑
k

∫
dω

2π
[ε̇kGk(ω + 3�)�̈(ω + �; �)

× Gk(ω + �)ε̇kGk(ω)

+ ε̇kGk(ω + 3�)ε̇kGk(ω + 2�)�̈(ω; �)Gk(ω)]<.

(48)
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Using the momentum integral formulas listed in Appendix B,
one can show that χ

(4)
0 , χ

(5)
0 , χ (1)

vc , and χ (2)
vc do not depend on

the polarization parameter α, while χ
(1)
0 , χ

(2)
0 , and χ

(3)
0 do.

The algorithm can be generalized to arbitrary higher-order
derivatives; they are determined in turn from lower orders
[(G,�) → (G̈,�̈) → (

....
G,

....
� )] due to the hierarchical structure

of the dotted DMFT self-consistency defined at each derivative
order. Essentially the same method has been used to evaluate
the optical conductivity for periodically driven systems in
Floquet DMFT [78], where Ġ and �̇ are needed. The first
derivative can be nonzero, since the parity symmetry is broken
by the presence of the external driving field.

So far we have formulated the dotted DMFT for the normal
phase, but it is straightforward to extend the approach to
the superconducting phase. There, we have to impose the
following modifications: the electron Green’s functions and
self-energy should be represented by 2 × 2 matrices (Nambu-
Gor’kov formalism), εk, ε̈k, and

....
ε k appearing in the dotted

DMFT should be multiplied by τ3 (the third component of the
Pauli matrix), and the dotted impurity solution (35) for the
Holstein model should be replaced by

¨̂�<,>(t ; �) = ig2D
<,>
0 (t)τ3

¨̂G<,>(t ; �)τ3. (49)

Let us finally comment on the generality of the present for-
mulation. Although we describe the dotted DMFT formulation
for the THG susceptibility, it is not restricted to THG but can
be generalized to arbitrary dynamical response functions. One
can introduce an infinitesimal external field (not necessarily
an electric field), and take the derivative with respect to it for
observables. It may contain a derivative of the self-energy,
which can be evaluated by the corresponding dotted DMFT,
where the DMFT self-consistency equations are differentiated
with respect to the external field. For example, the dynamical
pair susceptibility [40,48]

χR
pair(�) = −i

∫ ∞

0
dt e−i�t 〈[B0(t),B0(0)]〉 (50)

is defined as the response of the pairing amplitude 〈B0〉 against
an external pair potential Hex(t) = εB0e

−i�t , where

B0 =
∑

i

(c†i↑c
†
i↓ + ci↓ci↑) (51)

is the bosonic pairing operator with the center-of-mass
momentum q = 0. This quantity detects collective amplitude
oscillations of the superconducting order parameter. The
dotted DMFT is then constructed by differentiating the DMFT
self-consistency with respect to the pair field potential. The
resulting dotted lattice Dyson equation reads

˙̂GR,A,<,>(ω; �) =
∑

k

{Ĝk(ω + �)

× [τ1 + ˙̂�(ω; �)]Ĝk(ω)}R,A,<,>, (52)

where we have adopted an extended notation of (τ1)R,A =
τ1 and (τ1)<,> = 0. Once the dotted DMFT is solved, the
dynamical pair susceptibility can be calculated as

χR
pair(�) = −i

∫
dω

2π
Tr[τ1

˙̂G<(ω; �)]. (53)

In the next section, we demonstrate the results obtained with
the dotted DMFT for the THG susceptibility along with the
dynamical pair susceptibility.

IV. RESULTS

Let us now turn to the results of the dotted DMFT for the
superconducting phase of the Holstein model. The parameters
are taken to be g = 0.8, ω0 = 0.6, γ = 0.2, and δ = 0.005.
This corresponds to the effective interaction of λ = 0.77
[Eq. (11)], which is in the moderately correlated regime. The
temperature is set to be T = 0.02, which is low enough for
the system to be in the superconducting state. The polarization
(16) is set to a general direction α = 0.5 without having a bias
on the pair breaking effect.

In Fig. 5, we show the single-particle spectrum A(ω) =
−Im GR

11(ω)/π (red curve) along with the dynamical pair
susceptibility −Im χR

pair(ω) (50) (blue with the dots), with
the latter calculated by the dotted DMFT. Previously, the
dynamical pair susceptibility has been evaluated from the
real-time simulation of the nonequilibrium DMFT [48], which
is one way to avoid solving the complicated Bethe-Salpeter
equation for the vertex correction. Here the dotted DMFT
serves as an alternative efficient method.

As one can see in Fig. 5, the single-particle spectrum shows
the superconducting gap 2� ≈ 0.12 [note that we plot A(ω/2)
in Fig. 5] with the coherence peak at the edge of the band
gap. The pair susceptibility also exhibits a clear gap structure
with a resonance peak at ω = 2�. The result is in agreement
with the one previously reported [48,51]. The resonance peak
is produced by the vertex correction, which is immediately
confirmed by the comparison to the bare susceptibility. This
suggests that the peak in χR

pair(ω) represents the collective
oscillation of the pairing amplitude with the frequency 2�,
which can be identified as the Higgs amplitude mode. The
coincidence of the single-particle and two-particle gaps (up
to the factor of 2) holds beyond the BCS approximation, as
observed in the previous study [48,51].

- Im pair
R ( )

A( /2) (×4)

0.0 0.1 0.2 0.3 0.4
0

2

4

6

8

FIG. 5. The single-particle spectrum A(ω/2) and the dynamical
pair susceptibility −Im χR

pair(ω) calculated by the (dotted) DMFT for
the superconducting phase of the Holstein model with g = 0.8, ω0 =
0.6, T = 0.02, γ = 0.2, and δ = 0.005.
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FIG. 6. The THG susceptibility decomposed into the bare sus-
ceptibilities χ

(i)
0 (i = 1, . . . ,5) and vertex corrections χ (i)

vc (i = 1,2)
for the superconducting phase of the Holstein model calculated with
the dotted DMFT. The parameters are the same as in Fig. 5. The
polarization direction of the laser field is taken to be α = 0.5. The
susceptibilities are normalized by χ∗ = t∗/d2. The inset is a blowup
of χ (1)

vc .

The results of the THG susceptibility |χ |2 (proportional to
the THG intensity observed in experiments) calculated by the
dotted DMFT are plotted in Fig. 6. We show the result for
each term χ

(i)
0 (i = 1, . . . ,5) and χ (i)

vc (i = 1,2). First of all,
we can see that all the terms contribute to the THG response,
which is in sharp contrast to the BCS approximation where χ

(i)
0

(i = 2,4,5) and χ (2)
vc identically vanish. In particular, χ (3)

0 , χ (5)
0 ,

and χ (2)
vc exhibit dominant contributions. The resonance peak

exists at � = � ≈ 0.06 in the spectra of χ
(3)
0 , χ (1)

vc , and χ (2)
vc .

The peak in χ
(3)
0 can be interpreted as individual excitations

due to Cooper pair breaking, while the peaks in χ (1)
vc and χ (2)

vc
can be interpreted as collective excitations resonating with the
Higgs amplitude mode, since that is the only known collective
mode at energy 2�. As expected from the BCS approximation
[49], the effect of χ (1)

vc is a few orders of magnitude smaller
than that of χ

(3)
0 (see the inset of Fig. 6) if one chooses a general

polarization direction (here α = 0.5). On the other hand,
the contribution of χ (2)

vc , which has been absent in the BCS
approximation, is quite significant, and can be even larger than
that of χ

(3)
0 . This result implies that if one resumes the factors

that are not taken into account in the BCS approximation,
such as the retarded nature of the pairing interaction through
the electron-phonon coupling, the Higgs mode can become a
prominent component in the THG spectrum. The corrections
from the BCS theory are not necessarily small but can be
drastic (at least when the electron-phonon coupling is large
enough). Let us again recall that NbN, which is experimentally
used in Refs. [9,12], has the strong electron-phonon coupling
[55–57], so that such corrections from the BCS analysis should
be seriously taken into account. χ

(5)
0 is also not negligible, but

this component does not show a resonance with the Higgs
mode at � = �. The increase of the spectral weight towards
low frequencies (especially for χ

(5)
0 and χ (2)

vc ) is due to the
presence of nonzero δ, with which the system accommodates
low-energy excitations. It can be suppressed when δ is reduced,

| 0
2

| 0+ vc
2DMFT

0.0 0.5 1.0 1.5 2.0 2.5
0

2

4

6

8

/

|
2

FIG. 7. The intensity of the third-harmonic generation for the
superconducting phase of the Holstein model calculated by the dotted
DMFT. The bubble contribution (χ0) and the total susceptibility in-
cluding the vertex corrections (χ0 + χvc) are plotted. The parameters
are taken to be the same as those of Fig. 5. The polarization direction
of the laser field is taken to be α = 0.5.

so that we can ignore the low-energy features, although we
cannot take the limit of δ → +0 for the dotted DMFT to be
numerically stable.

Figure 7 plots the total THG susceptibility |χ |2 = |χ0 +
χvc|2 as compared with the total bare susceptibility |χ0|2. Here
we subtract the low-energy increase of the spectral weight of
χ

(5)
0 at � < 0.055 from χ0, which is out of our interest and

could be removed by reducing δ. We can see that both χ and
χ0 exhibit conspicuous resonance peaks at � = �. Although
the position and shape of the peak do not differ so much
between χ0 and χ , the peak height does. With the parameters
taken here, the height for χ is enhanced about four times that
for χ0 due to the resonance with the Higgs mode. The main
contribution comes from χ (2)

vc , as can be seen in Fig. 6. The
resonance width for χ0 is broadened as compared to that for
χ

(3)
0 due to the spectral weight of χ

(5)
0 distributed around the

peak. The amplitude ratio between χ0 and χvc can depend
on various model parameters (in particular, we will discuss
the phonon-frequency dependence below), but at least there is
such a possibility in a certain realistic parameter regime that
the vertex correction has a non-negligible effect.

We are now in a position to compare the BCS and
DMFT results by calculating the THG susceptibility within
the BCS approximation for the same parameter set as those
for DMFT. The electron-phonon coupling is translated into
a static attractive interaction via U = 2g2ω0/(ω2

0 + γ 2) [see
Eqs. (9) and (10)]. In the gap equation, we perform the
momentum integral in the range of |εk| � ω0. The result
is displayed in Fig. 8, which indicates that the effect of
the vertex correction in BCS is rather small for a general
polarization direction (α = 0.5 here). The resonance width
is much sharper and the peak height is higher in BCS than
in DMFT, since the THG susceptibility diverges at � = �

in the limit of δ → 0 in the BCS theory. While these are
consistent with the previous studies [44,49], the BCS result
is markedly different from the DMFT result (Fig. 7) that
takes account of dynamical correlation effects. This is simply
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FIG. 8. The intensity of the third-harmonic generation for the
superconducting phase of the Holstein model calculated within the
BCS approximation. The bubble contribution (χ0) and the total
susceptibility including the vertex corrections (χ0 + χvc) are plotted,
respectively. The parameters are taken to be the same as in Fig. 5.
The polarization direction of the laser field is taken to be α = 0.5.
Note the difference in the scales of the axes from Fig. 7.

because χ (2)
vc is absent in the BCS approximation, whereas

it is generally non-negligible if one considers the retardation
in the phonon-mediated interaction (or other effects that are
not included in the BCS approximation such as impurity
scattering, Coulomb interaction, etc.).

To confirm that the retardation effect is essential in enhanc-
ing the contribution of the Higgs mode to the THG resonance,
we calculate the ω0 dependence of the THG susceptibility.
Here we focus on χ

(3)
0 (�) and χ (2)

vc (�) that are in charge of
the resonance structures at � = �. A systematic comparison
between the susceptibilities at different ω0 is made by tuning
the electron-phonon coupling g such that the superconducting
gap is fixed to a constant (2� ≈ 0.12). In Fig. 9, we plot the
height of the resonance peak for |χ (3)

0 (�)|2 and |χ (2)
vc (�)|2 as

| 0
(3)( = ) 2

| vc
(2)( = ) 2

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

|
2

FIG. 9. Phonon-frequency dependence of |χ (3)
0 |2 and |χ (2)

vc |2 at the
resonance (� = �) for the superconducting phase of the Holstein
model with T = 0.02, γ = 0.2, and δ = 0.005. The polarization
direction of the laser field is taken to be α = 0.5. We tune g for
each ω0 such that the superconducting gap is fixed to a constant
(2� ≈ 0.12).

a function of the phonon frequency ω0 (with the parameters
other than ω0 and g the same as in Fig. 6). We can see that, as
ω0 decreases and the effective interaction (9) becomes more
retarded, the resonance for χ (2)

vc is enhanced, while that for χ
(3)
0

is suppressed. This is consistent with the expectation that in
the opposite antiadiabatic (nonretarded) limit (ω0 → ∞) the
model approaches the attractive Hubbard model, where the
Migdal approximation is replaced by the BCS approximation,
and χ (2)

vc vanishes as explained in Sec. I. The result suggests that
the retardation effect in the electron-phonon coupling indeed
plays a crucial role in amplifying the vertex correction χ (2)

vc .
We can elaborate on the physical meaning of the result as

follows. As we discussed previously, the dominant diagram
contained in χ (2)

vc is the one with the resonant coupling to the
light [Fig. 1(c)]. This represents a process in which a single
photon is absorbed and then emitted by electrons at different
times [with the time separation ∼ (2�)−1]. The retardation
effect due to the scattering of phonons (in the time scale of
ω−1

0 ) can propagate between these times. If 2� (≈0.12 in
the present case) and ω0 are in the same order, the scattering
amplitude relevant for the THG resonance can be effectively
enhanced, as confirmed from the result in Fig. 9. Note that the
resonance between coherent phonons and the order parameter
oscillation in the regime of ω0 ∼ 2� has been discussed in
Ref. [32].

V. SUMMARY

To summarize, we have studied the nonlinear optical re-
sponse, especially the third-harmonic generation, for electron-
phonon coupled superconductors by means of the dotted
DMFT framework proposed in the present paper. The results
show that, for general polarization of the light, there is a
possibility that the Higgs amplitude mode can contribute to
the THG resonance at 2� = 2� with an order of magnitude
comparable to contributions from the Cooper pair breaking or
charge density fluctuations, which is in sharp contrast to the
BCS result. The interaction between the light and Higgs mode
can be mediated by the resonant coupling, which is induced by
the retarded interaction through the electron-phonon coupling.
This is confirmed by the observation that the intensity of the
THG resonance due to the Higgs mode does indeed increase as
the phonon frequency is reduced. Let us note that the electron-
phonon coupling is just one of many possibilities that could
enhance the Higgs-mode effect. These may include phonon
renormalization, impurity scattering, dynamical correlation
effects from the Coulomb interaction, nonlocal correlations
beyond DMFT, etc.

With relevance to the experiment [12], it is interesting
to investigate the temperature dependence of the THG sus-
ceptibility. However, we expect that this strongly depends
on the details of the model, since the model adopted here
only includes a single optical phonon mode, while in realistic
situations acoustic phonons may play an important role at
low temperatures. The temperature dependence may also
be affected by mechanisms of energy dissipation. In this
paper, we have assumed a simple dissipation characterized
by the broadening parameters γ and δ, but it can be more
complicated in real systems. Moreover, the present method has
a numerical instability when γ or δ approaches zero. These
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issues will be left as a future problem. When both the pair
breaking (charge fluctuation) and Higgs mode contribute with
comparable magnitudes, as indicated here to be possible, it is
desirable to distinguish them in experiments. One possibility
is to look at the polarization dependence [49]. To this end, one
needs to accurately evaluate the polarization dependence of
the pair breaking and Higgs-mode contributions in a realistic
manner.
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APPENDIX A: NOTATION FOR PRODUCTS OF
NONEQUILIBRIUM GREEN’S FUNCTIONS

In this appendix, we explain the notation for products of
nonequilibrium Green’s functions used throughout the paper.
We define

[A(ω)B(ω′)]R,A ≡ AR,A(ω)BR,A(ω′), (A1)

[A(ω)B(ω′)]<,> ≡ AR(ω)B<,>(ω′) + A<,>(ω)BA(ω′),
(A2)

following the Langreth rule [54]. Here R, A, <, and >,
respectively, denote the retarded, advanced, lesser, and greater
components of nonequilibrium Green’s functions. For the
detailed definition of the nonequilibrium Green’s function,
we refer to Ref. [74]. The definitions (A1) and (A2) can be
used repeatedly for products involving more than two Green’s
functions. For example, it follows from the above definition
that

[A(ω)B(ω′)C(ω′′)]R,A = AR,A(ω)BR,A(ω′)CR,A(ω′′), (A3)

[A(ω)B(ω′)C(ω′′)]<,> = AR(ω)BR(ω′)C<,>(ω′′)

+ AR(ω)B<,>(ω′)CA(ω′′)

+ A<,>(ω)BA(ω′)CA(ω′′). (A4)

If products explicitly contain εk, we can regard it as a
component of the Green’s function with the definition,

[εk]R,A ≡ εk, (A5)

[εk]<,> ≡ 0. (A6)

For example, we have

[εkA(ω)B(ω′)]<,> = εk[AR(ω)B<,>(ω′) + A<,>(ω)BA(ω′)].
(A7)

The same applies to derivatives of εk such as ε̇k,ε̈k.

APPENDIX B: A MOMENTUM INTEGRAL FORMULA
FOR THE CALCULATION OF THG

In this appendix, we summarize some useful formulas for
the momentum integral employed in the calculation of the
THG susceptibility in the dotted DMFT. As we have seen in
Sec. III, one frequently encounters a momentum integral of a
function of εk [Eq. (8)] multiplied by some of ε̇k, ε̈k,

...
ε k, and....

ε k [see Eqs. (19) and (20) for the definition]. In the main text,
we have taken the polarization vector as

e = 1√
m

(

d︷ ︸︸ ︷
1,1, . . . ,1︸ ︷︷ ︸

m

,0, . . . ,0). (B1)

In the limit d,m → ∞ with a fixed ratio α = m/d, the
momentum integral is reduced to an integral over the single
variable ε = εk, as described in Sec. II.

Here we list the results. For momentum integrals containing
two derivatives, we have

∑
k

ε̈kf (εk) = − 1

d

∑
k

εkf (εk), (B2)

∑
k

(ε̇k)2f (εk) = t∗2

d

∑
k

f (εk), (B3)

which can be used in the calculation of χ (i)
vc [Eqs. (47) and (48)]

and the dotted lattice Dyson equation (31). For momentum
integrals containing four derivatives, we have

∑
k

....
ε kf (εk) = 1

d2α

∑
k

εkf (εk), (B4)

∑
k

ε̇k
...
ε kf (εk) = − t∗2

d2α

∑
k

f (εk), (B5)

∑
k

(ε̈k)2f (εk) = t∗2(1 − α)

d2α

∑
k

f (εk) + 1

d2

∑
k

ε2
kf (εk),

(B6)∑
k

(ε̇k)2ε̈kf (εk) = − t∗2

d2

∑
k

εkf (εk), (B7)

∑
k

(ε̇k)4f (εk) = 3t∗4

d2

∑
k

f (εk), (B8)

which can be used in the calculation of χ
(i)
0 [Eqs. (42)–(46)].

Once the momentum integral is reduced to an integral over
ε = εk, it can be further evaluated analytically. To see this, let
us parametrize the self-energy (at half filling with μ = 0) as

�̂R(ω) = [1 − Z(ω)]ω + φ(ω)τ1. (B9)

We define functions

Ŝ±(ω) ≡ Z(ω)ω ± φ(ω)τ1, (B10)

S2(ω) ≡ [Z(ω)ω]2 − φ(ω)2, (B11)

with which the retarded Green’s function is represented as

ĜR
k (ω) = [ω − εkτ3 − �̂R(ω)]−1 = Ŝ+(ω) + εkτ3

S2(ω) − ε2
k

. (B12)
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As an example, let us consider the first term in the dotted lattice Dyson equation (31), whose retarded component can be evaluated
with Eq. (B2) as∑

k

ĜR
k (ω + 2�)ε̈kτ3Ĝ

R
k (ω) = − 1

d

∑
k

Ŝ+(ω + 2�) + εkτ3

S2(ω + 2�) − ε2
k

εkτ3
Ŝ+(ω) + εkτ3

S2(ω) − ε2
k

= 1

d

ĜR(ω)Ŝ−(ω) − ĜR(ω + 2�)Ŝ−(ω + 2�)

S2(ω) − S2(ω + 2�)
[Ŝ+(ω) + Ŝ+(ω + 2�)]. (B13)

Note that ĜR(ω) and Ŝ±(ω′) commute with each other. In this way, every momentum integral appearing in the calculation of the
dotted DMFT and nonlinear optical susceptibilities can be written in terms of the local Green’s function and self-energy. This
greatly reduces the computational cost of the dotted DMFT algorithm.
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