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The conductivity of vortex lattices in multiband superconductors with high concentration of impurities is
calculated based on microscopic kinetic theory at temperatures significantly smaller than the critical one. Both
the limits of high and low fields are considered, when the magnetic induction is close to or much smaller than the
critical field strength Hc2, respectively. It is shown that in contrast to single-band superconductors, the resistive
properties are not universal but depend on the pairing constants and ratios of diffusivities in different bands. The
low-field magnetoresistance can strongly exceed the Bardeen-Stephen estimation in a quantitative agreement
with experimental data for the two-band superconductor MgB2.
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I. INTRODUCTION

Recent transport experiments reveal quite unusual behavior
of the flux-flow resistive states in multiband superconduc-
tors [1–6]. The magnetic field dependencies of flux-flow
resistivity ρf (B) were found to be qualitatively different
from that observed in single-band superconductors [7]. This
behavior is not explained by the theories developed in previous
works [8–15].

Vortex motion in conventional type-II superconductors have
been investigated for several decades. Flux-flow experiments
in single-band superconductors at low temperatures and
magnetic fields [7] are well described by the Bardeen-Stephen
(BS) theory [8]. In this regime, the flux-flow resistivity is given
by the linear magnetic field dependence,

ρf /ρn = β−1B/Hc2, (1)

where ρn is the normal-state resistivity, B is an average
magnetic induction, Hc2 is the second critical field, and β ≈ 1.
The BS law is in qualitative agreement with the results obtained
based on the microscopic theory for dirty superconductors [9]
at low temperatures.

In strong magnetic fields Hc2 − B � Hc2, the motion of
dense vortex lattices has been extensively studied with the
help of linear response theory [12–14]. In these works, the
slope of flux-flow resistivity,

S = (Hc2/ρn)(dρf /dB), (2)

has been shown to have a universal temperature dependence
in the dirty limit characterized by a monotonic increase
from S(T = 0) = 1.72 to S(T = Tc) = 5 [13]. This behavior
was confirmed by accurate high-field measurements in Pb-In
alloys [16]. Deviations observed near the critical temperature
Tc were attributed to the depairing effects due to the spin-flip
and electron-phonon scattering [17].

Close to Tc, the flux-flow conductivity determined by the
slow diffusion mechanism of relaxation does not have a
universal behavior, being parametrically larger than the BS
value. As shown in Ref. [11], at high fields in the range of
parameters when 1 � 1 − B/Hc2 � 1 − T/Tc, the flux-flow
conductivity is strongly enhanced, σf ∼ (1 − T/Tc)−1/2(1 −
B/Hc2)3/2. Reference [10] demonstrates that a similar ten-
dency exists also at low fields, where β ∼ (1 − T/Tc)−1/2 (see
the detailed review in Ref. [18]).

In contrast to the conventional behavior described above,
many multiband superconductors [1–5], including MgB2 [6],
were found to have the flux-flow resistivity larger than
the BS value, ρf /ρn > B/Hc2, even in the low-temperature
limit. The experimentally found dependencies ρf (B) have
a steeper growth in the low-field region with an enhanced
magnetoresistance characterized by β < 1 and a smaller slope
S < 1 at B = Hc2 [6], which is not described by the single-
band theory [13].

The existing theories of flux-flow states cannot be straight-
forwardly applied to multiband superconductors. In these
systems, vortices have a composite structure consisting of
multiple singularities corresponding to the order parameter
phase windings in different superconducting bands. In equi-
librium, an isolated composite vortex is a bound state of
several co-centered fractional vortices [19]. They can split,
however, under the action of fluctuations [20], interaction
with other vortices and sample boundaries [21,22], or due
to external drive [23]. In particular, it was shown that the
moving composite vortices can split into separate fractional
vortices and even dissociate in a nonlinear regime provided
the interband pairing is sufficiently small [23]. It is natural
to expect that vortex splitting should have a profound effect
on the flux-flow resistivity, especially at high fields when the
flux-flow resistivity is strongly affected by the distortions of
the moving vortex lattice [12–14]. As will be shown below,
the well-known solution [15] describing a moving vortex
lattice is not applicable to describe multiband systems since
the distortion generically splits the sublattices of fractional
vortices. In the present paper, we develop a theoretical
framework to take into account this effect and calculate
the conductivity corrections. For that, one needs to know
the Maki parameter, also known as a generalized Ginzbirg-
Landau parameter κ2 which determines, in particular, the order
parameter density as a function of magnetic field near Hc2 [12].
Recently, this parameter has been calculated for multiband
superconductors [24].

To obtain a complete picture of the flux-flow conductivity
behavior in multiband systems, we also consider the regime
of small magnetic fields, when a picture of isolated moving
vortices is an adequate description [9]. Based on the kinetic
theory, we calculate the coefficient β which characterizes
the initial slope of the magnetoresistance. Applying the
combination of the results in two limiting cases of small and

2469-9950/2016/94(22)/224506(11) 224506-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevB.94.224506


MIHAIL SILAEV AND ARTJOM VARGUNIN PHYSICAL REVIEW B 94, 224506 (2016)

high magnetic fields, it is possible to fit the experimental curves
ρf (B) for multiband superconductors with known pairing
interactions such as MgB2.

The model of dirty-limit superconductors assumed in the
present work is appropriate for a certain class of multiband
materials, including MgB2 [25,26] and iron pnictides [27]. In
single crystals of MgB2, the de Haas–van Alphen data [28]
and thermal conductivity measurements [29] suggest the
borderline regime when one of the superconducting bands is
moderately clean and the other one is moderately dirty [26].
Scanning tunnel microscopy shows the absence of a zero-
bias anomaly inside vortex cores which is typical for dirty
superconductors [30]. Impurities at high concentration can
be introduced in MgB2 on demand during the preparation
process, producing nontrivial magnetic properties, which have
been intensively studied recently [25,31–34].

In the present work, we consider temperatures significantly
lower than Tc, which is relevant to the currently known exper-
imental data for multiband superconductors. In particular, for
low fields, we assume T � Tc, which allows one to neglect the
contribution of delocalized quasiparticles outside the vortex
cores [9]. For high fields, we focus on the parameter interval
1 − T/Tc > 1 − B/Hc2 when one can use the expansion by
small order parameter amplitudes to calculate the force acting
on vortices [11]. Although the opposite regimes at T → Tc are
interesting to consider in multiband systems, they are beyond
the scope of the present paper.

The structure of this paper is as follows. In Sec. II,
we introduce the Keldysh-Usadel description of the kinetic
processes in dirty multiband superconductors. Here the basic
components of the kinetic theory are discussed, including
kinetic equations, self-consistency equations for the order
parameter and current, as well as a general expression for
the viscous force acting on the moving vortices. The flux-flow
conductivity at high magnetic fields is calculated in Sec. III
taking into account the splitting of fractional vortex sublattices.
The case of low fields is considered in Sec. IV. A quantitative
comparison of theoretical results with flux-flow resistivity
measurements in MgB2 [6] is discussed in Sec. V. The work
summary is given in Sec. VI.

II. KINETIC EQUATIONS AND FORCES ACTING
ON THE MOVING VORTEX LINE

We consider multiband superconductors in a dirty limit
when the kinetics and spectral properties are described by the
Keldysh-Usadel theory. For the single-band case, the theory
of vortex motion in diffusive superconductors was developed
in Refs. [9,10,13,17]. Here we generalize their theory to the
multiband case.

The quasiclassical Green’s function (GF) in each band is
defined as

ǧk =
(

ĝR
k ĝK

k

0 ĝA
k

)
, (3)

where gK
k is the (2 × 2 matrix) Keldysh component, ĝ

R(A)
k is

the retarded (advanced) GF, and k is the band index. The
GF depends on two times and a single spatial coordinate
variable ǧk = ǧk(t1,t2,r). We use, from the beginning, the

temporal gauge where the scalar potential is zero � = 0 with
an additional constraint that in equilibrium, the vector potential
is time independent and satisfies ∇ · A = 0.

In dirty superconductors, the matrix ǧ obeys the Usadel
equation,

{τ3∂t ,ǧk}t = Dk∂̂r(ǧk ◦ ∂̂rǧk) + [Ĥk,ǧk]t − i[	̌ph,ǧk]t . (4)

Here, τ1,2,3 are Pauli matrices in Nambu space, Dk

is the diffusion constant, and Ĥk(r,t) = i
̂k , where

̂k(t) = i|
k|τ2e

−iθkτ3 is the gap operator in the kth
band. We define the commutator operator as [X,g]t =
X(t1)g(t1,t2) − g(t1,t2)X(t2), similarly for anticommutator
{,}t . The symbolic product operator is given by (A ◦
B)(t1,t2) = ∫

dtA(t1,t)B(t,t2). In Eq. (4), the covariant dif-
ferential superoperator is defined by

∂̂rĝk = ∇ĝk − ie[τ3 A,ĝk]t .

The gap in each band is determined by the self-consistency
equation,


k(t,r) = π

2

∑
j

λkj

(
ĝK

j

)
12(t,t,r). (5)

Here, (ĝK
j )12 is the 12 entry of the Keldysh component in a

band indexed by j and �̂ is the coupling matrix with elements
λkj . Note that symmetry relation ν1λ12 = ν2λ21 is satisfied,
where νk is the density of states. The electric current density
is given by

j (t,r) = πe

2

∑
k

νkDkTr(ǧk ◦ ∂̂r ǧk)K (t,t,r). (6)

The Keldysh-Usadel equation (4) is complemented by the
normalization condition (ǧk ◦ ǧk)(t1,t2) = δ̌(t1 − t2), which
allows one to introduce parametrization of the Keldysh
component in terms of the distribution function,

ĝK
k = ĝR

k ◦ f̂ (k) − f̂ (k) ◦ ĝA
k , (7)

f̂ (k) = f
(k)
L τ0 + f

(k)
T τ3. (8)

To proceed, we introduce the mixed representation
in the time-energy domain as follows: gk(t1,t2) =∫ ∞
−∞ gk(ε,t)e−iε(t1−t2)dε/(2π ), where t = (t1 + t2)/2.

We employ the Larkin-Ovchinnikov theory [17,35] to
calculate the force acting on the moving vortex line. In
multiband superconductors, the force is given by a linear
superposition of contributions from different bands [17,35],

Fenv =
∑

k

F(k) + 1

c

∫
d2r B × j (nst), (9)

F(k) = νk

∫
d2r

∫ ∞

−∞

dε

4
Tr

(
ĝnst

k ∂̂r
̂k

)
, (10)

where the covariant differential superoperator is given by
∂̂r
̂k = ∇
̂k − ie[τ3 A,
̂k]. Equations (9) and (10) contain
a nonstationary part of the electric current density j (nst) and
the Keldysh component of a nonstationary Green’s function
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ĝnst
k , which can be expressed through the gradient expansion

as follows:

ĝnst
k = − i

2
∂t

(
ĝR

k + ĝA
k

)
∂εf0 + (

ĝR
k − ĝA

k

)
f

(k)
L

+ (
ĝR

k τ3 − τ3ĝ
A
k

)
f

(k)
T . (11)

Keeping the first-order nonequilibrium terms and neglect-
ing the electron-phonon relaxation in Eq. (4), we obtain a
system of two coupled kinetic equations that determine both
the transverse f

(k)
T and longitudinal f

(k)
L distribution function

components,

∇(
D(k)

T ∇f
(k)
T

) + j (k)
e · ∇f

(k)
L + 2iTr

[(
ĝR

k + ĝA
k

)

̂k

]
f

(k)
T

= ∂εf0Tr
[
τ3∂t 
̂k

(
ĝR

k + ĝA
k

)] − e∂εf0∇ · (
D(k)

T E
)
, (12)

∇(
D(k)

L ∇f
(k)
L

) + j (k)
e · ∇f

(k)
T + 2iTr

[
τ3

(
ĝR

k − ĝA
k

)

̂k

]
f

(k)
T

= −∂εf0Tr
[
∂t 
̂k

(
ĝR

k − ĝA
k

)] − e∂εf0 j (k)
e · E, (13)

where E is the electric field, and the energy-dependent
diffusion coefficients D(k)

T ,L and the spectral charge current j (k)
e

in each band are given by

D(k)
T = DkTr

(
τ0 − τ3ĝ

R
k τ3ĝ

A
k

)
, (14)

D(k)
L = DkTr

(
τ0 − ĝR

k ĝA
k

)
, (15)

j (k)
e = DkTr

[
τ3

(
ĝR

k ∂̂rĝ
R
k − ĝA

k ∂̂rĝ
A
k

)]
. (16)

The detailed derivation of this system is given in the
Appendix. In the simplest case of weak spatial inhomo-
geneities, it coincides with the equations derived by Schön [36]
with the substitution f

(k)
T → f

(k)
T + (θ̇k/2 − e�)∂εf0.

III. LARGE MAGNETIC FIELDS

At large magnetic fields, Hc2 − B � Hc2, we can use
simplifying approximations related to the smallness of the
order parameter |
k| ∝ √

1 − B/Hc2. From the kinetic equa-
tions (12), one can see that nonequilibrium distribution func-
tions are of the order of magnitude f

(k)
L,T ∝ |
k|2. Therefore,

the contribution to the force determined by gnst
k is proportional

to |
k|3, while the second term in Eq. (9) with nonstationary
current jnst is proportional to |
k|2, as will be shown below.
Thus the term (10) can be neglected if the temperature is not
very close to Tc. In the opposite case when 1 − B/Hc2 � 1 −
T/Tc, this term yields a dominating contribution to the force,
resulting in a strong temperature-dependent enhancement of
conductivity [11].

The most efficient way to find jnst is to calculate the total
current and then extract a nonstationary part proportional to
the vortex velocity vL. From Eq. (6), we have

j =
∑

k

eνk

4

∫ ∞

−∞
dε

(
j (k)
e f0 + eED(k)

T

∂f0

∂ε

)
. (17)

The force balance condition yields that the space-averaged net
current (6) is equal to the external transport current, 〈 j〉 =
j tr . In equilibrium, superconducting currents circulate around
stationary vortices so that the net current is zero. Under the

nonequilibrium conditions created by moving vortices, both of
the terms in Eq. (17) provide nonzero contributions. Hereafter,
we will consider isotropic superconductors so that the average
current is codirected with the electric field, 〈 j〉 = σf E. The
flux-flow conductivity is given by the superposition of three
terms, σf = σn + σf l + σst , where σn is a large normal-metal
contribution and the last two terms are given by

σf l =
∑

k

eνk

4E

∫ ∞

−∞

〈
j (k)
e

〉
f0(ε)dε, (18)

σst = −
∑

k

e2νk

4

∫ ∞

−∞

∂
〈
D(k)

T

〉
∂ε

f0(ε)dε. (19)

The term σf l (18) is a conductivity correction generated by
nonequilibrium distortions or fluctuations of the supercon-
ducting order parameter. The similar correction in single-band
superconductors has been calculated in the pioneering works
on the flux-flow conductivity at H ≈ Hc2(T ) [12–14]. Besides
there exists a sizable quasiparticle contribution to the current
given by the second term in Eq. (17), which determines the
conductivity correction σst [13,14]. As can be seen from
Eq. (19), this correction is generated by nonequilibrium
quasiparticles and the superconductivity-induced changes of
the diffusion coefficientD(k)

T − 4Dk as compared to the normal
state which hasD(k)

T = 4Dk . In contrast to σf l , the quasiparticle
contribution σst can be calculated using the static order
parameter distribution.

A. Conductivity correction σ f l

To calculate σf l given by (18), we need to find corrections to
the order parameter fields 
k in a moving Abrikosov lattice. In
single-band superconductors, such corrections were calculated
in Refs. [12,14,15]. The analogous problem in multiband
superconductors cannot be approached using a straightforward
generalization of the single-band solution due to the complex
structure of vortices in multiband superconductors, which are
composite objects consisting of several overlapping fractional
vortices in different bands.

To calculate the structure of the moving vortex lattice
in a two-band superconductor, let us consider the linear
integral-differential system of linearized nonstationary Usadel
equations together with self-consistency equation (5) for the
order parameter,

Dk

2
(∇ − 2ieA)2f

R,A
k ± iεf

R,A
k = i
k, (20)


k =
∑

j

λkj

4

∫ ∞

−∞
dε

[
f R

j − f A
j + i

2

∂2

∂t∂ε

(
f R

j + f A
j

)]

× f0(ε). (21)

To derive the self-consistency Eq. (21), we substituted the
Keldysh component expansion ĝK

k = (ĝR
k − ĝA

k )f0 − i
2 (ĝR

k +
ĝA

k )∂εf0 and integrated the second term by parts. The vector
potential in Eq. (20) describes a uniform magnetic field B =
Hc2 z and a uniform electric field in the x direction so that
A = yHc2x − xEt . It is more convenient for calculations to
remove a nonstationary part of the vector potential by a gauge

224506-3



MIHAIL SILAEV AND ARTJOM VARGUNIN PHYSICAL REVIEW B 94, 224506 (2016)

transform introducing scalar potential � = −Ex. Then the
time derivative in Eq. (21) elongates, ∂t → ∂t + 2ie�.

A periodic vortex lattice moving with the constant velocity
vL = vL y is described by the following solution of Eqs. (20)
and (21):


k =
∑

Cne
inp(y−vLt)
̃k(x − nx0), (22)

f
R,A
k =

∑
Cne

inp(y−vLt)f̃
R,A
k (x − nx0), (23)

where |Cn| = 1, x0 = p/(2eHc2) and the parameter p is
determined by the lattice geometry. The vortex velocity
should satisfy vL = −E/Hc2 in order for the solution to keep
magnetic translation symmetry in the x direction. Substituting
ansatz (22) into Eq. (20), we get

Dk

2
L̂xf

R,A
k ± iεf

R,A
k = i
k, (24)

where L̂x = ∂2
x − (2eHc2)2x2. One can see that the principal

difference with a single component is due to the different
diffusion constants which do not allow the solution to have a
form of shifted zero Landau level (LL) eigenfunction. Instead,
we should search it as a superposition of

f̃
R,A
k = a

R,A
k0 �0(x) + a

R,A
k1 �1(x), (25)


̃k = bk0�0(x) + bk1�1(x), (26)

where �0(x) = exp(−x2/2L2
H ) and �1(x) = x�0(x) sat-

isfy L̂x�0 = −�0/L
2
H and L̂x�1 = −3�1/L

2
H . Here LH =

1/
√

2eHc2. Since the admixture of the first LL is proportional
to a small parameter E/Hc2, we can determine the coefficients
a0, b0 using a stationary equation (20),

a
R,A
k0 = bk0/(iqk ± ε), (27)

a
R,A
k1 = bk1/(3iqk ± ε), (28)

where qk = eHc2Dk . Substituting the relation (27) to the self-
consistency Eq. (21) yields a homogeneous linear equation,

Âb0 = 0, (29)

Â = �̂−1 − τ0[G0 − ln(t) + ψ(1/2)] + ψ(1/2 + ρ̂), (30)

where G0 is the minimal positive eigenvalue of the inverse
coupling matrix, t = T/Tc, (ρ̂)ik = δikρk , and ρk = qk/2πT .
The solvability condition detÂ = 0 determines the second
critical field of a multiband superconductor. The amplitudes
bk1 of the first LL admixture are determined substituting
Eq. (28) into the self-consistency Eq. (21),

b1 = ieE

2πT
Â−1

1 ψ ′(1/2 + ρ̂)b0,

Â1 = Â + ψ(1/2 + 3ρ̂) − ψ(1/2 + ρ̂). (31)

The above relation between components of vectors b1 and
b0 characterizes the splitting of the composite vortex into
separate constituents. Generally, splitting is present for any
nondegenerate multiband superconductor having different
diffusivities and coupling constants in the bands. By increasing

the strength of the electric field, distortion of the vortex lattice
becomes more evident; see Fig. 1.

The moving lattice distortions are induced by the first LL
admixture in Eq. (31), which generates a finite net current
perpendicular to the vortex velocity. From Eq. (18), we obtain

σf l =
∑

k

〈|
k|2〉
4πT eE

σk

ρk

Im(b∗
k0bk1)

|bk0|2 [ψ(1/2 + 3ρk) − ψk], (32)

where ψk = ψ(1/2 + ρk) and the average order parameter
amplitude is given by 〈|
k|2〉 = √

π |bk0|2LH/x0.

B. Conductivity correction σst

To calculate the second-term contribution in (6) giving the
conductivity correction σst (19), we need to find out how
the diffusion coefficients D(k)

T are modulated by the vortex
lattice. For this, we determine spectral functions ĝ

R,A
k using the

linearized Usadel Eq. (20) supplemented by the normalization
condition (ĝR,A

k )2 = 1:

ĝR
k =

[
1 + |
k|2

2(iqk + ε)2

]
τ3 + i|
k|τ2e

−iϕkτ3

iqk + ε
, (33)

ĝA
k = −

[
1 + |
k|2

2(iqk − ε)2

]
τ3 + i|
k|τ2e

−iϕkτ3

iqk − ε
. (34)

Substituting these expressions into Eq. (14), we get

D(k)
T = 2Dk

[
1 + |
k|2

2qk(qk + iε)
− |
k|2

2(qk + iε)2
+ c.c.

]
. (35)

Using Eq. (35), we evaluate the conductivity correction (19)
as follows:

σst =
∑

k

σk〈|
k|2〉
8π2T 2

(
ψ ′

k

ρk

+ ψ ′′
k

)
, (36)

where ψ
(n)
k = ψ (n)(1/2 + ρk) and the partial conductivities are

σk = 2e2νkDk . One can see that the quasiparticle current (36)
is given by the superposition of two single-band contributions.

C. Slope of the flux-flow resistivity at H = Hc2(T )

We have found that both the conductivity corrections σf l

and σst , Eqs. (32) and (36), respectively, are proportional to
the average order parameter 〈|
k|2〉, which should be ex-
pressed through the magnetic field. The average gap functions
〈|
k|2〉 = 
2a2

k have a common amplitude which have been
calculated in Ref. [24],


 =
(

eT δB

2βL

∑
k νka

2
kDkψ

′
k∑

k νka
4
kσkDkψ

′2
k κ̃2

k

)1/2

, (37)

where δB = Hc2 − B and βL is an Abrikosov parameter equal
to 1.16 for a triangular lattice [37]. The parameters κ̃k , which
in the single-band case characterize the magnetization slope at
Hc2(T ) [38,39], are given by

κ̃k =
( −ψ ′′

k

16πσkDkψ
′2
k

)1/2

. (38)

The coefficients ak are determined unambiguously by Eq. (29)
supplemented by a normalization condition

∑
k a2

k = 1, so that
ak = |bk0|/

√∑
k |bk0|2.
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FIG. 1. Distorted lattices of fractional vortices moving along the y direction in a two-band superconductor MgB2 with D2 = 0.05D1 and
the pairing constants mentioned in the text. The temperature is T = 0.1Tc. The transport current is applied along x. The magnitude of the
electric field is normalized by Tc/(eξ1), where ξ1 = √

D1/Tc. The length is normalized to the triangular lattice spacing a = 2LH (π/
√

3)1/2.
(a),(d) Density levels of 
1 (
2) in upper (lower) plots for E = 0.2,0.4. Detailed density levels of 
1, 
2 are shown for (b),(d) E = 0.2 and
(e),(f) E = 0.4. (b),(c),(e),(f) The vortex velocity direction vL is shown by arrows.

Substituting the order parameter amplitude (37) to the
expressions for conductivity corrections (18) and (19), we
can find the flux-flow conductivity slope at B = Hc2(T ) (2),
which can by written in the form S = −(Hc2/σn)dσf /dB. In
contrast to the dirty single-band superconductors which are
characterized by a universal S = S(T ) curve, the multiband
superconductors have a significant variation of S as a function
of the ratio between band diffusivities D1/D2. The sequences
of S(T ) dependencies for different values of D1/D2 are
shown in Fig. 2 for the two-band superconductor with
pairing constants corresponding to the weak-coupling model
of MgB2 [40]. For reference, the universal single-band curve
is shown by the dashed line in Fig. 2(a).

By applying our model at elevated temperatures, we
neglect interband impurity scattering assuming that it is much
smaller compared to the orbital depairing energy eDkHc2.
For the same reason, we omit scattering at paramagnetic
impurities and inelastic electron-phonon relaxation [17] which
are known to be important near Tc but are negligible at lower
temperatures.

1. Limiting values of S at temperatures close to Tc

Qualitatively, the significant deviations of S(T ) depen-
dencies from the single-band case can be understood by
analyzing the limiting case when 1 − T/Tc � 1 but the field
is sufficiently close to the critical one so that 1 − T/Tc �
1 − B/Hc2. In this case, B is small so that ρk → 0 and
one can use the asymptotic values of functions ψ ′

k = π2/2,
ψ ′′

k = −14ζ (3). As a result, the splitting of fractional vortex

sublattices vanishes. As can be seen from Eqs. (31), to the first
order by ρk , we have

b1 = ieE

4πT

TrÂ∑
k Akkρk

b0. (39)

This expression means that current-driven fractional vortices
in different bands shift by the same amount.

0 0.5 1
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1
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T/T
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4

T/T
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S

(b)

FIG. 2. Slope of the flux-flow resistivity S = −(H/σn)dσf /dB

at B = Hc2(T ) as a function of temperature T for different values
of the ratio between band diffusivities d = D2/D1. (a) Solid curves
from top to bottom: d = 0.05, 0.2, 0.5, 1. The dashed line shows
a universal single-band behavior [13,14] obtained for the stronger-
superconductivity band in the limit when interband coupling vanishes.
(b) Curves from top to bottom: d = 1, 2, 4, 20. The pairing parame-
ters are λ11 = 0.101, λ22 = 0.045, λ12 = 0.034, λ21 = 0.026 [40].
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The conductivity corrections are given by

σf l = TrÂ∑
k Akkρk

∑
k

σk〈|
k|2〉
16T 2

, (40)

σst =
∑

k

σk〈|
k|2〉
16T 2ρk

. (41)

One can see that in contrast to the single-band case [13], these
contributions are not equal if the coupling constants are not
degenerate, λ11 �= λ22. From Eqs. (37) and (38), we obtain the
conductivity slope at T = Tc,

S = Sc

∑
k νka

2
kDk

2
∑

k νka
4
k

∑
k

σka
2
k

σn

(
1

Dk

+ TrÂ∑
j AjjDj

)
, (42)

where Sc = π4/(14ζ (3)βL) ≈ 5 is the universal value of
S(T = Tc) in the single-component case. Let us consider
a two-band system and assume that λ11 > λ22 and λ12 �
λ11 − λ12, which qualitatively corresponds to the pairing in
MgB2. Then, the limiting cases of Eq. (42) are as follows:

S =
(

1 + A22

2A11

)
Sc for D1 � D2, (43)

S = λ2
21Sc

2(λ11 − λ22)2
for D2 � D1. (44)

These expressions are in good agreement with the behavior of
the curves S(T ) for MgB2. As shown in Fig. 2(a), in the limiting
case D1 � D2 (the magenta uppermost curve), the value of
S(Tc) is a bit larger than for the single-band case, exactly
as described by Eq. (43) because in this case A22/A11 ≈
(λ11 − λ22)2/(λ12λ21). In the opposite case D2 � D1, shown
in Fig. 2(b) (magenta lowermost curve), the value S(Tc) � Sc

as given by Eq. (44). Quite amazingly, the deviations of S(T )
from the single-band case are significant even if one of the
diffusivities dominates, which means that in the normal state,
the current flows mostly in one of the bands. At the same
time, the superconducting corrections σst and σf l are strongly
renormalized by multiband effects, even in the limiting cases
of strong disparity between the diffusivities.

2. Limiting values of S: The case of decoupled bands

To understand the qualitative features of the flux flow at high
fields, it is instructive to consider the case of a superconductor
with two decoupled bands characterized by different critical
temperatures Tc1,2. In this case, superconductivity at high
fields survives only in one of the bands which has the
highest critical field, Hc2 = max H

(k)
c2 . Correspondingly, the

resistivity slope calculated for this particular band coincides
with the universal single-band result [13]. However, even
in this case, the overall S is still modified by multiband
effects. Indeed, its definition (2) contains the total normal-state
conductivity determined by the contribution of all bands,
including nonsuperconducting ones.

Let us consider the analytically tractable low-temperature
limit when the single-band critical field is given by H

(k)
c2 ∝

Tck/(eDk) [41–43]. In this case, we obtain S = S0σk/(σ1 +
σ2), where k is the component with larger critical field
and S0 = 2/βL ≈ 1.72 is the universal low-temperature limit
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FIG. 3. The flux-flow resistivity slope S at high fields (2) and
the inverse slope β at low fields (1) in a two-band superconductor
as functions of the diffusivity ratio D2/D1. The temperature is T =
0.05Tc. The panels correspond to the models of (a),(c) MgB2 [40]
and (b),(d) V3Si [45] with the pairing constants mentioned in the text.
Open circles in (a),(c) mark the parameters used to fit the experimental
curve for MgB2 in Fig. 4(a). Open circles and crosses in (b),(d) show
the parameters used to extrapolate magnetoresistance curves for V3Si
in Fig. 4(b).

S(T = 0) in the single-component case. It is instructive to
consider asymptotic behavior of S as a function of the
diffusivity ratio d = D2/D1. When d < Tc2/Tc1, we have
S = S0ν2d/(ν1 + ν2d), and we have S = S0ν1/(ν1 + ν2d) in
the opposite case when d > Tc2/Tc1. For noninteracting bands,
the transition between these regimes is abrupt, resulting in the
jump on S(d) dependence at d = Tc2/Tc1. The maximal value
of S which can be obtained does not exceed S0.

The origin of a nonmonotonic S(d) dependence is deter-
mined by the behavior of Hc2 in multiband systems. At small d,
the critical field is determined by the second band which has the
smallest diffusivity, Hc2 = H

(2)
c2 . Then, with increasing d, the

superconductivity changes the host band so that Hc2 = H
(1)
c2 .

This transition is an abrupt one for noninteracting bands, but
a finite interaction makes it the gradual one, washing out the
cusp singularity. However, coupling does not eliminate the
nonmonotonicity and the asymptotic behavior of S(d) remains
the same, as shown in Fig. 3.

IV. SMALL MAGNETIC FIELDS B � Hc2 AND LOW
TEMPERATURES T � Tc

A. General formalism

In dilute vortex configurations at temperatures much be-
low Tc, the sizable quasiparticle density exists only inside
vortex cores where the superconducting order parameter is

224506-6



VORTEX MOTION AND FLUX-FLOW RESISTIVITY IN . . . PHYSICAL REVIEW B 94, 224506 (2016)

suppressed. In this regime, the deviations from equilibrium in
each band are localized in vortex cores and are significant only
at energies much smaller than the bulk energy gaps. Following
Kopnin-Gor’kov theory [9], spectral functions ĝ

R,A
k can be

parametrized at ε = 0 as follows:

ĝR
k = τ3 cos θk + τ2 sin θk,

ĝA
k = −τ3 cos θk + τ2 sin θk. (45)

Here we assume that the order parameter vortex phase is
removed by gauge transformation. The distribution function
can be written in the form

f
(k)
T = f̃

(k)
T vL∂εf0 sin ϕ, (46)

where ϕ is a polar angle with respect to the vortex center. The
amplitude f̃

(k)
T is a function of the radial coordinate determined

by the following kinetic equation:(
d2

dr2
+ 1

r

d

dr
− 1

r2

)
f̃

(k)
T = 
k sin θk

Dk

(
2f̃

(k)
T − 1

r

)
, (47)

with boundary conditions f̃
(k)
T (r = 0,∞) = 0. The detailed

derivation of Eq. (47) is given in the Appendix.
The viscous friction force acting on individual moving vor-

tices can be written as Fenv = −ηvL. The viscosity coefficient
η can be calculated substituting spectral functions (45) and
the distribution function (46) into the expansion (11) and the
general expression for the force (10). In this way, we obtain

η =
∑

k

π�νk(αk + γk),

αk =
∫ ∞

0
drr

∂
k

∂r

∂ sin θk

∂r
,

γk =
∫ ∞

0
dr
k sin θk

(
1

r
− 2f̃

(k)
T

)
. (48)

To calculate the gap profiles and spectral functions, we use
a stationary self-consistency equation written in the form


i(r) =
N∑

k=1

λik

[

kG0 + 2πT

∞∑
n=0

(
sin θM

k − 
k

ωn

)]
, (49)

where G0 = (Tr�̂ −
√

Tr�̂2 − 4Det�̂)/(2Det�̂) − ln(t) and
�̂ = λij is the coupling matrix. In Eq. (49), the summation runs
over Matsubara frequencies ωn = (2n + 1)πT . The angle θM

k

parametrizes imaginary-frequency Green’s functions similar
to Eqs. (45). It is determined by the Usadel equation,

1

r

d

dr

(
r
dθM

k

dr

)
− sin

(
2θM

k

)
2r2

+ 2
k

Dk

cos θM
k − 2ω

Dk

sin θM
k = 0,

(50)

supplemented by the boundary conditions

θM
k (r = 0) = 0,

θM
k (r = ∞) = sin−1

[

k/

(

2

k + ω2
)1/2]

. (51)

One should put ω = ωn to obtain solutions at the specific
Matsubara frequency. The angle θk parametrizing zero-energy
spectral functions (45) is given by the same Eqs. (50) and (51)
with ω = 0.

In general, the flux-flow conductivity can be expressed
through the vortex viscosity (48) as follows [9]:

σf = η/(Bφ0), (52)

where B is the average magnetic induction and φ0 is a magnetic
flux quantum. Introducing normal-state Drude conductivity
σn = ∑

k σk , we rewrite flux-flow conductivity (52) in the form

σf = βσnHc2/B, (53)

β = 1

2eHc2

∑
k νk(αk + γk)∑

k νkDk

. (54)

In Sec. V, we analyze parameter β for several known multiband
superconducting compounds.

B. Limiting values of β: The case of decoupled bands

In multiband superconductors, the coefficient β can change
a lot depending on the ratio of the diffusion constants and
pairing potentials in different bands. Below we investigate
the maximal accessible values and the asymptotic behavior of
β in superconductors with decoupled bands characterized by
different critical temperatures Tck . In this case, one can adopt
single-band value β0 calculated in Ref. [9] to obtain

β = β0 min

(
Dk

Tck

)
ν1Tc1 + ν2Tc2

ν1D1 + ν2D2
. (55)

Here we have used the same single-band expression for Hc2 =
max H

(k)
c2 as in Sec. III C 2.

It is instructive to consider the asymptotic behavior of β

as a function of the diffusivity ratio d = D2/D1. When d <

Tc2/Tc1, we have β = β0d(ν2 + ν1Tc1/Tc2)/(ν1 + ν2d), and
β = β0(ν1 + ν2Tc2/Tc1)/(ν1 + ν2d) in the opposite case when
d > Tc2/Tc1. For noninteracting bands, the transition between
these regimes is abrupt, resulting in the sharp maximum β =
β0 with a cusp at d = Tc2/Tc1. The transition results from
switching of the superconductivity at Hc2 between different
bands. If there is a finite interband coupling, the cusp in the
behavior of β changes to a smooth maximum, but the maximal
value cannot be remarkably enhanced. As a result, parameter
β in the two-band scenario appears to be always limited by its
single-band value.

V. EXAMPLES AND COMPARISON WITH EXPERIMENTS

Having in hand general results, we can calculate the
flux-flow resistivity in particular for multiband supercon-
ducting compounds. For that we choose MgB2 and V3Si,
which have been described by the two-band weak-coupling
models [25,40,44,45]. Moreover, these compounds can have
a rather large impurity scattering rate to fit the dirty-limit
conditions [25,44].

Basically, the only input parameters needed to calculate the
flux-flow resistivity are the pairing constants which we choose
as follows: (i) MgB2 with λ11 = 0.101, λ22 = 0.045, λ12 =
0.034, λ21 = 0.026 [40] and (ii) V3Si with λ11 = 0.26, λ22 =
0.205, λ12 = λ21 = 0.0088 [45]. These values are consistent
with the weak-coupling superconductivity model. They were
obtained by fitting the temperature dependencies of superfluid
density and specific heat for MgB2 [40] and the microwave
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response for V3Si [45]. Note that the parameters of V3Si
correspond to the case of weakly interacting superconducting
bands since the interband pairing is much weaker than the
intraband one, λ12 � λ11,λ22. In that sense, it is drastically
different from the model of MgB2, where λ12 has the same
order of magnitude as λ11 and λ22.

For such parameters, we apply the results of Secs. III C
and IV to find the dependencies S(d) and β(d), where d =
D2/D1 is the ratio of diffusivities in the two bands. The results
are shown in Fig. 3. On can see that the dependencies are
qualitatively similar for the two sets of pairing constants. The
nonmonotonicity and asymptotic behavior of both S and β

were explained in Secs. III C 2 and IV B using a model of
noninteracting bands. As was discussed above, the origin of a
nonmonotonic behavior is determined by the multiband effects
in the near-Hc2 physics. In that regime, by increasing the ratio
D2/D1, one makes the superconductivity change the host band.
This directly affects the resistive states at high fields (i.e., the
S parameter), but also indirectly the low-field parameter β (1)
because there the magnetic field dependence is normalized
by Hc2.

With the help of calculated parameters S and β, we can
reconstruct by extrapolation the flux-flow resistivity curve
for the entire range of magnetic field and compare it with
the experimental results. In Fig. 4(a), we show by dashed
lines the slopes that give the best fit of the approximated
flux-flow resistivity curve for MgB2 at low temperatures
T � Tc, adopted from Ref. [6]. The slopes were calculated
using the two-band model for MgB2 described above. The
fitting parameter was the ratio of diffusivities chosen to be
D2/D1 = 2.5, marked in Figs. 3(a) and 3(c) by open circles.

To understand the possible variations in the shape of the
curve ρf (B), we consider the model corresponding to V3Si
and consider two characteristic values of D2/D1 = 2 and
0.5. For such parameters, the values of S and β are shown
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FIG. 4. (a) Solid line: the approximate flux-flow resistivity as
a function of magnetic induction B adopted from the experimental
curve for MgB2 [6]. Dashed lines show theoretical slopes β = 0.406
and S = 0.57 corresponding to D2/D1 = 2.5 for the same model
as in Figs. 3(a) and 3(c), where these slopes are shown by circles.
(b) The slopes of resistivity corresponding to D2/D2 = 0.5 (dash-
dotted line) and D2/D1 = 2 (dashed line) for the same model of
V3Si as in Figs. 3(b) and 3(d). The solid curves show calculated
slopes. The dashed and dash-dotted lines show cubic interpola-
tion between the low- and high-field regimes. The temperature is
T = 0.05Tc in both panels.

by open circles and crosses in Figs. 3(b) and 3(d). One can
see that one of these points is in the regime qualitatively
similar to the one considered above for MgB2. Indeed, the
cubic extrapolation of the ρf (B) dependence shown by a
red dashed curve is qualitatively similar to the approximated
experimental curve for MgB2; see Fig. 4. On the other hand,
the point D2/D1 = 0.5 belongs to the region where S > 1,
which results in a different behavior, shown in Fig. 4(b) with
green color. Experimental data for V3Si [46] demonstrate the
flux-flow resistivity curve between the two considered cases;
however, more measurements are needed to cover the whole
range of magnetic fields. Note that the green dash-dotted curve
in Fig. 4(b) is quite close to the usual BS linear dependence
(black dotted curve), although it deflects slightly, changing its
shape from the concave at small fields to the convex one at
large fields. By slightly varying the ratio D2/D1 around 0.5,
one can achieve a better approach to the BS line. At the same
time, since β does not much exceed its single-band limit value,
it is impossible to get a convex curve already at small fields
since that would require β > 1 which we did not obtain for
the models considered in the present work.

VI. SUMMARY

To summarize, we have developed a theoretical framework
to study nonequilibrium processes in multiband supercon-
ductors and applied it to calculate flux-flow resistivity of
such systems in the dirty limit with a high concentration of
nonmagnetic impurities. We have considered both the regions
of high and low magnetic fields. To calculate the conductivity
in the former case, we have derived the solution characterizing
moving vortex lattices, which reveals the effect of splitting
into sublattices of fractional vortices. The maximal value of the
flux-flow resistivity slope S at high fields is shown to be close to
the universal single-band limit. At the same time, the minimal
value can be arbitrarily small, proportional to the disparity of
diffusivities in different bands S ∝ min(D1,2)/ max(D1,2).

We calculated the parameter β which is the inverse slope
of the flux-flow magnetoresistance curve at low magnetic
field. For different models of multiband superconductors, we
have found that the maximal possible value of β is close
to the universal single-band constant β0 found by Kopnin
and Gor’kov [47]. For large disparity of diffusivities, it has
the asymptotic behavior β ∝ min(D1,2)/ max(D1,2), which is
similar to that of parameter S.

We demonstrated that multiband superconductors exhibit
an unconventional generic regime which is characterized
by small values of parameters β and S and corresponds
to the concave flux-flow magnetoresistance curves ρf (B).
Several recent experiments [1–6] confirm that behavior. For
MgB2, we have obtained a quantitative agreement with
experimental results [6], choosing the ratio of diffusivities
in two bands, D2/D1 = 2.5. At the same time, we have
shown that by varying the parameter D2/D1, it is possible
to obtain regimes when the curve ρf (B) is quite close to the
single-band Bardeen-Stephen law. Therefore, the suggested
theory naturally explains quite diverse experimental data on
the flux-flow resistivity in different multiband superconducting
compounds.
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APPENDIX : DERIVATION OF KINETIC EQUATIONS AND
FORCES ACTING ON THE MOVING VORTEX LINE

1. General formalism

The quasiclassical GF matrix in band k is defined as

ǧk =
(

ĝR
k ĝK

k

0 ĝA
k

)
, (A1)

where gK
k is the (2 × 2 matrix) Keldysh component and ĝ

R(A)
k

is the retarded (advanced) GF. In a diffusive superconducting
wire with band diffusion constants Dk , the matrix ǧk obeys the
Usadel equation,

{τ3∂t ,ǧk}t = Dk∂̂r(ǧk ◦ ∂̂rǧk) + [Ĥk,ǧk]t − i
[
	̌

ph

k ,ǧk

]
t
, (A2)

where Ĥk(r,t) = i
̂k and 
̂k(t) = |
k|σ3τ3τ1e
−iϕkτ3 is the

gap operator and ϕk is the gap phase. It is convenient to
remove the spin dependence of the gap by transformation
ǧ = Ǔ ǧnewǓ+, where

Ǔ = exp[iπ (σ3τ3 − σ0τ3 − σ3τ0)/4], (A3)

which leads to


̌new
k = Ǔ+
̌kǓ = i|
k|τ2e

−iϕkτ3 , (A4)

so that Ĥk(r,t) = i
̂new
k . Note that we use, from the begin-

ning, the temporal gauge where the scalar potential is zero
� = 0, with an additional constraint that in equilibrium the
vector potential is time independent and satisfies ∇ · A = 0.
Throughout the derivation, we assume kB = � = c = 1.

The covariant differential superoperator in Eq. (A2) is given
by

∂̂rĝk = ∇ĝk − ie[τ3 A.ĝk]t .

Here the commutator operator is defined as [X,g]t =
X(t1)g(t1,t2) − g(t1,t2)X(t2), similarly for anticommutator
{X,g}t . We also introduce the symbolic product operator
(A ◦ B)(t1,t2) = ∫

dtA(t1,t)B(t,t2). Equation (A2) is com-
plemented by the normalization condition (ǧk ◦ ǧk)(t1,t2) =
δ̌(t1 − t2), which allows one to introduce parametrization of
the Keldysh component in terms of the distribution function,

ĝK
k = ĝR

k ◦ f̂ (k) − f̂ (k) ◦ ĝA
k , (A5)

f̂ (k) = f
(k)
L τ0 + f

(k)
T τ3. (A6)

Here we will neglect the electron-phonon relaxation given
by the last term in Eq. (A2). Such approximation is valid
provided the temperature is not too close to Tc. In this case,
the components of the Keldysh-Usadel given by Eq. (A2) read
as{
τ3∂t ,ĝ

R(A)
k

}
t
= Dk∂̂r

(
ĝ

R(A)
k ◦ ∂̂rĝ

R(A)
k

) + [
Ĥk,ĝ

R(A)
k

]
t
,{

τ3∂t ,ĝ
K
k

}
t
= Dk∂̂r

(
ĝR

k ◦ ∂̂rĝ
K
k + ĝK

k ◦ ∂̂rĝ
A
k

) + [
Ĥk,ĝ

K
k

]
t
.

(A7)

To obtain the kinetic equation, we substitute parametriza-
tion (8) to write

∂̂r(ǧk ◦ ∂̂rǧk)K = ∂̂r
(
∂̂rf̂

(k) − ĝR
k ◦ ∂̂rf̂

(k) ◦ ĝA
k

)
+ ĝR

k ◦ ∂̂rĝ
R
k ◦ ∂̂rf̂

(k) − ∂̂rf̂
(k) ◦ ĝA

k ◦ ∂̂rĝ
A
k

+ ∂̂r
(
ĝR

k ◦ ∂̂rĝ
R
k

) ◦ f̂ (k)

− f̂ (k) ◦ ∂̂r
(
ĝA

k ◦ ∂̂rĝ
A
k

)
. (A8)

To derive this expression, we used the associative property of
differential superoperator ∂̂r(g1 ◦ g2) = ∂̂rg1 ◦ g2 + g1 ◦ ∂̂rg2.
To get rid of the last two terms, we subtracted the spectral
components of Eq. (A2) to obtain finally the equation

ĝR
k ◦ (τ3∂t ′ f̂

(k) + ∂t2 f̂
(k)τ3) − (

τ3∂t1 f̂
(k) + ∂t ′ f̂

(k)τ3
) ◦ ĝA

k

= Dk∂̂r
(
∂̂rf̂

(k) − ĝR
k ◦ ∂̂rf̂

(k) ◦ ĝA
k

)
+Dk

(
ĝR

k ◦ ∂̂rĝ
R
k ◦ ∂̂rf̂

(k) − ∂̂rf̂
(k) ◦ ĝA

k ◦ ∂̂rĝ
A
k

)
+ ĝR

k ◦ [Ĥk,f̂
(k)]t − [

Ĥk,f̂
(k)

]
t
◦ ĝA

k , (A9)

where t ′ is the integration variable.
To proceed, we introduce the mixed representa-

tion in the time-energy domain as follows: g(t1,t2) =∫ ∞
−∞ g(ε,t)e−iε(t1−t2) dε

2π
, where t = (t1 + t2)/2. By keeping the

first-order terms in frequency, we get, for Fourier transforma-
tions,

[Ĥ ,ĝ]t = [Ĥ ,ĝ] − i

2
{∂t Ĥ ,∂εĝ}, (A10)

[Aτ3,ĝ]t = A[τ3,ĝ] − i

2
∂t A{τ3,∂εĝ}, (A11)

∂̂rf̂
(k) = ∇f̂ (k) + eE∂εf0τ3, (A12)

where E = −∂t A is the electric field in the temporal gauge
and f0 = tanh ε/(2T ) is the equilibrium distribution. To the
first order in frequency and deviation from equilibrium, we
also have

∂̂r
(
∂̂rf̂

(k) − ĝR
k ◦ ∂̂rf̂

(k) ◦ ĝA
k

)
= ∇(∇f (k) − ĝR

k ∇f (k)ĝA
k

)
+ e∂εf0∇ · [

E
(
τ3 − ĝR

k τ3ĝ
A
k

)] + ie
[

Aτ3,ĝ
R
k ∇f̂ (k)ĝA

k

]
+ ie2∂εf0(A · E)

[
τ3,ĝ

R
k τ3ĝ

A
k

]
.

The last two terms do not contribute to the kinetic equation
since they are traced out.

In the mixed representation, the kinetic equation (A9) has
the following gauge-invariant form:

ĝR
k τ3∂t f̂

(k) − τ3∂t f̂
(k)ĝA

k

= Dk∇
(∇f (k) − ĝR

k ∇f (k)ĝA
k

)
+Dk

(
ĝR

k ∂̂rĝ
R
k ∇f̂ (k) − ∇f̂ (k)ĝA

k ∂̂rĝ
A
k

) + ĝR
k [Ĥk,f̂

(k)]

− [Ĥk,f̂
(k)]ĝA

k − i∂εf0
(
ĝR

k ∂t Ĥk − ∂t Ĥkĝ
A
k

)
+ eDk∂εf0∇ · [

E
(
τ3 − ĝR

k τ3ĝ
A
k

)]
+ eDk∂εf0 E · (

ĝR
k ∂̂rĝ

R
k τ3 − τ3ĝ

A
k ∂̂rĝ

A
k

)
, (A13)

where we omit the terms which will be traced out later. The
last two terms in Eq. (A13) are the sources of disequilibrium.
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Multiplying by τ3 and taking the trace, we obtain

∇(
D(k)

T ∇f
(k)
T

) + j (k)
e · ∇f

(k)
L + 2iTr

[(
ĝR

k + gA
k

)

̂k

]
f

(k)
T

= ∂εf0Tr
[
τ3∂t 
̂k

(
ĝR

k + ĝA
k

)] − e∂εf0∇ · (
D(k)

T E
)
,

(A14)

where the energy-dependent diffusion coefficients and the
spectral charge currents are

D(k)
T = DkTr

(
τ0 − τ3ĝ

R
k τ3ĝ

A
k

)
, (A15)

j (k)
e = DkTr

[
τ3

(
ĝR

k ∂̂rĝ
R
k − ĝA

k ∂̂rĝ
A
k

)]
. (A16)

Analogously, taking just the trace of Eq. (A13), we obtain

∇(
D(k)

L ∇f
(k)
L

) + j (k)
e · ∇f

(k)
T + 2iTr

[
τ3

(
ĝR

k − gA
k

)

̂k

]
f

(k)
T

= −∂εf0Tr
[
∂t 
̂k

(
ĝR

k − ĝA
k

)] − e∂εf0
(

j (k)
e · E

)
, (A17)

where D(k)
L = DkTr(τ0 − ĝR

k ĝA
k ). Here we took into account

that Tr(ĝR
k τ3ĝ

A
k ) = 0 because of the relation ĝA

k = −τ3ĝ
R+
k τ3

and the general form of the equilibrium spectral function,
ĝR

k = g
(k)
3 τ3 + g

(k)
2 τ2e

−iϕkτ3 .

2. The low-temperature limit T � Tc

At low temperatures, the deviations from equilibrium
are localized in the vortex core and are significant only at
small energies. Therefore, following Kopnin-Gor’kov theory,
we can use the spectral functions ĝ

R,A
k calculated at ε =

0 when it is possible to use θ parametrization in each
band,

ĝR
k = τ3 cos θk + τ2e

−iτ3ϕk sin θk, ĝA
k = −τ3ĝ

R+
k τ3. (A18)

In this case, we can simplify the kinetic equation with the
help of the following identities: D(k)

T = 4Dk and

2iTr
[(

ĝR
k + ĝA

k

)

̂k

] = −8|
k| sin θk, (A19)

Tr
[
τ3∂t 
̂k

(
ĝR

k + ĝA
k

)] = 4(vL · ∇ϕk)|
k| sin θk, (A20)

where we took into account that for the vortex moving
with constant velocity, ∂t
k = −vL · ∇
k . Hence the kinetic
equation becomes

Dk∇2f
(k)
T = [

2f
(k)
T + ∂εf0(vL∇ϕk)

]|
k| sin θk. (A21)

To calculate the force Fenv (9), we use the expansion (11)
substituting there the spectral functions in the form (A18) to
obtain

Tr
(
ĝnst

k ∂̂r
̂k

) = −2∂εf0[(vL∇ sin θk)]∇|
k| − 2 sin θk|
k|
× [

2f
(k)
T + ∂εf0(vL∇ϕk)

]∇ϕk. (A22)

For small magnetic fields B � Hc2, the last term in Eq. (9)
can be neglected so that the force is given by

Fenv = −
∑

k

νk

2

∫
d2rdε

{
∂εf0∇|
k|(vL∇ sin θk)

+ |
k| sin θk

[
2f

(k)
T + ∂εf0(vL∇ϕk)

]∇ϕk

}
. (A23)

We can simplify the equations further by taking into
account the common phase ϕ1,2 = ϕ so that (vL∇ϕ) =
−vL sin ϕ/r and (vL∇|
k|) = vL cos ϕ∂r |
k|. By factorizing
the angular dependence of the distribution function f

(k)
T =

f̃
(k)
T vL∂εf0 sin ϕ, the force becomes Fenv = −ηvL, where the

viscosity coefficient is given by (48).
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