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Majorana zero modes (MZMs) have been predicted to exist in a topological insulator (TI)/superconductor (SC)
heterostructure. A recent spin-polarized scanning tunneling microscope (STM) experiment [Sun et al., Phys. Rev.
Lett. 116, 257003 (2016)] has observed a spin-polarization dependence of the zero bias differential tunneling
conductance at the center of a vortex core. Here, we consider a helical electron system described by a Rashba
spin-orbit coupling Hamiltonian on a spherical surface with an s-wave superconducting pairing due to proximity
effect. We examine the in-gap excitations of a pair of vortices with one at the north pole and the other at the south
pole. While the MZM is not a spin eigenstate, the spin wave function of the MZM at the center of the vortex core,
r = 0, is parallel to the magnetic field, and the local Andreev reflection of the MZM is spin selective, namely,
occurs only when the STM tip has the spin polarization parallel to the magnetic field, similar to the case in a
one-dimensional nanowire [He et al., 112, 037001 (2014)]. The total local differential tunneling conductance
consists of the normal term proportional to the local density of states and an additional term arising from the
Andreev reflection. We also discuss the finite size effect, for which the MZM at the north pole is hybridized
with the MZM at the south pole. We apply our theory to examine the recently reported spin-polarized STM
experiments and show good agreement with the experiments.
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I. INTRODUCTION

In condensed matter physics, Majorana [1] zero modes
(MZMs) are a special type of Bogoliubov quasiparticle exci-
tations with non-Abelian statistics, which have been proposed
to be building blocks for quantum information and quantum
computation [2,3]. There have been a number of theoretical
proposals [4,5] to realize MZMs in condensed matter systems,
such as a ν = 5/2 fractional quantum Hall system [6], a
chiral p-wave superconductor [7], topological insulator(TI)/s-
wave superconductor(SC) interfaces with MZM in the vortex
core [8], proximity-induced superconductors for spin-orbit
coupled nanowires [9,10], spin-orbit coupled semiconduc-
tors [11–13] with an externally applied Zeeman field, and
ferromagnetic atoms in proximity to superconductors [14,15].
There also exist various experimental evidences for MZMs in
these proposed systems [16–24].

Very recently, He et al. [25] have predicted that an MZM
at the end of a nanowire may induce spin-selective Andreev
reflection (SSAR). An electron with the same spin of the MZM
will undergo an Andreev reflection, while an electron with
opposite spin does not. This SSAR is a novel property of the
MZMs and is different from the ordinary Andreev reflection
(AR) [26–28]. This property may allow us to reveal the spin
degrees of freedom of the MZMs. However, in 1D nanowire
systems, it always requires a large Zeeman term to host MZMs,
which may make it difficult to attribute the spin-polarization
dependence to the MZMs.

Fu and Kane [8] proposed that MZMs are localized inside
the vortex core in a TI/SC heterostructure, and they showed
this explicitly by solving Bogoliubov-de Gennes equations
(BdG) [29]. Experimentally, the MZMs in such a system have
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been demonstrated by STM based on a zero-bias peak (ZBP)
in a Bi2Te3/NbSe2 heterostructure made of a TI thin film
Bi2Te3 on the top of a NbSe2 SC [21,23]. Most recently, strong
new evidence for the MZM inside the vortex core is reported
by using spin-polarized STM [30]. The experiment has
clearly shown spin-polarization dependence of the differential
tunneling conductance dI/dV (E,r = 0). In this paper, we
present a systematic model calculation to examine the SSAR
inside the vortex core of TI/SC.

We consider a helical metal described by a Rashba spin-
orbit coupling Hamiltonian on a spherical surface of radius
R. Superconductivity is introduced by proximity effect and
the electronic structure in a vortex state is studied. At the
center of the vortex core, r = 0, the spin component of the
MZM is parallel to the magnetic field, and the local Andreev
reflection of the MZM is spin selective, and only occurs when
the STM tip has the spin polarization parallel to the magnetic
field. The first quasiparticle state has the same amplitude of
orbital wave function with, but opposite spin polarization to
the MZM at r = 0. This leads to approximately the same local
density of states and normal differential tunneling conductance
for the spin parallel and antiparallel to the magnetic field
cases. We also discuss the finite size effect. We apply our
theory to examine the recently reported spin-polarized STM
experiments and show good agreement with the experiments.

The paper is organized as follows. In Sec. II, the BdG
equation is introduced and we adopt spherical geometry to
solve the eigenfunction problem. The numerical results are
presented systematically in Sec. III. The method and results
of the transport calculations for Andreev reflection (AR)
at the center of the vortex core are discussed in detail in
Sec. IV. A summary and conclusion are presented in Sec. V. In
Appendix, the vortex-free BdG equation will be addressed and
the well-known Blonder-Tinkham-Klapwijk (BTK) theory is
reproduced by using our method.
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II. VORTEX STATES IN PROXIMITY-INDUCED
TOPOLOGICAL SUPERCONDUCTOR

ON SPHERICAL SURFACE

In this section, we discuss vortex states in a topological
superconductor, which is modelled by a helical metal with
proximity-induced superconductivity. The helical metal rep-
resents the surface states of a 3D topological insulator. We
consider spherical geometry, in which electrons in the helical
metal are confined on a spherical surface. In this geometry, the
boundary is closed. We will start with a noninteracting electron
system with a Rashba spin-orbit coupling, then discuss such a
helical metal under the proximity effect of superconductivity
in the absence of vortices. Finally, we will also discuss the
in-gap vortex states of the system.

A. 2D Helical metal on a spherical surface

The surface state of a 3D topological insulator may be
described by noninteracting helical electrons on the x-y plane.
The single-electron Hamiltonian reads

H0 = α(σ × �p) · �z − μ, (1)

where α is the spin-orbit coupling strength, which will be
assumed to be positive throughout this paper without loss of
generality. �σ is made of the three Pauli matrices, �p is the
momentum confined in the x-y plane, and μ is the chemical
potential. The Hamiltonian in the x-y plane can be generalized
to a spherical surface of radius R, by using the expression
�p = −i[ �∇ − R̂(R̂ · �∇)], where R̂ = �R/R and we set � = 1.
The Hamiltonian for a helical metal on a spherical surface is
then given by

H0 = − α

R
�L · �σ − μ, (2)

where �L is the orbital angular momentum. The single-
particle Hamiltonian (2) can be solved easily. Define the total
angular momentum �J = �L + �S. H0 commutes with �J , the z

component of �J (Jz), �L, and electron spin operator �S = �σ/2.
The total angular momentum eigenvalue j = 1/2 if l = 0, and
j = l ± 1/2 if l �= 0. The eigenenergy E0 of Eq. (2) is given
by

j = l + 1/2 : E0
+(l) = −2α

l

R
− μ,

(3)

j = l − 1/2 : E0
−(l) = 2α

l + 1

R
− μ,

and the two-component eigenstates in a compact form are

|j = l ± 1/2,jz,l,s = 1/2〉
= α±|l,jz − 1/2〉 ⊗ |↑〉 + β±|l,jz + 1/2〉 ⊗ |↓〉, (4)

where the Clebsch-Gordan (CG) coefficients are α± =
±√

(l ± jz + 1/2)/(2l + 1) = ±β∓. There are 2j + 1 degen-
erate states for a given eigenenergy, corresponding to different
eigenvalues of Jz. Note that the states in j = l + 1/2 branch
have negative energies without a lower energy bound, similar
to the case in planar geometry. This will, however, not affect
the basic physics near the Fermi energy, which we wish to
address in this paper.

B. Proximity-induced superconducting state in a helical metal

We now consider the helical metal Hamiltonian with an
additional pairing term describing proximity-induced super-
conductivity. We shall first consider a uniform pairing case
that is free of vortices, described by

H� = �0σ0 ⊗ τx, (5)

where we use standard Nambu representation, for the field
operator �̂(�r),

�̂(r) = [ĉ↑(r),ĉ↓(r),ĉ†↓(r), − ĉ
†
↑(r)]T . (6)

In Eq. (5), we have assumed the proximity induced supercon-
ducting order parameter � to be independent of the azimuthal
angle θ and the polar angle φ. The total Hamiltonian then reads

H =
⎛
⎝ H0 �0I

�0I −σyH∗
0σy

⎞
⎠

=
(
− α

R
�L · �σ − μ

)
⊗ τz + �0σ0 ⊗ τx, (7)

where �τ are Pauli matrices, with the two components represent-
ing particle-hole degrees of freedom, while �σ is representing
the spin degree of freedom, and σ0 the identity matrix. Note
that the total angular momentum �J = �L + �S still commutes
with H in Eq. (7), the eigenenergies are given by

j = l + 1/2 : E±(l) = ±
√

[E0+(l)]2 + �2
0,

(8)

j = l − 1/2 : E±(l) = ±
√

[E0−(l)]2 + �2
0,

where the corresponding four-component eigenfunction
[see Eq. (4)] is A|j = l ± 1/2,jz,l,s = 1/2〉 ⊕ B|j = l ±
1/2,jz,l,s = 1/2〉 formally, in which the coefficients A and
B satisfy the following equation:

A�0 = B
[
E0

± ±
√

(E0±)2 + �2
0

]
, (9)

where the normalization condition A2 + B2 = 1 gives A =
f/

√
f 2 + �2

0 and B = �0/
√

f 2 + �2
0 , with f = E0

± +√
(E0

±)
2 + �2

0 or E0
± −

√
(E0

±)
2 + �2

0 .

C. Vortex states in proximity-induced superconducting state
of a helical metal

We proceed to consider the vortex case. The pairing
Hamiltonian takes the form

HBdG(�) = [�(θ )eiφ]σ0. (10)

In Eq. (10), the factor eiφ describes a vortex with the winding
number n = 1. Then we will use a numerical method to
solve the vortex problem. The whole Bogoliubov-de Genes
Hamiltonian in the presence of the vortex consists of Eqs. (2)
and (10),

HBdG =
( H0 �(θ )eiφ

�(θ )e−iφ −σyH∗
0σy

)

=
(
− α

R
�L · �σ − μ

)
⊗ τz + �(θ )eiφI ⊗ τx, (11)
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FIG. 1. Sphere geometry for the vortex problem. There exists a
pair of vortex and antivortex. The vortex is located at the north pole
and the antivortex is located at the south pole.

where we have neglected the bulk effect of TI, because only
the surface physics is important according to Ref. [31]. We
note that there is a vortex-antivortex pair, one of which (say,
the vortex) is located at the north pole of the sphere and the
other one (the antivortex) is at the south pole [32,33], see
Fig. 1. In this paper, we assume the gap function �(θ ) =
�0 tanh [R sin(θ )/ξ0], where ξ0 characterizes the size of the
vortex core.

In our model, we neglect the small Zeeman term and the
vector potential. Neglecting the vector potential is a good
approximation to describe the low magnetic field case, such
as the experiment in Ref. [30], where the external magnetic
field B is lower than 0.1 T. This approximation greatly
simplifies the matter and is expected not to change our result
qualitatively. Define the Bogoliubov quasiparticle operators as
(using r = Rθ )

γ̂ † =
∫

dr

[∑
σ

uσ (r)ĉ†σ (r) + vσ (r)ĉσ (r)

]
. (12)

In passing, we remark that the necessary condition for the ex-
istence of the MZM is γ̂ † = ±γ̂ . The spectra of the excitations
of this system can be found by solving the eigenvalue problem
in 2D coordinates {θ,φ}, similar to the calculations reported
in Ref. [34]. Let |
m〉 be the four-component wave function
of the field �̂(�r), and the eigenvalue problem is given by

HBdG|
m〉 = Em|
m〉, (13)

with

|
m〉 = (eimφu1,e
i(m+1)φu2,e

i(m−1)φv1,e
imφv2)T , (14)

where m is the eigenvalue of Kz that will be defined in Eq. (15)
below, and u1, u2, v1, v2 are real functions of θ and m, but
are independent of φ. As we shall see below, there will be a
pair of MZMs [11] in the channel m = 0. And the m = ±1
channel gives the first quasiparticle excitation [34,35]. Note

that the total angular momentum Jz = Lz + σz/2 does not
commute with the Hamiltonian in Eq. (11), because of the
winding phase factor eiφ in the gap function. To solve the BdG
Hamiltonian numerically, we observe that this Hamiltonian
has a combined spin-orbit–pseudospin (pseudospin here refers
to the particle-hole degree of freedom) rotational symmetry
along the z axis. This symmetry can be expressed compactly
by noting that the Hamiltonian in Eq. (11) commutes with a
generalized total angular momentum including the pseudospin
τz, so we have

Kz = Lz + 1
2 (σz − τz) ⇒ [Kz,HBdG] = 0. (15)

The BdG Hamiltonian can be decomposed into a block-
diagonal form, with each block corresponding to a generalized
total angular momentum m (quantum number of Kz), namely,

H|
m〉 = E|
m〉, (16a)

Kz|
m〉 = m|
m〉, (16b)

where |
m〉 is given in Eq. (14). The four-component eigen-
function/basis in |
m〉 may be expressed in terms of the
spherical harmonic functions:

eimφ u1(m) =
∑

l

alY
m
l , (17a)

ei(m+1)φ u2(m + 1) =
∑

l

blY
m+1
l , (17b)

ei(m−1)φ v1(m − 1) =
∑

l

clY
m−1
l , (17c)

eimφ v2(m) =
∑

l

dlY
m
l , (17d)

with Ym
l (θ,φ) = P m

l (cos θ )eimφ/
√

2π , and P m
l the associated

Legendre polynomial. The above eigenstate problem can be
solved numerically. The particle-hole symmetry (−σyτyK) is
reflected as below. If we transform m → −m, then we have
Em → −Em and {u1,u2,v1,v2} → {−v2,v1,u2, − u1}. Note
that these wave functions are all real.

The system is invariant under rotation Ô = P̂ σz ⊗ τ0,
which communicates with the Hamiltonian,

[Ô,HBdG] = 0. (18)

It means that the total Hamiltonian remains unchanged by
transformation simultaneously both in real space P̂ : θ →
(π − θ ) and in spin subspace σz : σx → −σx,σy → −σy . This
symmetry is important to analyze the twofold degeneracy of
in-gap quasiparticle states in the large-radius limit. Assume
HBdG|
±

m〉 = E±
m |
±

m〉 and Ô|
±
m〉 = ±|
±

m〉, we can write
down the in-gap quasiparticle wave functions in the form

|
±
m〉 = eimφ([u1(θ ) ± u1(π − θ )], eiφ[u2(θ ) ∓ u2(π − θ )],

× e−iφ[v1(θ ) ± v1(π − θ )], [v2(θ ) ∓ v2(π − θ )])T .

(19)

To see the physical interpretation, we can define |
N
m〉 =

(|
+
m〉 + |
−

m)/
√

2, which is localized at the north pole and
vanishes at the south pole. Meanwhile, we also have |
S

m〉 =
(|
+

m〉 − |
−
m)〉/√2, localized in the south pole. Therefore
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the symmetry Ô gives us the degenerated states (|
N/S
m 〉) in

the energy spectrum in the large-radius limit. However, this
degeneracy will be lifted a little due to the hybridization
between these two states in our numerical simulation, which
is related to the finite size effect (finite radius R) and will
be discussed in Sec. III B in details. Lastly, we also wish to
emphasize that once all the eigenenergies and eigen-wave-
functions are obtained, the Green’s function, thereby the
transport properties, can be calculated, as we will discuss in
Sec. IV.

III. NUMERICAL RESULTS

In this section, we present the solutions of the BdG equa-
tions for the proximity-induced vortex states in a topological
superconductor on a spherical surface and discuss the results
in connection with recent experiments.

A. Energy spectra and wave functions

In our numerical calculations, we use parameters to ap-
proximately model the experiment in Ref. [23], in which the
MZMs in Bi2Se3/NbSe2 heterostructure has been detected. We
set the parameters as follows, the coherence length ξ0 = 35
nm is chosen as the length unit, the radius of the sphere
R = 50ξ0, the superconducting gap far away from the vortex
core �0 = 1 meV, the chemical potential μ = 90 meV and
the spin-orbit coupling α = 30ξ0 meV nm. Note that the
coherence length, the chemical potential, and the gap function
are comparable to the extracted experiment data in Bi2Se3 of 35
nm, 100 meV, and 1 meV, respectively [23]. The Fermi velocity
vF = αξ0 = 1.05 nm eV in our simulation is about 4 times
larger than the experiment data of 0.27 nm eV [36,37]. The
choice of a large spin-orbit coupling or a large Fermi velocity in
our simulation is for the technique reasons in the calculations
to avoid handling spherical harmonic functions of very large
l, which turns to be quite challenging. The parameters used in
our model calculations are close to those values used in the
reported simulation in Ref. [30]. In our numerical calculations,
we take a cutoff in the orbital angular momentum l around 200,
which is sufficient to get the precise low-energy eigenvalues
and the accurate corresponding spatial wave functions.

The energy spectra of the model Hamiltonian (11) are
plotted in Fig. 2, where red circles represent several localized
in-gap states in the vortex core. As a comparison, we plot the
energy spectra of the vortex-free case in Fig. 13 in Appendix.
The energy for MZM is about E0 = 10−4 meV due to the finite
size effect.

The wave function for MZM with eigenenergy −10−4 meV
is plotted in Fig. 3. We can see that around the north pole,
u1 = v2 and u2 = v1, so that γ = γ † (necessary condition
for MZM). It is worth noting that the spin of MZM is
fully polarized at the vortex core center and parallel to
the magnetic field (spin up), say, u1 = v2 �= 0 and u2 =
v1 = 0 at r = 0. And, for this | − E0〉 state, we notice that
u1(θ ) = −u1(π − θ ), u2(θ ) = u2(π − θ ), v1 = −v1(π − θ ),
and v2(θ ) = v2(π − θ ), leading to Ô| − E0〉 = −| − E0〉.
Through the particle-hole symmetry, we can obtain the |E0〉
state, which satisfies Ô|E0〉 = |E0〉. Therefore the tiny split

FIG. 2. Energy spectra for the vortex problem. Em is plotted
as a function of angular momentum m [quantum number of Kz

in Eq. (15)]. Red hollow circular(◦) represents localized in-gap
bound states, and black solid circular(•) represents bulk states. The
energy discretization for bulk states is due to finite size effect.
Here we choose parameters as �0 = 1 meV, ξ0 = 35 nm, R = 50ξ0,
α = 30 meV, and μ = 90 meV.

of these two almost degenerate states around E = 0 gives
particle-hole symmetry.

Fig. 4 shows the wave function of the first excited state E−
1

(quasihole). It is clear that the spin is still fully polarized at
the vortex core center but opposite to the magnetic field (spin
down). Note that there is only one nonzero component in the
wave function at the vortex core center, namely, v1(r = 0) �= 0
and u1(r = 0) = u2(r = 0) = v2(r = 0) = 0. The energy of
the first excited state in Fig. 4 is found to be E1 ≈ 0.05 meV.

The wave functions of the other high angular momentum
with m = 2,3,4,5 are shown in Fig. 5. It is interesting to note
that the spherical harmonic function Ym

l (θ,φ) = 0 at θ = 0 and
θ = π for all angular momenta m except the m = 0 channel.
Therefore all the eigen-wave-functions |
m〉 with |m| > 1 in
Eq. (17) for the in-gap states in the vortex core have zero
amplitudes at θ = 0 and θ = π . This property will greatly

FIG. 3. Wave function for Majorana zero mode E−
0 ≈

−10−4 meV, where u1(θ ) = −u1(π − θ ), u2(θ ) = u2(π − θ ),
v1(θ ) = −v1(π − θ ), and v2(θ ) = v2(π − θ ).
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FIG. 4. Wave function for the first excited state E−
1 ≈

−0.05 meV, where u1(θ ) = −u1(π − θ ), u2(θ ) = u2(π − θ ),
v1(θ ) = −v1(π − θ ), and v2(θ ) = v2(π − θ ).

simplify the calculations of the local tunneling conductance
at the vortex center discussed in Sec. III C. The energy for
the second excited state is E2 ≈ 0.1 meV. Finally, we would
like to point out that the low lying energy separation of the
quasiparticle states in our present calculations appears to be
larger than the estimated one in a vortex core, which is given
by �2

0/μ ≈ 0.01 meV in Ref. [23], which could be due to
the discrete energy spectra in the free electron system of the
model.

TABLE I. Energy for the first excited in-gap quasiparticle
state E±

1 for different radii. Parameters are μ = 84 meV, �0 =
1 meV, and α = 25 meV.

R = 50ξ0 R = 40ξ0 R = 30ξ0

E−
1 0.065047 0.053 0.038

E+
1 0.065062 0.078 0.093

B. Two-vortex hybridization (finite size effect)

In this section, we shall study the two-vortex-hybridization
problem through the finite size effect in our model. For ex-
periments, increasing the external magnetic field will shorten
the distance between the two nearest-neighbor vortices on
the Abrikosov lattice. So that the two-vortex-hybridization
effect will be significant in the presence of a higher magnetic
field. Theoretically, we have a pair of vortex and antivortex
located at the north and south poles on the sphere, respectively.
Decreasing the sphere radius while keeping the coherence
length unchanged will give rise to a stronger hybridization
between the vortex and the antivortex and lift the twofold
degeneracy and vice versa. Therefore the two-vortex problem
can be reflected as a finite size effect in our model.

To study the finite size effect, let us take an example by using
a set of parameters: μ = 84 meV, �0 = 1 meV, and α =
25 meV. The energies of the first excited in-gap quasiparticle
E±

1 for different radii R are summarized in Table I. For a suf-
ficient large radius R = 50ξ0, the two states shown in Eq. (19)
are almost degenerate. However, for a smaller radius R =
30ξ0, the degeneracy of these two states will be totally lifted.

We now discuss the finite size effect on the two MZM
states with tiny hybridization. The parameters mentioned in

FIG. 5. Wave function for the second (a), third (b), fourth (c), and fifth (d) excited states.
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FIG. 6. Two-vortex hybridization effect. (a) The energy of the m = 0 state (MZM) for different sphere radii R. (b) The wave function of
MZM for a small size R = 13ξ0.

Sec. III A have been used to generate MZMs, and the radius
of the sphere is R = 50ξ0, which is large enough to separate
the MZM in a north pole and in a south pole part. In Fig. 3, we
show the wave function around both north and south poles as a
function of r = Rθ , which will decay to zero before reaching
the equator of the sphere (not shown in the figure). Recall
that we use a vortex-antivortex pair on a sphere, i.e., �(θ ) =
�0 tanh(R sin θ/ξ0). Now, if we change the distance between
the north (vortex) and south poles (antivortex) by decreasing
the radius R of the sphere, then we find in our calculation
that the energy for the MZM, E0, increases drastically to a
finite energy (order of superconductor gap) [34,38,39], shown
in Fig. 6(a).

From Fig. 6(b), we can see that the wave function of the
MZM in the north pole is hybridized with the MZM in the
south pole. As a result, the condition for MZM γ = γ † is not
satisfied in the small radius case (here we set R = 13ξ0), and
the two MZMs meet each other and evolve into two non-MZM
states (say, complex quasiparticles) with a finite subenergy
gap. For example, the finite energy E0 is about ±0.3�0 for the
R = 13ξ0 case. In this case, the MZM is not localized but looks
like a bulk state as shown in Fig. 6(b). The loss of the self-
conjugate condition, together with the loss of the localization
condition, will give an extremely different Andreev reflection
result, which will be discussed in Sec. IV B.

As for the experiment data in Ref. [23], it is found that
a small external magnetic field (up to 0.18 T) perpendicular
to the surface will make the Abrikosov vortices closer and
closer, leading to a weaker and weaker zero-bias peak in
STM/STS experiments. This can be easily understood from
our model calculation, because the hybridization of MZM’s
wave functions between two adjacent vortices will open a
finite gap, see Fig. 6(a), where the black line is from our
numerical calculation, and the red line is fitted by a function
exp(−R/11.2).

C. Local density of states and normal conductance

To analyze the experimental data from spin-resolved STM,
we should consider both normal conductance and Andreev
reflection [40–43]. In this section, we shall calculate the local

density of states (LDOS) and then estimate the normal con-
ductance. As we know, the normal conductance is proportional
to the local density of states N (E,r),

σn(E,r) ≡ dI/dV (E,r) = ᾱN (E,r), (20)

where ᾱ is assumed to be a constant. Under this approximation,
we may estimate the normal conductance as follows:

σn(E < �0,r) = σn(Ē � �0,r) × N (E < �0,r)

N (Ē � �0,r)
. (21)

Here, σn(Ē � �0) is the single-particle tunneling conduc-
tance for the normal state. Since the superconducting gap is
induced by the proximity effect (�0 is only 1 meV), we may
treat the normal state as helical metal when Ē � �0 and
ε(k) = ±

√
(α|k| ± μ)2 + �2

0 ≈ ±(α|k| ± μ) as in Ref. [8].
Then we can set up a junction consisting of a 1D normal
lead/1D helical metal/1D helical metal lead [see Fig. 7(a)]
to calculate the single-particle tunneling conductance for
the helical metal. By using the recursive Green’s function

Helical 
metal Helical metal(Lead)Normal metal(Lead)(a)

(b)

FIG. 7. (a) The normal metal (lead)/helical metal/helical metal
(lead) junction used to estimate the normal conductance in STM/STS
experiments. (b) Calculated normal conductance, σn(Ē � �0) ≈
0.88 e2/h, where we choose the hopping integral in the normal lead
t ′ = 24 and the coupling between the helical metal and left and right
leads as tL = t ′ and tR = 0.85t ′.
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method and the Landauer-Bütikker formula [44], we obtain
σn(Ē � �0) ≈ 0.88 e2/h as shown in Fig. 7(b). Therefore
the normal conductance is given by

σn(E < �0,r) = N (E < �0,r)

N (Ē � �0,r)
× 0.88 e2/h. (22)

Thus the problem is reduced to the calculation of the spin-
polarized LDOS for quasiparticle excitations [45], which is
given by the electron wave functions

N (E,r) = N↑(E,r) + N↓(E,r), (23)

N↑(E,r) =
∑
Em

[|u1|2δ(E − Em) + |v2|2δ(E + Em)], (24)

N↓(E,r) =
∑
Em

[|u2|2δ(E − Em) + |v1|2δ(E + Em)], (25)

where δ(E − Em) will be replaced by a smearing Gaussian
function,

δ(E − Em) = exp[−(E − Em)2/η2]/(
√

πη), (26)

where the smearing factor η can be chosen smaller than the
excitation gap �E = E1 − E0 in a vortex core, as well as
larger than �E, which is the case in STM/STS experiments.

It is well known that the spectra of LDOS in a vortex
are discretized inside the gap and consist of several isolated
peaks [46,47]. Especially, there are only two bound-state peaks
contributing to the spectra of LDOS at the vortex core center
r = 0. Since LDOS is proportional to the amplitude square
of the wave function, and we have proved in Sec. III A that

m(θ = 0) = 
m(θ = π ) = 0 for |m| > 1 (also see Figs. 3
and 4), only the MZM (E0) and the first excited state (E1) will
contribute to the bound-state peaks.

In Fig. 8, we plot the LDOS at r = 0 for three values of the
smearing factor η in Eq. (26). For η � E1, the LDOS for the
spin up (N↑, MZM contribution) and for the spin down (N↓,
the first excited state) are well separated in energy as shown
in Fig. 8(a). This also indicates the particle-hole asymmetry
in vortex bound states as discussed in Refs. [45,47–49]. For
η ∼ E1,N↑(E) andN↓(E) overlap but are still distinguishable
as plotted in Fig. 8(b). For η � E1,N↑(E) andN↓(E) become
essentially the same. Note that η is a measure of the energy
resolution in the STM experiment, which is presently poor to
distinguish E1 from the zero mode. We believe that Fig. 8(c)
corresponds to the experimental situation in Ref. [30]. It is a

very important conclusion in this paper. We also note that a
similar result was reported in Ref. [45].

IV. ANDREEV REFLECTION

In this section, we present the method and results for the
calculation of Andreev reflection (AR) based on the solution
of BdG equations, and explain recent experiments in Ref. [30].
We consider the tiny STM tip as a 1D metallic lead and
“touch” the vortex core as a single point contact. We argue that
this should be a good approximation in the high-barrier limit.
The s-wave superconducting gap will induce effective triplet
pairing correlations in the bulk spectrum for a system with
strong spin-orbit coupling [13,50]. However, it will not affect
our discussions on spin-selective Andreev reflection (SSAR)
for MZM, because we only focus on the center of the vortex
core, where the superconducting gap is zero.

An MZM [10,51] will contribute to the measurement of
dI/dV for a 1D nanowire system via Andreev reflection [52].
Moreover, He et al. figured out that spin-selective Andreev
reflection (SSAR) can be used to reveal the spin degree of
freedom for an MZM, and they demonstrated it in a 1D
nanowire system [25]. As for the measurement of the SSAR
(SESAR) effect of a 1D nanowire system, where there is no
direct contact from the lead to the s-wave superconductor,
it will be possible for a system with a lager g factor so
that a smaller magnetic field will be required to drive the
1D nanowire system into a topological phase satisfying V 2

z >

�2
0 + μ2. Recently, the out-of-plane g factor was found to be

about 52 for an InSb nanowire, reported in Ref. [53]. Besides,
it may also be possible to use the SSAR effect to distinguish the
MZM from the normal Yu-Shiba-Rusinov in-gap states in the
ferromagnetic atomic chains on a s-wave superconductor [22].
In this paper, we theoretically generalize He et al.’s theory
to the TI/SC heterostructure modeled in Eq. (11), and find a
similar SSAR inside the vortex core, which provides strong
evidence to the existence of MZMs.

A. Transport method for a normal metal/superconductor
junction

To study the SSAR contribution to the total conductance
measured in spin-polarized STM/STS experiments, we utilize
the setup sketched in Figs. 1 and 9. Since the STM tip size
in STM/STS experiments is about 0.01 nm, which is much
smaller than the vortex size ξ0 = 35 nm, we can treat the STM

FIG. 8. Local density of states. (a) The smearing factor defined in Eq. (26) η = 0.005�0. (b) η = 0.04�0 ∼ E1, comparable to the first
excited state energy. (c) η = 0.3� ≈ 6E1. The LDOS for spin-up N↑(E) and spin-down N↓(E) coincide to each other.
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FIG. 9. Illustration of spin-selective Andreev reflection. An in-
coming spin-down electron will be reflected as a spin-down electron
because of the mismatch of the spins of the incoming electron and
the MZM.

tip as a normal lead and the contact between the STM tip and
TI/SC as a point contact. The normal lead can be described by
the following Hamiltonian:

HL =
∑
i<0,σ

{−t ′ĉ†Liσ ĉLi+1σ + H.c.}

+ {(2t ′ − μ′)ĉ†Liσ ĉLiσ + ĉ
†
Liα[ �V · �σ ]α,β ĉLiβ}. (27)

The coupling between the normal lead and TI/SC (the contact
point locates inside the vortex core) is given by

Ht =
∑

σ

{tcĉ†L0σ ĉS1σ + H.c.}. (28)

To proceed, we shall demonstrate the SSAR induced by
MZMs in the high-barrier limit and choose the parameters as
follows: | �V | = 10�0, t ′ = 25�0, μ′ = 0, and tc = 0.008�0.
Note that the coupling strength tc only affects the width of the
zero-bias peak of an MZM, which is of the Lorentz shape [25],
dI/dV ∼ E2/(E2 + t̃2), where t̃ ∼ tc. Other parameters in
the TI/SC heterostructure are chosen the same as those in
Sec. III A.

With the help of the solution to Eq. (13), we are able to
calculate the retarded Green’s function for the single-particle
system,

GR
0 (E,�r,�r ′) =

∑
m

∑
n

|
n
m(�r)〉〈
n

m(�r ′)|
E − En

m + iδ
, (29)

where m is the angular momentum [quantum number of Kz

in Eq. (15)], n is an additional quantum number labeling the
eigenstates, δ is a positive infinitesimal and set as 10−5meV in
our calculation, and GR

0 is a 4 × 4 matrix.
For the point contact problem, we need to evaluate the

local Green’s function Gtot(E,�r,�r) in the coupled system.
Considering the δ function interaction between the normal lead
and the 2D TI/SC heterostructure, we can write Gtot(E,�r,�r)
in terms of GR

0 (E,�r,�r) and self-energy �(E,�r) through the

Dyson equation [44,54],

Gtot(E,�r,�r) = 1(
GR

0 (E,�r,�r)
)−1 − �(E,�r)

, (30)

or its iterative form

Gtot(E,�r,�r) = GR
0 (E,�r,�r) + �(E,�r)Gtot(E,�r,�r). (31)

After that, the S matrix for the junction can be calculated by
the Fisher-Lee formula [55–57],

S̃ = −I + i�1/2 × Gtot × �1/2, (32)

where the broadening function � is defined as � = i(� −
�†), which is a 4 × 4 matrix too. We can read out the 2 × 2
reflection matrices r̃ee and r̃he from the S matrix,

S̃ =
(

r̃ee r̃eh

r̃he r̃hh

)
, (33)

where r̃σ,σ ′
ee means that a spin-σ ′ electron comes in and a spin-

σ electron goes out. Thus we can calculate the differential
conductance coming from Andreev reflection dI/dV using
the Landauer-Bütikker formula [44],

σA(E,�r) ≡ dI/dV (E,�r) = Tr[r̃†her̃he] × 2e2/h. (34)

B. Spin-selective Andreev reflection

In this section, we will discuss the SSAR effect and focus on
the vortex core center r = 0, where the MZM spin is parallel
to the magnetic field (spin up) by symmetry. The case of r = 0
also means that we only need to keep the m = 0 channel in
Eq. (29), which will greatly simplify our dI/dV calculations.
Because the normal vortex states of m = ±1 channels have
only a single nonvanishing component, separately, they will
not contribute to the anomalous part of the Green’s function
in Eq. (29). Also, note that all vortex states with high angular
momentum channels with |m| � 1 vanish at the vortex core.

As pointed out by He et al. [25], an incoming spin-up
electron will be reflected as a spin-up hole, while an incoming
spin-down electron will be reflected as a spin-down electron
because of the mismatch of the spins of the incoming electron
and the MZM. This phenomenon is called spin-selective
Andreev reflection (SSAR) [25,30], as illustrated in Fig. 9.
Note that the superconducting gap vanishes at the vortex core
center r = 0, therefore the Andreev reflection is via the MZM
only.

We would like to emphasize that both MZM (large radius
R ∼ 50ξ0) and non-MZM states (small radius R ∼ 13ξ0) for
the m = 0 channel have nonzero u1 and v2 which, in principle,
will lead to an SSAR signal at the vortex core center. And the
MZM case will give a zero-bias peak, while the non-MZM case
will give two peaks at finite energy ±E0 ∼ 0.3�0. To examine
this point, we shall study SSAR in our model with two different
sphere radius sizes, R = 50ξ0 and R = 13ξ0. As discussed
in Sec. III B, (i) when R = 50ξ0, there exists a single MZM
(γ = γ †) inside each vortex and antivortex core, which is well
separated from each other; (ii) when R = 13ξ0, two MZMs
will hybridize with each other strongly, resulting in non-MZM
states (γ �= γ †) with extended spatial wave functions.

Numerical results for the AR conductance dI/dV are
plotted in Fig. 10. For the large radius R = 50ξ0 with a well
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FIG. 10. Calculated AR conductance dI/dV at vortex core center
r = 0. (a) R = 50ξ0, the incoming electron spin polarization is
parallel to local MZM spin. (b) R = 13ξ0 the incoming electron
spin polarization is parallel to local non-MZM spin. (c) R = 50ξ0, the
incoming electron spin polarization is antiparallel to local MZM spin.
(d) R = 13ξ0, the incoming electron spin polarization is antiparallel
to the local non-MZM spin.

localized MZM, when the incoming electron spin polarization
is parallel to the MZM spin at the vortex core center, the
AR conductance dI/dV exhibits a zero-bias peak with a
quantized conductance 2e2/h and significant weight in the
spectra, as shown in Fig. 10(a). However, for the small radius
R = 13ξ0 with two strongly hybridized MZMs, dI/dV only
has two sharp peaks at finite energy with almost vanishing
weight, as plotted in Fig. 10(b). However, if we increase the
coupling tc ∼ 0.04�0 for the R ∼ 13ξ0 case, the width of these
two peaks will be increased but the height is still lower than
2e2/h (not shown). Indeed, similar sharp peaks also appear
in the ordinary Andreev reflection in s-wave superconductors
at the superconducting gap edge in the high-barrier limit, see
Appendix for details. On the contrary, when the incoming
electron spin polarization is antiparallel to the MZM spin
at the vortex core center, the signal of the AR conductance
is completely suppressed for both the large and the small
radius, as shown in Figs. 10(c) and 10(d). The very tiny width
of the peak in the calculations of the AR conductance for
the antiparallel spin case does not increase as the contact
coupling tc increases. Such a peak for the antiparallel spin
case was also observed in the calculation of He et al. [25] for
AR conductance in nanowire with Majorana particles at the
ends, and due to the resonance. Because of the finite energy
resolution �E in the STM, what the STM measured is local
conductance at an energy within an energy interval of �E,
which is larger than the width of the peak in Fig. 10(a), hence
the weight of the conductance spectra of the peak is very small
or even vanishingly small. Therefore one can conclude that the
Andreev reflection is spin-selective at the vortex core center in
the presence of a localized MZM. The comparison of Fig. 10(b)
for the small radius of the sphere with Fig. 10(a) for the large
radius illustrates that a large hybridization between the two

MZMs (vortex and antivortex at the two poles) suppresses the
AR conductance.

It is noted that the results in Fig. 10 also explain the
experimental fact that all the zero-bias peaks in dI/dV of
AR will disappear when the external magnetic field exceeds a
small threshold value. The reason is the following. Increasing
the external magnetic field will shorten the distance between
two neighboring vortices on the Abrikosov lattice. Then an
MZM inside a vortex core will hybridize with another on in
the neighboring vortex core, leading to non-MZM states with
a finite subenergy gap instead of MZMs. Such a non-MZM
state will contribute an almost vanishing AR signal with a
high-barrier limit tc ∼ 0.008�0 between the STM tip and the
surface of the TI.

C. Total differential conductance in spin polarized
STM/STS experiments

The total conductance in spin polarized STM/STS exper-
iments can be evaluated by adding the normal component
σn(E,r) in Eq. (22) to the AR component σA(E,r) in Eq. (34),

σtot(E,r) = σn(E,r) + σA(E,r). (35)

Although the STM tip can be located in arbitrary r in STM/STS
experiments, the SSAR effect will be suppressed and then
vanish as r increases, when the differential conductance
dI/dV is no longer spin dependent. So that let us focus on
r = 0 at first, and then discuss how r > 0 will change the
results.

The numerical results at r = 0 are shown and compared
with experimental data in Fig. 11. In our calculations, we
choose two different energy smearing factors defined in (26),
η = 0.04�0 and 0.3�0. The former is chosen as close to the
first in-gap excited energy E1, while the latter is close to energy
resolution in STM/STS experiments [30]. The calculated total
conductance dI/dV for η = 0.04�0 and 0.3�0 is plotted
in Figs. 11(a) and 11(b) respectively, and the experimental
result [30] is plotted in Fig. 11(c) for comparison.

For η = 0.04�0 ∼ E1, the total conductance dI/dV ex-
hibits two distinguishable peaks for different spin polarization,
see Fig. 11(a). When the STM tip spin polarization is parallel to
the MZM spin (is parallel to external magnetic field at r = 0),
which is denoted as “MZM ↑, Tip ↑”, there is a zero-bias
peak. When the spin polarization of the tip is antiparallel to
the MZM spin, denoted as “MZM ↑, Tip ↓”, there is a peak
around E1. Hereafter, we shall denote the height of these two
peaks as dI/dV |↑ and dI/dV |↓, respectively. The separation
of these two peaks in energy is due to the LDOS, see Fig. 8,
which contributes to the normal conductance σn.

For η = 0.4�0 � E1, which is close to the experimental
situation, there exist two zero-bias peaks in dI/dV as shown in
Fig. 11(b), with height dI/dV |↑ and dI/dV |↓. Since LDOS is
almost spin independent in this case, N↑ = N↓, therefore, the
normal conductance is spin independent too and the difference
between dI/dV |↑ and dI/dV |↓ comes from SSAR entirely.
The spin polarization of the tunneling conductance is estimated
as

P = dI/dV |↑ − dI/dV |↓
dI/dV |↑ + dI/dV |↓ ∼ 16%, (36)
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FIG. 11. (a) Calculated total conductance with η = 0.04�0. (b) Calculated total conductance with η = 0.3�0. (c) Experiment data from
Ref. [30].

which is about 2.3 times of the experimental value 7% [30],
see Fig. 11(c) for details. The deviation from the experimental
value may be due to disorder effect, which has not been yet
considered in this paper.

Now, let us discuss the situation when r > 0. Due to
the spin-orbit coupling, the spin of MZM is not a good
quantum number and will vary spatially. On the other hand,
the amplitude of the MZM wave function, |u1|2 + |u2|2, will
decay as r increases. The angle between the local spin direction
of the MZM and the external magnetic field θM is plotted as a
function of r as well as the amplitude |u1|2 + |u2|2 in Fig. 12.
When the STM tip moves away from the vortex core center, two
reasons will reduce the SSAR signal. Firstly, the amplitude of
MZM wave function becomes smaller and smaller. Secondly,
the mismatch between the STM tip spin polarization and
the local spin of MZM will reduce the AR conductance via
MZM. This explains the experimental observation that the spin
dependence of dI/dV becomes too weak to detect at about
r = 0.3ξ0 [30].

V. CONCLUSIONS

In this paper, we use the proposal by Fu and Kane [8] to
generate the MZM in the vortex core on the interface between
TI and SC. Then, we take the parameters derived from the

FIG. 12. The angle between the local MZM spin and external
magnetic field θM and the amplitude of MZM wave function√

|u1(r)|2 + |u2(r)|2. θM = 0 is for parallel and θM = π is for
antiparallel.

experiment to solve the BdG equation in Eq. (11). Based on the
results for both larger radius and smaller radius, we simulate
the distance between the vortex in the north pole and the vortex
in the south pole, so that we can discuss the two-vortices
problem (finite size effect). It may be related to the experiment,
in which the external magnetic field will make the vortices
closer and closer so that the ZBP will disappear. We think it
is because of the hybridization of MZMs’ wave functions in
nearby vortices, which will lead to a finite subenergy gap.
In addition, we calculate the LDOS for a small smearing
factor and larger smearing. The asymmetry of LDOS has
not be seen in experiment so far, because the STM energy
resolution (0.1 meV) is larger than the minigap (0.05 meV).
Finally, we use the Green function’s approach to calculate the
S matrix for an N/S junction by Fish-Lee-Landauer-Bütikker
formula, and we find a similar SSAR effect in our model
calculation. Finally, we also estimate that the total conductance
dI/dV in our calculation is qualitatively consistent with the
experiment [30].

Furthermore, we wish to point out that the estimation for
a normal conductance here is considered in an approximated
way. A precise calculation may change our results a little, but
the main physics should remain as we discussed in this paper,
due to the spin property of MZMs.
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APPENDIX: REPRODUCE BTK THEORY

In this Appendix, we shall discuss the vortex-free case
in details. In this case, the superconducting gap is a con-
stant, i.e., �(θ,φ) = �0. Although the analytical solution
to Hamiltonian (7) has been derived in Eq. (8), we would
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like to use the numerical method, discussed in the main
text in Sec. II, to solve this problem once more and repro-
duce the results of BTK theory for a double check. For a
conventional s-wave superconductor, the kinetic term may
involve ηL2/R2 and drop out the linear term. The Hamiltonian

reads

HBdG =
( η

R2
L2 − α

R
�L · �σ − μ

)
⊗ τz + �0I ⊗ τx, (A1)

which can be written in the form of a 4 × 4 matrix,

HBdG =

⎛
⎜⎜⎜⎝

η

R2 L
2 − μ − α

R
Lz − α

R
L− �0 0

− α
R
L+ η

R2 L
2 − μ + α

R
Lz 0 �0

�0 0 −(
η

R2 L
2 − μ

) + α
R
Lz

α
R
L−

0 �0
α
R
L+ −(

η

R2 L
2 − μ

) − α
R
Lz

⎞
⎟⎟⎟⎠. (A2)

Since Jz is still a good quantum number in this situation,
the same technique to solve the BdG equation in the main text
is still valid here, expect that the basis in Eqs. (16a) and (16b)
will change. Now the secular equations become

H

⎛
⎜⎜⎜⎝

eimφ u1

ei(m+1)φ u2

eimφ v1

ei(m+1)φ v2

⎞
⎟⎟⎟⎠ = E

⎛
⎜⎜⎜⎝

eimφ u1

ei(m+1)φ u2

eimφ v1

ei(m+1)φ v2

⎞
⎟⎟⎟⎠, (A3)

Jz

⎛
⎜⎜⎜⎝

eimφ u1

ei(m+1)φ u2

eimφ v1

ei(m+1)φ v2

⎞
⎟⎟⎟⎠ = m

⎛
⎜⎜⎜⎝

eimφ u1

ei(m+1)φ u2

eimφ v1

ei(m+1)φ v2

⎞
⎟⎟⎟⎠, (A4)

where we still use the standard Nambu representation
(c↑,c↓,c

†
↓, − c

†
↑) as in the main text. Denote

�A = (al1 , · · · ,alN )T , �B = (bl1 , · · · ,blN )T , �C =
(cl1 , · · · ,clN )T , and �D = (dl1 , · · · ,dlN )T , the eigenvalue
problem can be expressed as follows:

H

⎛
⎜⎜⎝

�A
�B
�C
�D

⎞
⎟⎟⎠ = E

⎛
⎜⎜⎝

�A
�B
�C
�D

⎞
⎟⎟⎠. (A5)

Choosing the parameters as follows: �0 = 1 meV, η =
20 meV, ξ0 = 35 nm, R = 50ξ0, α = 0.1 meV, and μ = 32
meV, and using similar cutoff as the vortex pair case, we are
able to solve these equations numerically. Note that the Rashba
coupling α is sufficient small, therefore it will not change the
s-wave superconducting pairing qualitatively.

The energy spectra are shown in Fig. 13, which is consistent
with the analytical results for the superconducting gap in
Eq. (8). It is easy to calculate the Green’s function from the
obtained eigenstates, in order to reproduce the BTK theory.

Now we shall calculate the reflection coefficient for the
Andreev reflection. To do this, we treat the STM tip as a
normal lead, and the Hamiltonian HL for this lead reads

HL =
∑
i<0,σ

{[−t ′ĉ†Liσ ĉLi+1σ + H.c.]

+ [(2t ′ − μ′)ĉ†Liσ ĉLiσ ]}. (A6)

The coupling between the superconductor (contact point
locates in the vortex core center) and the lead Hamiltonian
is given by

Ht =
∑

σ

{tcĉ†L0σ ĉS1σ + H.c.}, (A7)

where we choose the parameters for the 1D normal Lead (STM
tip) as t ′ = 25�0 and μ′ = 24�0. The coupling constant tc can
be tuned from transparent limit to high-barrier limit.

Using the technique introduced in Sec. IV A, we calculate
the Andreev reflection coefficient TA = Tr[r̃†her̃he] for various
coupling constants tc. The numerical results are shown in
Figs. 14(a)–14(h). The transparent limit will be taken when
tc � �0, while the high-barrier limit occurs at tc � �0.

Now we would like to compare our numerical results with
BTK theory for N/I/S junction [26–28]. In the BTK theory,
the Andreev reflection coefficient TA is evaluated through
matching boundary condition

TA =
{

E < � : �2

E2+(�2−E2)(1+2Z2)2 ,

E > � : u2
0v

2
0

γ 2 ,
(A8)

FIG. 13. Energy spectra for the vortex-free case. Only Em for
non-negative angular momentum are calculated numerically and
plotted here, with used parameters �0 = 1 meV, η = 20 meV, ξ0 =
35 nm, R = 50ξ0, α = 0.1 meV, and μ = 32 meV.
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FIG. 14. Ordinary Andreev reflection calculated using TA = Tr[r̃†her̃he] to reproduce the BTK theory (two channels/particles scattering
process). Increase the coupling tc from 0.4�0 (high barrier case, large Z) in (a) to tc = 1.38�0 (transparent limit, tiny Z) in (h).

where γ 2 = u2
0 + Z2(u2

0 − v2
0) and u2

0 = 1 − v2
0 =

1
2 (1 +

√
E2−�2

E2 ), and Z is the barrier strength and gives
rise to the contact potential Zδ(r) at the interface between
normal metal and superconductor [27]. Z = 0 corresponds
to the transparent limit, resulting in complete reflection
inside the superconducting gap, TA(E � �) = 1. On the

contrary, Z → ∞ corresponds to the high-barrier limit. In this
limit, TA(E < �) = 0 but TA(E = �) = 1, namely, Andreev
reflection only happens at the edge of the superconducting
gap. It is clear that our numerical results reproduce BTK
theory well, except the maximum value of TA is 2 instead
of 1. This is because we count two channels in our
model.
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