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Many-body ab initio study of antiferromagnetic {Cr7 M} molecular rings
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Antiferromagnetic molecular rings are widely studied both for fundamental quantum-mechanical issues and
for technological applications, particularly in the field of quantum information processing. Here we present a
detailed first-principles study of two families—purple and green—of {Cr7M} antiferromagnetic rings, where M is
a divalent transition metal ion (M = Ni2+, Mn2+, and Zn2+). We employ a recently developed flexible and efficient
scheme to build ab initio system-specific Hubbard models. From such many-body models we systematically derive
the low-energy effective spin Hamiltonian for the rings. Our approach allows us to calculate isotropic as well
as anisotropic terms of the spin Hamiltonian, without any a priori assumption on its form. For each compound
we calculate magnetic exchange couplings, zero-field splitting tensors, and gyromagnetic tensors, finding good
agreement with experimental results.
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I. INTRODUCTION

Molecular nanomagnets (MNMs) are clusters containing a
finite number of paramagnetic ions, whose spins are strongly
coupled by Heisenberg isotropic exchange interactions [1–3].
These finite-size systems provide a prototypical platform to
understand the origin of peculiar quantum phenomena—such
as coherence or tunneling—by means of a detailed and often
precise spin Hamiltonian description [4,5]. Furthermore, the
ability of tailoring magnetic interactions almost at will (thanks
to coordination chemistry) makes these molecules attractive
for potential technological applications [6–12]. In particular,
compounds containing a ring of antiferromagnetically coupled
transition metal ions have been heavily studied both to inves-
tigate fundamental issues [13–25] and as optimal units for the
implementation of quantum information processing [8,26,27],
as well as for low-temperature magnetic refrigeration [28].

Here we focus on a class of heterometallic rings in which
one divalent metal (M = Ni2+, Mn2+, and Zn2+) is included
in an array of seven trivalent ions (Cr3+). The possibility,
ensured by coordination chemistry, to produce over 4000 metal
octagons [29] gives a remarkable opportunity to investigate
ideas in molecular magnetism. In particular, we study two
representative families of {Cr7M} compounds: the first one
consists of rings which are green in solution and in the solid
state [30], as opposed to another family of purple {Cr7M}
molecules [31]. The main structural difference between green
and purple derivatives is the replacement of the fluoride
with alkoxide within the coordination sphere of the majority
of Cr3+ ions in the latter. This high degree of chemical
control, as well as the possibility of linking Cr-based rings
to form supramolecular dimers [32–34] or even more complex
structures [35] and to graft them onto surfaces without altering
their magnetic properties [36], has increased over the years
the interest of the scientific community towards these systems.
Both green and purple compounds have been extensively stud-
ied and characterized with several experimental techniques
(see, e.g., Refs. [37,38]). The main technological interest of
{Cr7M} rings concerns their use as potential qubits [8,32,34],
thanks to their chemical tunability and to the presence of low-

lying transitions characterized by remarkably long coherence
times [27,39]. At a more fundamental level, antiferromagnetic
(AFM) rings are prototypical examples of correlated, finite-
size quantum systems. In this respect, a detailed knowledge
of the magnetic couplings is essential to correctly describe
the different forms of entanglement that can arise between
individual spins. Indeed, it was recently shown that the spatial
modulation of pairwise entanglement can be fine-tuned by
chemical substitutions [40].

Relating intramolecular magnetic interactions to the struc-
ture of a whole class of compounds would allow one both
to design new systems suitable for building efficient quantum
devices and to investigate fundamental quantum-mechanical
issues. First-principles approaches offer the ideal tool to pursue
this goal, which is typically difficult to achieve by experimental
means alone. Density-functional-theory (DFT)-based methods
have indeed been used for long to calculate magnetic couplings
in molecular complexes [41–50]. These works rely on approxi-
mations to the universal functional, the most common of which
are the local-density approximation (LDA), the generalized
gradient approximation (GGA), the LDA + U approach, and,
more recently, hybrid functionals. These approximations fail
qualitatively, however, for strongly correlated systems. Classi-
cal examples of this failure are paramagnetic Mott insulators.
For these systems LDA/GGA-type functionals yield, e.g.,
metallic solutions, while LDA/GGA + U open a gap, but
only at the price of introducing an artifact, i.e., long-range
order. For strongly correlated molecules, such as those made
of ions with partially filled d or f shells, it is thus crucial to
calculate the microscopic magnetic interactions accounting on
the same footing for chemistry, structure, and electron-electron
Coulomb interaction effects. Recently, we have shown that this
can be achieved via a novel approach [51], which allows us
to deduce the spin Hamiltonian starting from material-specific
Hubbard models constructed ab initio. In the rest of the paper
we call this method for simplicity DFT + MB, where MB
stands for many-body. We have already used the DFT + MB
technique to successfully study the magnetic interactions of
prototypical compounds, finding a remarkable agreement with
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experiments [51]. Other recent attempts of explicitly including
many-body effects going beyond simple functionals can be
found, e.g., in Refs. [52,53]. In the present work we use the
DFT + MB approach to study purple and green rings and
to relate the size and hierarchy of the magnetic couplings
with the molecular structure. Some of these rings have been
previously investigated by means of DFT calculations within
a broken-symmetry calculation scheme [49]. The latter is
based on performing ab initio total-energy calculations for
different spin configurations and fitting the results to specific
forms of the low-energy spin Hamiltonian [42,46,47,49]. This
approach is simple to use and hence quite popular, but it
has two serious drawbacks. First, it requires one to know a
priori the form of the low-energy spin Hamiltonian, and it
works best for systems well described by simple isotropic spin
models; as a matter of fact, since the technique is based on
fitting total-energy results, its reliability progressively declines
with increasing the model complexity and thus the number
of free parameters to be determined. Second, as we have
mentioned above, at a more fundamental level, the simplest
DFT functionals (LDA, GGA, and their simple extensions)
do not properly describe strong-correlation effects in open d

shells, and hybrid functionals or the LDA + U method include
them only at the static mean-field level [48]. Conversely, our
approach [51], by deriving spin Hamiltonians from ab initio
system-specific Hubbard models, solves both these problems
at the same time: It allows us to construct systematically
spin models of arbitrary complexity and to properly account
for many-body effects at the desired level. Furthermore, our
method yields the full pattern of exchange and zero-field
splitting interactions along the rings. The hierarchy of these
interactions is found to be intimately connected with the
chemical structure of the molecules. At the experimental
level, this kind of information cannot be easily accessed,
since available data usually allow one to determine only a
minimal set of parameters describing the main interactions. To
compare our results with available experimental data, we use
the calculated parameters to determine physical observables
and mean values, which turn out to be in good agreement with
those inferred from experiments.

The paper is organized as follows. In Sec. II we describe
in detail the DFT + MB method, which we employed to build
spin Hamiltonians. In Sec. III we present our results for the
family of purple {Cr7M} compounds and relate them with
the corresponding analysis of the green rings. In Sec. IV
we calculate physical observables and compare them with
experimental findings. In Sec. V we present spin-density
results. Finally, in Sec. VI we draw our conclusions.

II. MODEL-BUILDING PROCEDURE:
THE DFT + MB APPROACH

A. System-specific Hubbard models

In order to construct material-specific many-body models,
we follow the approach which we have introduced in Ref. [51].
We initially perform for all systems DFT calculations in the
LDA approximation. Since the molecules studied in the present
work have a large number of atoms, LDA calculations can
be rather time-consuming. To perform them we employ the

NWCHEM code [54], which is optimized to exploit the power
of modern massively parallel supercomputers, and a triple-ζ
valence basis set of Gaussians [55]. Next we identify and
select the transition metal d-like states around the Fermi level.
By using the Foster-Boys localization procedure [57] we then
build a set of localized orbitals centered on the transition metal
ions, which span such low-energy states. From this set of
orbitals we calculate the crystal-field Foster-Boys states by
diagonalizing the on-site part of the one-electron Hamiltonian
(nonrelativistic calculation). We thus obtain system-specific
Hubbard models:

H = −
∑

ii ′

∑

σ

∑

mm′
t
i,i ′
m,m′c

†
imσ ci ′m′σ

+ 1

2

∑

ii ′

∑

σσ ′

∑

mm′

∑

pp′
U

i,i ′
mpm′p′c

†
imσ c

†
i ′pσ ′cip′σ ′ci ′m′σ

+
∑

i

λi

∑

mm′σσ ′
ξ i
mσ,m′σ ′c

†
imσ cim′σ ′ − HDC

= HT + HU + HSO − HDC. (1)

Here c
†
imσ (cimσ ) creates (annihilates) a 3d electron with

spin σ in the crystal-field Boys orbital m at site i; sites i = 1
to i = 7 are occupied by Cr3+ ions, while site i = 8 is occupied
by the divalent metal ion M2+, where M = Zn, Mn, and Ni.
The Hamiltonian is the sum of the kinetic-energy term HT , the
Coulomb term HU , the spin-orbit term HSO, and the double-
counting correction −HDC.

Let us now analyze term by term the Hamiltonian (1),
starting from HT . The parameters t

i,i ′
m,m′ appearing in HT

yield the hopping integrals (i �= i ′) or the crystal-field matrix
(i = i ′). The latter is diagonal in the crystal-field basis; we
denote the energy of the crystal-field orbitals with εm = t i,im,m

and order them such that εm � εm+1. Figure 1 shows the
crystal-field orbitals for the Mn2+ ion in a purple Cr7Mn wheel.
They exhibit the typical form of d orbitals in a quasioctahedral
environment: a lower energy t2g-like quasitriplet [Figs. 1(a)–
1(c)] and a 1- to 2-eV higher-energy eg-like quasidoublet
[Figs. 1(d) and 1(e)].

The terms U
i,i ′
mpm′p′ entering in HU are the screened Coulomb

integrals. For simplicity here we use the rotationally invariant
Kanamori form of the Coulomb vertex; the neglected terms,
Coulomb orbital anisotropy and terms with more than two
orbital indices, yield small corrections to the spectrum of the
systems studied in the present paper. In this approximation
all Coulomb parameters can be expressed as a function
of the averaged screened Coulomb couplings Ui,i = U and
J i,i = J , which, in turn, depend only on the Slater integrals
F0, F2, and F4 [58]. The essential terms in HU are thus
the direct [Ui,i

mm′mm′ = Um,m′ = U − 2J (1 − δm,m′ )] and the
exchange (Ui,i

mm′m′m = J ) interaction, the pair-hopping term
(Ui,i

mmm′m′ = J ), and the spin-flip term (Ui,i
mm′m′m = J ). The

last two interactions are crucial to determine the correct
structure of the spin multiplets. We calculate U and J

via the constrained local-density approximation (cLDA) [59]
approach in the Foster-Boys basis, keeping the basis frozen in
the self-consistency loop.

The term HDC is the double-counting correction, which
removes the mean-field part of the local Coulomb interaction,
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FIG. 1. Crystal field d orbitals, obtained by diagonalization of the
crystal-field matrix t

i,i

m,m′ for i = Mn (purple ring), in order (a) to (e)
of increasing energy. Red (blue) orbital lobes are positive (negative).
The quasioctahedral environment is reflected in the crystal-field
states: a lower-energy t2g-like quasitriplet (a)–(c) and a 1- to 2-eV
higher-energy eg-like quasidoublet (d)–(e). In the plot only the Mn
quasioctahedral cage is shown (Mn is purple, O is red, F is yellow,
and N is cyan).

already included in the LDA. Here we adopt the fully localized
limit [58], which is more appropriate for molecular systems.
Hence HDC = 1

2

∑
i U

i,ini
d (ni

d − 1) − 1
4

∑
i J

i,ini
d ( 1

2ni
d − 1),

where ni
d is the number of d electrons at site i. In the case of

homonuclear systems such correction amounts to a shift of the
d levels, εi

m → εi
m + �εi

m, where �εi
m = −Ui,i(ni

d − 1
2 ) +

J i,i( 1
2ni

d − 1
2 ), which is the same for all sites and orbitals, and

can be incorporated in the chemical potential; for heteronuclear
compounds, instead, the shift �εi

m is site dependent and HDC

has to be taken into account explicitly.
Finally, λi , entering in the term HSO, is the strength of the

spin-orbit interaction, here the same for all the 3d electrons
within the same ion. The elements ξ i

mσ,m′σ ′ = 〈mσ |si · li |m′σ ′〉
are matrix elements of the spin-orbit matrix in the Forster-Boys
basis. The coupling λi can be extracted by comparing the
single-electron crystal-field splittings with and without spin-
orbit interaction, as we have shown in Ref. [51]. In this work,
since relativistic self-consistent calculations are very time-
consuming and the spin-orbit coupling is basically a property
of the single ion (in its local environment, which for all systems
considered here is approximately octahedral), for λi we use
either values previously determined by us via our method for
similar systems [51] or tabulated values for the same ions in a
similar environment [60]. We had indeed proved in Ref. [51]
that the latter is a very good approximation for this kind of
systems.

The representative crystal-field parameters and the essential
Coulomb integrals for the system considered in this work,
obtained with the method described above, are given in Table I.

B. Low-energy spin models

In this section we explain how, starting from the Hubbard
model (1), we obtain for each molecule the corresponding
low-energy spin model. Let us start, however, from the

TABLE I. Top: Crystal-field levels (in eV) for one representative
Cr ion and for Mn and Ni ions, in the cases of both purple and
green rings. The lowest-energy crystal-field level is taken as the zero.
Bottom: Screened Coulomb integrals Ui,i and J i,i obtained via cLDA
(in eV) and spin-orbit coupling λi (in meV) [61].

Purple Green

Cr Mn Ni Cr Mn Ni

|n〉 εn

|1〉 0.000 0.000 0.000 0.000 0.000 0.000
|2〉 0.081 0.081 0.088 0.010 0.051 0.077
|3〉 0.117 0.219 0.250 0.133 0.249 0.206
|4〉 2.098 1.387 1.204 2.031 2.275 1.376
|5〉 2.222 1.476 1.284 2.141 2.347 1.519

Coulomb integrals

Ui,i 6.00 6.49 6.30 5.98 6.32 6.28
J i,i 0.30 0.35 0.21 0.26 0.34 0.23
λi 16.5 20.7 33.5 16.5 20.7 33.5

conclusion and then explain the derivation of all terms one
by one. For all systems analyzed in this work, we find that the
essential magnetic interactions are described by the following
spin Hamiltonian:

HS = 1

2

∑

〈i �=i ′〉
	i,i ′Si · Si ′ +

∑

i

[Si · Di · Si + μBB · gi · Si]

+
∑

i �=i ′
Si · Di,i ′ · Si ′

=HEX +
∑

i

[
Hi

ZFS + Hi
Z

] + HDIP, (2)

where 	i,i ′ are the isotropic exchange couplings, the sum
over 〈i �= i ′〉 is restricted to first-nearest-neighbor atoms, Di is
the local zero-field splitting (ZFS) tensor, and the third term
describes the Zeeman interaction with an external magnetic
field B. The last term describes magnetic dipole-dipole
interactions with couplings Di,i ′ calculated in the point-dipole
approximation [1], using the gi tensors derived ab initio (see

below). The magnetic exchange coupling 	i,i ′ = 	
i,i ′
CE + 	

i,i ′
SE is

the sum of a ferromagnetic (FM) screened Coulomb exchange
term, 	

i,i ′
CE, which we obtain via cLDA calculations, and

the superexchange contribution 	
i,i ′
SE , which we obtain via

many-body perturbation theory. The latter can in principle
be either FM or AFM; for all systems considered in this
work it turns out to be AFM. Finally, for all the examined
molecules, we find that other terms, such as the anisotropic
or antisymmetric exchange interactions and the higher-order
zero-field splitting parameters, are negligible.

To derive Hamiltonian (2) from Hamiltonian (1) we proceed
as follows. First, by using a canonical transformation [62], we
eliminate charge fluctuations and derive from the Hubbard
model the corresponding low-energy spin model. Since for
the systems analyzed in this work |t i,i ′m,m′ | � Ui,i (see Table I)
the expansion can be basically truncated at the second-order
perturbation theory level. This expansion systematically yields
the couplings 	

i,i ′
SE , which in turn, added to the ferromagnetic
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Coulomb exchange term, gives 	i,i ′ and thus the exchange
term HEX in Hamiltonian (2).

Next, we calculate the zero-field splitting tensor for each
atom, i.e., the terms Hi

ZFS. To this end, we first diagonalize
the on-site part of Hamiltonian (1), without, however, the
spin-orbit term; i.e., we diagonalize the Coulomb and crystal-
field terms. This yields the ionic multiplets in the molecular
environment, of course in the absence of spin-orbit interaction.
Since for the systems analyzed here the ground-state and
excited-state multiplets are well separated in energy and the
hopping integrals are small with respect to the Coulomb inter-
action, we can assume that each ion is, in first approximation,
in the ni

d -electron ground-state multiplet, with a well-defined
spin Si . More specifically, we find a stable triplet ground state
for Ni2+, a sextet for Mn2+, and a quartet for all Cr3+ ions,
with spins S = 1, S = 5/2, and S = 3/2, respectively. Up to
now we neglected the spin-orbit interaction. Since, for the
ions considered here, the latter is small with respect to the
Coulomb energy splittings or the crystal-field splitting, for all
cases considered here, it is sufficient to treat its effects as a
perturbation up to second order. If we denote with |
i

l (n)〉
the n-electron eigenstate with energy Ei

l (n), and Ei
0(ni

d ) is the
energy of the ground-state multiplet, we thus have

〈

i

k

(
ni

d

)∣∣Hi
ZFS

∣∣
i
k′
(
ni

d

)〉

=
∑

l

〈

i

k

(
ni

d

)∣∣Hi
SO

∣∣
i
l

(
ni

d

)〉〈

i

l

(
ni

d

)∣∣Hi
SO

∣∣
i
k′
(
ni

d

)〉

Ei
0

(
ni

d

) − Ei
l

(
ni

d

) .

Here l labels the states of the excited ni
d -electron multiplets;

k and k′ label instead the states within the ground multiplet.
Recasting the zero-field splitting tensor into the basis of the
eigenvectors of Sz,i and decomposing by scalar product into
Stevens operators O

q

k (Si), we find Hi
ZFS = ∑

q b
q

2 (i)Oq

2 (Si)

and the corresponding zero-field tensor Di . Finally, we can
express Di in the (local) reference frame which diagonalizes
it; in such a reference frame the zero-field splitting interaction
can be expressed as the sum of an axial term, di , and a rhombic
term, ei , i.e.; it takes the form

Hi
ZFS = di

[
S2

z,i − 1
3Si(Si + 1)

] + ei
[
S2

x,i − S2
y,i

]
.

By diagonalizing the tensor Di we thus also determine the
principal anisotropy axes on each magnetic ion. Notice that, if
|ei/di | � 1, the case of the systems considered here, di < 0
implies that z is an easy axis.

At last we calculate the gyromagnetic tensor gi and
hence the Zeeman term Hi

Z in the spin Hamiltonian. In the
ground-state multiplet, in the absence of spin-orbit interaction,
the gyromagnetic tensor is diagonal, i.e., gi = 2I , where I

is the identity matrix. The anisotropic contributions come from
the spin-orbit effects; to calculate them we thus first correct
the ground spin multiplet states to first order in HSO, obtaining
a new wave function, 
̃i

k(ni
d ) ∼ 
i

k(ni
d ) + �
i

k(ni
d ), where

�
i
k

(
ni

d

) ∼
∑

l

∣∣
i
l

(
ni

d

)〉〈

i

l

(
ni

d

)∣∣Hi
SO

∣∣
i
k

(
ni

d

)〉

Ei
0

(
ni

d

) − Ei
l

(
ni

d

) . (3)

The anisotropic contribution to the gyromagnetic tensor �gαα′

is then given by
〈

̃i

k

(
ni

d

)∣∣Lα,i

∣∣
̃i
k′
(
ni

d

)〉 =
∑

α′
�gαα′

〈

i

k

(
ni

d

)∣∣Sα′,i
∣∣
i

k′
(
ni

d

)〉
.

In the actual calculations it is sufficient to retain only first-order
correction in the spin-orbit coupling, since the second-order
terms turn out to be negligible.

III. RESULTS FOR {Cr7 M} RINGS

In this section we describe the actual results for the two
families of molecules studied in the present work.

A. Purple rings

The superexchange and Coulomb-exchange parameters
obtained for each couple of neighboring ions in purple rings
are listed in Table II. It is interesting to compare the results
with the molecular structure, shown in Fig. 2. If we consider all
possible couples of nearest-neighboring Cr, we find essentially
two well distinguishable values of the exchange couplings,
associated with two very different types of superexchange
paths. As it can be seen in Fig. 2(a), the first type involves two
carboxylate bridges and an oxygen bridge (oxygen ions are red
in the figure); this type of superexchange path is relevant for
all the couples Cri-Cri+1 with 2 � i � 6. The second kind of
path involves, instead, two carboxylate and a fluorine (fluorine
ions are yellow in Fig. 2) bridge, and it is relevant only for
the Cr1-Cr2 bond. The exchange coupling associated with the
fluorine-type path is substantially smaller than the exchange
couplings stemming from paths without fluorine. Indeed, we
find that both the overlap between localized neighboring
orbitals and the hopping integrals are larger for the bond
involving an O with respect to the case in which the oxygen
is replaced by fluorine. An additional path is provided by the
Cr-O-C-C-O-Cr bridge, as can be seen in Fig. 2(b); this is,
however, longer than the others and gives correspondingly only
a small contribution to the exchange couplings. The effect of
the fluorine substitution in decreasing the exchange coupling
was previously suggested in Ref. [63] based on broken-

TABLE II. Calculated superexchange (	i,i′
SE ) and Coulomb-

exchange (	i,i′
CE ) couplings, for each pair of nearest neighbors in the

examined families of rings (in meV). The fourth and last columns
report the total 	i,i′ = 	

i,i′
SE + 	

i,i′
CE .

Purple Green

Bond 	
i,i′
SE 	

i,i′
CE 	i,i′ 	

i,i′
SE 	

i,i′
CE 	i,i′

Cr1-Cr2 1.89 −0.41 1.48 2.07 −0.38 1.69
Cr2-Cr3 2.93 −0.51 2.42 1.89 −0.33 1.56
Cr3-Cr4 2.86 −0.43 2.43 2.03 −0.33 1.70
Cr4-Cr5 2.94 −0.49 2.45 1.88 −0.32 1.56
Cr5-Cr6 3.04 −0.60 2.44 2.09 −0.31 1.78
Cr6-Cr7 3.14 −0.49 2.65 1.90 −0.29 1.61
Cr7-Mn 1.80 −0.35 1.45 1.92 −0.29 1.63
Mn-Cr1 2.34 −0.52 1.82 1.66 −0.27 1.39
Cr7-Ni 2.47 −0.36 2.11 2.22 −0.40 1.82
Ni-Cr1 3.02 −0.50 2.52 2.03 −0.36 1.67
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FIG. 2. (a) Molecular structure of the purple {Cr7M} (M = Ni and Mn) family of compounds, with calculated isotropic exchange couplings
(in meV) for each pair of nearest-neighboring magnetic ions. H atoms are not shown for clarity, while C are gray, N are light blue, F are yellow,
O are red, Cr are green, and M (= Ni and Mn) is purple. The value of the exchange couplings crucially depends on whether or not a fluorine
replaces oxygen in the superexchange path. The different types of possible superexchange paths can be seen more clearly in the fragments
shown in panel (b) for the Cr-Cr bonds and in panel (c) for the Cr7-M and M-Cr1 bonds.

symmetry calculations; our results confirm this hypothesis,
evidencing the microscopic mechanism behind this conclusion
and quantifying the difference between the bonds. A similar
analysis on the Cr-M bonds evidences instead the important
role played by the carboxylate groups in the superexchange
interactions. For both Cr7Mn and Cr7Ni, we find 	7,8 < 	8,1,
where 8 is the M site. These results can be understood by
examining Fig. 2(c): an additional carboxylate superexchange
path is present in the M-Cr1 bond which is absent in the Cr7-M
bond.

We now examine the anisotropic terms of the spin Hamilto-
nian. Table III reports the local ZFS parameters di and |ei |
along with the rhombicity factor |ei/di | for purple rings.

TABLE III. Calculated local zero-field splitting parameters (in
μeV) for the purple and green {Cr7M} rings. For each magnetic ion,
di and |ei | are the axial term and the rhombic term in the reference
frame given by the local principal axes of the Di tensor. We find
easy-axis anisotropy for all ions except for Mn2+ and Zn2+; the latter
is diamagnetic. The fourth and last columns report the rhombicity
factor |ei/di |.

Purple Green

di |ei | |ei/di | di |ei | |ei/di |
Cr1 −31 6 0.19 −65 10 0.15
Cr2 −40 7 0.16 −46 6 0.13
Cr3 −29 8 0.27 −37 5 0.14
Cr4 −74 17 0.23 −78 11 0.14
Cr5 −45 8 0.18 −68 9 0.13
Cr6 −84 25 0.30 −55 8 0.15
Cr7 −49 9 0.18 −63 10 0.16
Mn −15 1 0.09 6 0 0.00
Ni −804 162 0.20 −480 29 0.06

Figure 3 shows the local z axes for purple Cr7Mn; they
basically follow the direction of the lobes of the highest-
energy crystal-field orbitals. These are found to be almost
perpendicular to the plane of the ring for all the ions, except
for the Cr next to the M ion (on the right in Fig. 3), for
which the tilt angle between the local z axis and the global
Z axis (perpendicular to the plane of the ring) is about 40◦.
Conversely, the local x and y axes are rotated from ion to ion,
following the directions of the ligands in the crystal cage.

Finally, we discuss the gyromagnetic tensor. First of all,
we find that in all systems considered here basically the same
system of local axes diagonalize both the zero-field splitting

FIG. 3. Highest-energy crystal-field orbital for each magnetic ion
and direction of the local z axes for purple Cr7Mn. CH3 groups are
not shown for clarity. The brown arrow indicates the global Z axis
(perpendicular to the plane of the ring). The Mn ion is located in the
bottom left part of the figure.
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TABLE IV. Principal components of the g tensor for Ni2+ ions
in purple and green Cr7Ni rings. Available experimental values
(fitted from electron paramagnetic resonance data) [37] are shown
in brackets. The tensor is given in the local coordinate system which
diagonalizes simultaneously gi and the zero-field tensor Di .

gxx gyy gzz

Purple 2.08 (2.18) 2.16 (2.18) 2.28 (2.25)
Green 2.07 (–) 2.08 (–) 2.15 (–)

tensor and the gyromagnetic tensor. Second, we find that the
anisotropic correction to the gi tensor is very small for Cr and
Mn ions in all the examined molecules, both green and purple
types. For instance, in the case of Cr3+ ions, we get for all
systems 1.98 < gαα < 2 (referred to the local principal axes).
We find the largest effects of anisotropy on the gyromagnetic
tensors in the case of Ni2+ ions, whose values are given in
Table IV (first line).

B. Green rings

A similar analysis can be done for the green variants of
{Cr7M} antiferromagnetic rings. Figure 4 shows the distribu-
tion of the exchange constants. We find that they are more
uniform along the ring than in the case of the purple family
of compounds. This can be directly related to the structure.
Indeed, in the green variant the superexchange paths always
involve a single fluorine bridge and two carboxylates, as
opposed to the more complex structure of bridges found in the
purple complexes. The value of all fluorine-mediated exchange
couplings are similar in the purple and the green variant of
the ring [51]. However, we note that the calculated exchange
couplings show an ABAB pattern which reflects the alternated
orientation of the carboxylate groups, above or below the plane
of the molecule (see Fig. 4). This is consistent with a previous

FIG. 4. Molecular structure and calculated exchange integrals of
the green rings.

analysis of inelastic neutron scattering data on the parent
Cr8 green compound [17], where it was shown that a model
with an alternated pattern of exchange constants produces
the same low-energy spectrum as that with uniform exchange
constants.

The zero-field splitting microscopic parameters for the
green rings are listed in Table III. Similarly to what was
observed for the purple derivatives, the local z axes turn out
to be almost perpendicular to the plane of the ring, while the
local x and y axes follow the direction of the ligands in the
crystal cage. As far as Cr ions are concerned, the average
absolute value of their local axial anisotropy is slightly larger
in the green variants than in the purple variants (−0.06 vs
−0.05 meV), a trend which is also in agreement with electronic
absorption spectra reported in Ref. [37]. We find the largest
effects of anisotropy in the case of Ni2+ ions, in both families of
compounds, with |dNi

green| = 0.48 meV < |dNi
purple| = 0.80 meV.

The larger value of |dNi| calculated for the purple Cr7Ni
wheel is due to the smaller excitation energies appearing
in the denominator of Eq. (3); smaller splittings originate
from the smaller Coulomb exchange integrals and crystal-field
gaps which we obtained in the purple case, induced by the
larger elongation of the octahedral cage in purple with respect
to green compounds. The rhombic distortion of the ligands
surrounding the Ni ion is also more pronounced in purple
rings, leading to a sizably larger calculated rhombicity (0.23
vs 0.06).

Let us finally discuss the gyromagnetic tensor. The smaller
excitation energies are also responsible for the larger �gi

for the purple variant with respect to its green analog (see
Table IV). Finally, due to the larger distortion of the ligand
cage, the gxx and gyy components of the gNi tensor differ much
more with respect to each other in the purple variant than in
the green variant (in agreement with the larger rhombicity
displayed by purple rings).

IV. COMPARISON WITH EXPERIMENTS

The spin models used to fit experimental data in
Refs. [37,38] assume only two values for the exchange
couplings (	Cr,Cr and 	Cr,M ) and two values of the ZFS axial
parameters (dCr, dM ), the same for all the homonuclear sites
on the rings. Therefore, to compare with experiments, we use
two approaches.

In the first approach we compute the average values:

	Cr,Cr = 1

6

6∑

i=1

	i,i+1, 	Cr,M = 1

2
[	8,1 + 	7,8].

These values are reported in Table V for both green and
purple compounds, where they are also compared with the
corresponding experimental estimates. It is worth noting
that for all systems considered, our results are closer to
experimental findings than those obtained by total-energy spin-
configuration calculations based on the B3LYP functional [49]
(in which uniform exchange constants are assumed from the
start). Moreover, the hierarchy of interactions among different
compounds is correctly reproduced (for both green and purple
families, 	Cr,Mn < 	Cr,Cr < 	Cr,Ni).
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TABLE V. Comparison between calculated and (in parentheses)
experimentally determined [37,38] isotropic exchange parameters for
the green and purple {Cr7M} rings. The calculated values are averaged
along the ring.

	Cr,Cr (meV) 	Cr,M (meV)

Green Purple Green Purple

Cr7Zn 1.65 (1.46) 2.31 (1.72) 0 (0) 0 (0)
Cr7Ni 1.65 (1.46) 2.31 (1.72) 1.75 (1.70) 2.32 (2.59)
Cr7Mn 1.65 (1.46) 2.31 (1.72) 1.49 (1.37) 1.63 (1.03)

The second approach that we adopt to put our results to
the experimental test consists of calculating specific exchange
splittings that can be or have been actually measured. To this
end, first we diagonalize the isotropic part of our spin Hamil-
tonian and compare the results directly with experimental
inelastic neutron scattering peaks [37,38]. Results are shown
in the left side of Table VI and are in good agreement (within
∼30%) with experiments.

For all the examined systems isotropic exchange is the
dominant interaction. Hence, the spectrum obtained by di-
agonalization of the full spin Hamiltonian practically consists
of spin multiplets split by the anisotropic terms of the spin
Hamiltonian, i.e., the on-site zero-field tensor and the two-
body magnetic dipole-dipole terms of HS [Eq. (2)]. Hence,
analyzing these splittings allows us to test the anisotropic terms
of the spin Hamiltonian. The right side of Table VI reports the
calculated splitting of the lowest-lying spinS > 1/2 multiplet,
compared with the levels derived from the positions of the
peaks measured by inelastic neutron scattering and attributed
to the investigated transitions [37,38]. In the last column of the
table the sign of the effective molecular anisotropy (easy plane
or easy axis) is also reported and compared with experimental
findings (in parentheses). The agreement between experiments
and theory is good and the sign is always correct. In particular,
we find easy plane anisotropy for Cr7Ni and easy axis for
Cr7Mn and for Cr7Zn. It is worth pointing out that also the
trend of the experimental gaps is well reproduced, with the
largest gap found for Cr7Ni and similar splittings for Cr7Mn
and Cr7Zn (in both purple and green derivatives). Notice
that the S = 3/2 multiplet splits into two doublets (due to
Kramers degeneracy). Conversely, the S = 1 multiplet could

in principle split into three singlets, but two of them are almost
degenerate (for both calculated and measured spectra) and
hence only the most relevant gap is reported. We stress that the
subtle anisotropic interactions giving rise to these splittings
are not usually extracted by broken-symmetry calculations, in
which, to avoid overparametrization, the Heisenberg exchange
is assumed to be the only relevant term of the Hamiltonian.
Conversely, we systematically derive the full spin Hamiltonian
without any assumption on its form. Finally, it is worth noting
that the overlap between the ground state of our microscopic
spin Hamiltonian (2) and that of the spin Hamiltonian obtained
by fitting experiments [37] is very large: the squared scalar
product of the two states is indeed 0.975.

V. SPIN DENSITY

In this section we present electronic spin-density calcu-
lations. Nuclear magnetic resonance [64,65] and polarized
neutron diffraction [66] techniques have recently allowed a
direct and quantitative measurement of the spatial distribution
of the spin moments (integrated spin density) within antifer-
romagnetic molecular rings. These data provide fundamental
signatures of the topology (open/closed) and parity effects
(even/odd) in finite spin chains. Representative calculations
for two {Cr7M} purple rings are shown in Fig. 5, but perfectly
analogous results are also obtained for the corresponding green
variants. The electron spin density is given by the expectation
value 〈Sz(r)〉, where

Sz(r) ≈ 1

2

∑

i,m

[c†im↑cim↑ − c
†
im↓cim↓]|φim(r)|2

is the third component of the total spin operator. Here
φim(r) are crystal-field orbitals which account for the spatial
dependence of the spin density. The shape of the spin
densities is directly related to the symmetry of the occupied
crystal-field orbitals. As previously discussed, since in the
molecules considered here all magnetic ions are surrounded
by a slightly distorted octahedral environment, the transition
metal d orbitals split into a lower-energy t2g-like quasitriplet
and a higher-energy eg-like quasidoublet. In the absence of
a magnetic field the spin polarization in the ground state is
zero. An external magnetic field lifts the degeneracy of the

TABLE VI. Left: Splitting (in meV) between total spin ground-stateS and first excited multipletS ′, calculated starting from our microscopic
spin Hamiltonian; in parentheses, the same splitting measured by inelastic neutron scattering [37,38]. The spins S and S ′ are given in the next
column. Right: Calculated splitting (first column, in meV) of the lowest energy S > 1/2 multiplet (second column), induced by anisotropic
terms of the spin Hamiltonian. In the third column the sign of the axial contribution to the effective molecular anisotropy (+ = easy plane/
− = easy axis) is given. Experimental values [37,38] are in parentheses.

Exchange ZFS

Compound Gap S → S ′ Gap S Sign of the axial contrib.

Green Cr7Zn 0.95 (0.84) 3/2 → 1/2 0.18 (0.11) 3/2 − (−)
Cr7Ni 1.38 (1.24) 1/2 → 3/2 0.24 (0.14) 3/2 + (+)
Cr7Mn 1.68 (1.52) 1 → 2 0.16 (0.10) 1 − (−)

Purple Cr7Zn 1.20 (1.00) 3/2 → 1/2 0.12 (0.09) 3/2 − (−)
Cr7Ni 1.81 (1.50) 1/2 → 3/2 0.26 (0.14) 3/2 + (+)
Cr7Mn 2.18 (1.48) 1 → 2 0.12 (0.08) 1 − (−)
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FIG. 5. Spin density on the ground state of {Cr7M} purple rings, 〈Sz(r)〉, in an applied field perpendicular to the ring of 5 T. Isovalues of 0.04
electrons/a.u. have been used. Different colors correspond to the positive (red) and negative (blue) values of the spin density. CH3 groups are
not shown for clarity. (a) Cr7Ni ring, characterized by a ground spin state, |S = 1/2,M = −1/2〉; (b) Cr7Mn, which shows |S = 1,M = −1〉.
The calculated local spin moments are reported close to each magnetic ion.

ground multiplets, yielding a spin polarization. The resulting
spin density is sizable around the magnetic ions of the ring. In
particular, Cr3+ is in the t3

2g electronic configuration; thus, in
the presence of a magnetic field, the spin polarization mostly
arises from t2g states. This can be seen from the fact that the
shape of the spatial distribution of the spin density around
each atom is cubiclike, because the lobes of these orbitals
extend around the diagonals of the orthorhombic axes. Instead,
Mn2+ and Ni2+ have five and eight electrons in the d shell,
respectively. Hence, Mn displays the typical sphere-shaped
spin density of an S ion, due to the polarization of both t2g-like
and eg-like states, while the star-shaped spin density of Ni orig-
inates from the polarization of eg-like orbitals (the t2g states are
fully occupied). The figure shows that the spin polarization has
opposite signs at Ni and Mn sites. This reflects the fact that,
compared to the spin on the neighboring Cr ions, Ni has a
smaller and Mn a larger magnetic moment; hence the spin of
Mn tends to align antiparallel to the magnetic field; to make
this more clear, in Fig. 5 we give the distribution of local spin
moments along the rings. The magnetic field is applied along
the global Z direction (perpendicular to the plane of the ring).
The calculated spin moments for the green Cr7Ni and Cr7Zn
are close to those derived in Refs. [64,65] from the analysis of
the nuclear magnetic resonance spectra of 53Cr and 19F.

VI. CONCLUSIONS

Summarizing, we have presented a detailed ab initio
many-body study of two families of antiferromagnetic {Cr7M}
molecular rings. The study is performed by means of the
recently developed DFT + MB approach [51], which is based
on the construction of system-specific many-body Hubbard-
like models, using a basis of localized Foster-Boys orbitals.
Our method allows us to deduce the full spin Hamiltonian
without any a priori assumption on its form and with no free

parameters. By explicitly including strong correlation effects
beyond the static mean-field level, we achieve a good agree-
ment between calculated and experimental results. The spin-
orbit interaction tensor is calculated by comparing the Hubbard
model obtained from classic and relativistic calculations. In
this work, in order to reduce the computational cost, we use
spin-orbit couplings either determined by us in Ref. [51] or
tabulated for the same ions in similar environments; we proved
in test cases that this is indeed a very good approximation. The
successful application of the DFT + MB approach to a wide
class of Cr7M molecular rings demonstrates the effectiveness
of our scheme. Moreover, we obtain the full pattern of
exchange and zero-field splitting terms, a kind of information
which is hardly accessible even with the most advanced
experimental techniques and is typically not extracted by
standard broken-symmetry calculations. This allows us to
relate the superexchange paths with the molecular structure,
thus enabling a deeper understanding of the origin of magnetic
interactions and the design of suitable devices for future
quantum technologies. Indeed, the present study highlights
how magnetic couplings and zero-field splittings can be
tailored by chemically engineering the cage of the magnetic
ions, thus controlling static and dynamic properties of molec-
ular nanomagnets. The determination of individual exchange
couplings and subtle anisotropic terms of the spin Hamiltonian
is essential to provide an accurate description of molecular
magnets. These terms have a key role in controlling the
entanglement between composite subsystems of the molecular
cluster, whose detection (by four-dimensional inelastic neutron
scattering [22,67]) is at the forefront of current research.
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